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Introduction

Hub and Spoke Networks

The key feature of these networks is the way in which commodities are
routed from numerous points of origin to specific destinations.



Introduction

Hub and Spoke Networks

25 demand points (origins and destinations)
(25 x 24)/2 = 300 direct connections



Introduction

Hub and Spoke Networks

Hub networks: Concentrate flows to exploit economies of scale in
transportation. (3 hub arcs and 21 access arcs).



Introduction

Classical Hub Location Problems

@ Hub location problems deal with:

o location of hub nodes
e routing of commodities through the network

@ Assume that hubs are fully interconnected at no cost

@ O/D paths must contain at least one hub and at most two
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Problem Description

Capacitated Hub Location with Single Assignment

© ° o @ N: set of nodes
° o @ Wj: flow between i and j
(] .
o o o O; = > Wj: outgoing flow
JEN
o o o
o o o @ D= > O total flow
ieEN
o . -
o @ bj: capacities
o
o @ f;: set-up costs
Q origin/Destination points
@ dj: transportation costs

The CHLPSA consist of:
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Problem Description

Capacitated Hub Location with Single Assignment

@ N: set of nodes

@ Wj: flow between i and j
o O; = > Wj: outgoing flow

JEN
@ D= > O total flow
ieEN
@ bj: capacities
o © omrmesmensan @ f;: set-up costs
@ dj: transportation costs

The CHLPSA consist of:

@ Locate a set of hub nodes
@ Single assignment patter on the flows is considered
@ Minimize the total set-up and transportation costs

@ Transportation costs: Fijum = Wi (xdik + adkm + ddm;)-
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Problem Description

CHLPSA: MIP Formulation

Location/Assignment Variables

z { 1 if node i is assigned to hub k;
e =

0 otherwise.

Path Variables

~ _J 1 if flow from i to j goes via hubs k and m;,
e 0 otherwise.

A

zj variables (binary) Xijkm Vvariables (binary)
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CHLPSA: MIP Formulation

Integer Programming Formulation:

minimize Z fezik + Z Z Z Z FijkmXijkm

keN ieEN jeN keN meN

subject to Z Z Xijkm = 1 VijeN

kEN meN
Zik < Zkk Viike N

injkmzzik Vl',j,kGN

meN

E Xijkm = Zjm Vi».j7m€N
keN

Z Oizi < bizik VkeN

ieN

Z brzic > D

keN
X,'jkaO Vi, j,kymeN
zi € {0,1} VikeN
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Solution Method

Column Generation: Restricted Master Problem

(RMP)  z(S) = min S hzu+ > D D> FikmXim

keN iEN jJEN k€S; meS;;

subject to Z Z Xijkm = 1 vi,jeN
kEN meN
Zik < Zk Vi,keN
injkmzzik Vl-,_/',kEN

meS;;

E Xijkm = Zjm VI,_],mGN
keS;

Z Oizik < bk Zik VkeN

ieN

Z brzi > D

keN
Xijkm > 0 Vij,kymeN

zi € {0,1} Vi keN

Let S;j C N be the set of admissible hubs for sending flow from i to j.
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Solution Method

Column Generation: Lagrangean Relaxation for RMP

Lagrangean Function:
L3(u,v) = L(u,v)+ L3(u,v)

L (u,v) = min Z (fk - Z (ugic + Vi) — &i(u, V)) Zik

keN JEN
s.t. Z bizkk > D
keN

zie € {0,1} VkeN,

where,

§k(u, v) = min Z (Z (v + ijk)) Zjk

iEN:i