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Hub and Spoke Networks

The key feature of these networks is the way in which commodities are
routed from numerous points of origin to specific destinations.
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Hub and Spoke Networks

25 demand points (origins and destinations)
(25× 24)/2 = 300 direct connections
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Hub and Spoke Networks

Hub networks: Concentrate flows to exploit economies of scale in
transportation. (3 hub arcs and 21 access arcs).
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Classical Hub Location Problems

Hub location problems deal with:

location of hub nodes
routing of commodities through the network

Assume that hubs are fully interconnected at no cost

O/D paths must contain at least one hub and at most two
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Capacitated Hub Location with Single Assignment

Origin/Destination points

Notation

N: set of nodes

Wij : flow between i and j

Oi =
∑
j∈N

Wij : outgoing flow

D =
∑
i∈N

Oi : total flow

bi : capacities

fi : set-up costs

dij : transportation costs

The CHLPSA consist of:

Locate a set of hub nodes

Single assignment patter on the flows is considered

Minimize the total set-up and transportation costs

Transportation costs: Fijkm = Wij (χdik + αdkm + δdmj).
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CHLPSA: MIP Formulation

Location/Assignment Variables

zik =

{
1 if node i is assigned to hub k;
0 otherwise.

Path Variables

xijkm =

{
1 if flow from i to j goes via hubs k and m;
0 otherwise.

k

ii

j

m

k

ii

zik variables (binary) xijkm variables (binary)
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CHLPSA: MIP Formulation

Integer Programming Formulation:

minimize
∑
k∈N

fkzkk +
∑
i∈N

∑
j∈N

∑
k∈N

∑
m∈N

Fijkmxijkm

subject to
∑
k∈N

∑
m∈N

xijkm = 1 ∀ i , j ∈ N

zik ≤ zkk ∀ i , k ∈ N∑
m∈N

xijkm = zik ∀ i , j , k ∈ N

∑
k∈N

xijkm = zjm ∀ i , j ,m ∈ N

∑
i∈N

Oizik ≤ bkzkk ∀ k ∈ N

∑
k∈N

bkzkk ≥ D

xijkm ≥ 0 ∀ i , j , k,m ∈ N

zik ∈ {0, 1} ∀ i , k ∈ N
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Column Generation: Restricted Master Problem

(RMP) z(S) = min
∑
k∈N

fkzkk +
∑
i∈N

∑
j∈N

∑
k∈Sij

∑
m∈Sij

Fijkmxijkm

subject to
∑
k∈N

∑
m∈N

xijkm = 1 ∀ i , j ∈ N

zik ≤ zkk ∀ i , k ∈ N∑
m∈Sij

xijkm = zik ∀ i , j , k ∈ N

∑
k∈Sij

xijkm = zjm ∀ i , j ,m ∈ N

∑
i∈N

Oizik ≤ bkzkk ∀ k ∈ N

∑
k∈N

bkzkk ≥ D

xijkm ≥ 0 ∀ i , j , k,m ∈ N

zik ∈ {0, 1} ∀ i , k ∈ N

Let Sij ⊆ N be the set of admissible hubs for sending flow from i to j .



Introduction Problem Description Solution Method Computational Experiments Conclusions

Column Generation: Restricted Master Problem

(RMP) z(S) = min
∑
k∈N

fkzkk +
∑
i∈N

∑
j∈N

∑
k∈Sij

∑
m∈Sij

Fijkmxijkm

subject to
∑
k∈N

∑
m∈N

xijkm = 1 ∀ i , j ∈ N

zik ≤ zkk ∀ i , k ∈ N∑
m∈Sij

xijkm = zik ∀ i , j , k ∈ N

∑
k∈Sij

xijkm = zjm ∀ i , j ,m ∈ N

∑
i∈N

Oizik ≤ bkzkk ∀ k ∈ N

∑
k∈N

bkzkk ≥ D

xijkm ≥ 0 ∀ i , j , k,m ∈ N

zik ∈ {0, 1} ∀ i , k ∈ N

Let Sij ⊆ N be the set of admissible hubs for sending flow from i to j .



Introduction Problem Description Solution Method Computational Experiments Conclusions

Column Generation: Lagrangean Relaxation for RMP

Lagrangean Function:

LS(u, v) = Lz(u, v) + LS
x (u, v)

Lz(u, v) = min
∑
k∈N

fk −
∑
j∈N

(ukjk + vjkk)− ξk(u, v)

 zkk

s.t.
∑
k∈N

bkzkk ≥ D

zkk ∈ {0, 1} ∀ k ∈ N,

where,

ξk(u, v) = min
∑

i∈N:i 6=k

∑
j∈N

(uijk + vjik)

 zik

s.t.
∑

i∈N:i 6=k

Oizik ≤ (bk − Ok)

zik ∈ {0, 1} ∀ i ∈ N, i 6= k.
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Column Generation: Lagrangean Relaxation for RMP

Lagrangean Function:

LS(u, v) = Lz(u, v) + LS
x (u, v)

LS
x (u, v) = min

∑
i∈N

∑
j∈N

∑
k∈Sij

∑
m∈Sij

(Fijkm + uijk + vijm) xijkm

s.t.
∑
k∈Sij

∑
m∈Sij

xijkm = 1 ∀ i , j ∈ N

xijkm ≥ 0 ∀ i , j ∈ N,∀ k,m ∈ Sij .

A lower bound for the RMP is:

zS
D = LS(uS , vS) = max

u,v
LS(u, v)
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Column Generation: Pricing Problem

For i , j ∈ N, the route i − k −m − j with minimum

c̄ijkm = Fijkm + uS
ijk + vS

ijm − wS
ij (uS , vS)

can be determined by solving the semi-assignment problem:

qij(u
S , vS ,wS) = min

∑
k∈N

∑
m∈N

c̄ijkmxijkm

s.t.
∑
k∈N

∑
m∈N

xijkm = 1

xijkm ≥ 0 ∀ k,m ∈ N,

When qij(u
S , vS ,wS) ≥ 0,∀i , j ∈ N, then z s

D is a valid lower bound

Otherwise, for each i , j ∈ N such that qij(u
S , vS ,wS) < 0 we enlarge

Sij := Sij ∪ {k̂ , m̂}
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Column Generation: Valid Lower Bounds

A valid lower bound for MP is given by

LB1(S) = zS
D +

∑
i,j∈N

min
{

0, qij(u
S , vS ,wS)

}

We can use a valid lower bound to:

Apply an early termination criteria:

zS
D − LB1(S) < ε

Apply reduction tests: eliminate variables and constraints
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Column Generation: Valid Lower Bounds

Consider LB2(S) = L(û, v̂) obtained by perturbing (uS , vS)

Define û = uS + α and v̂ = vS + β such that

min
α,β

zS
D − L(û, v̂)

subject to

Fijkm+
(
uS

ijk + αijk

)
+
(
vS
ijm + βijm

)
−wS

ij (uS+α, vS+β) ≥ 0, ∀i , j , k,m ∈ N

Observe that

zS
D − L(û, v̂) = Lz(uS , vS) + LS

x (uS , vS)− Lz(û, v̂)− Lx(û, v̂)
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Consider LB2(S) = L(û, v̂) obtained by perturbing (uS , vS)
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Column Generation: Valid Lower Bounds

To approximately solve the problem, we impose that

LS
x (uS , vS) = Lx(û, v̂)

and thus

zS
D − L(û, v̂) = Lz(uS , vS)− Lz(û, v̂)

An indirect way of solving the problem is by minimizing the sum of
perturbations, i.e.,

min
∑
i∈N

∑
j∈N

 ∑
k∈N\k̂

αijk +
∑

m∈N\m̂

βijm

 (1)

s.t. αijk + βijm ≥ −c̄ijkm ∀ i , j , k ,m ∈ N (2)

αijk ≥ 0 ∀i , j ∈ N,∀k ∈ N \ k̂ (3)

βijm ≥ 0 ∀i , j ∈ N,∀m ∈ N \ m̂ (4)
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Column Generation: Valid Lower Bounds

 

(uS, vS) ( )vu ˆ,ˆ  

LB2(S) = ( )vuL ˆ,ˆ  

LB1(S) =L(uS, vS) 

Figure 2: Comparison between LB1(S) and LB2(S)
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Column Generation: Quality of Bounds
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Figure 2: Comparison between LB1(S) and LB2(S) using the 70TT
instance of the AP data set



Introduction Problem Description Solution Method Computational Experiments Conclusions

Comparison of Standard and Stabilized CG
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Figure 3: Comparison of CPU times between different versions of CG
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Comparison of Standard and Stabilized CG
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Figure 4: Comparison of CPU times between different versions of CG
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Branch and Price for CHLPSA

The CG procedure is embedded into a branch and bound

The enumeration algorithm consist of three phases:

Partial enumeration
Branch in location variables
Branch in assignment variables
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Computational Results for the Branch and Price

Root Node Totaltime
Prob Dev time BP CPLEX

70LL 0.80 29.26 214.23 170.84
70LT 0.84 28.75 245.76 1122.67
70TL 0.00 9.80 9.47 43.27
70TT 0.29 8.16 48.55 292.44
75LL 0.20 20.73 48.60 43.61
75LT 0.33 22.88 33.90 726.91
75TL 0.27 13.64 14.86 89.39
75TT 2.50 13.31 24.83 14400.00
90LL 0.10 39.28 39.28 79.11
90LT 0.18 33.56 80.87 4182.70
90TL 0.85 25.92 228.87 971.57
90TT 0.52 27.12 213.90 1220.51
100LL 0.69 138.18 459.89 862.93
100LT 0.30 83.10 347.95 1068.98
100TL 3.43 41.20 124.92 1571.71
100TT 0.79 40.92 328.11 14400.00

Table: Branch and Price results
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Computational Results for the Branch and Price

Root Node Totaltime
Prob Dev time BP CPLEX

125LL 1.70 338.89 1650.57 memory
125LT 0.46 294.60 552.99 memory
125TL 0.10 37.57 41.22 memory
125TT 0.29 51.68 322.73 memory
150LL 0.39 738.17 3347.21 memory
150LT 1.63 990.73 11818.19 memory
150TL 0.99 191.52 1114.95 memory
150TT 1.73 174.94 4299.28 memory
175LL 0.32 1349.70 3418.10 memory
175LT 1.23 1632.84 12408.50 memory
175TL 0.30 232.80 256.60 memory
175TT 1.34 307.60 4886.88 memory
200LL 0.49 1606.28 5813.00 memory
200LT 1.36 1984.47 45874.73 memory
200TL 0.34 706.52 869.67 memory
200TT 0.46 447.92 3211.40 memory

Table: Branch and Price results
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Conclusions and Future Research

Bounding procedure: combination of column generation and
lagrangean relaxation methods

Constraint stabilization method improves the performance of
standard CG

Branch and price optimally solves large-scale instances with up to
200 nondes

Generalize and extend the stabilization method to other classes of
optimization problems


	Introduction
	Problem Description
	Solution Method
	Computational Experiments
	Conclusions

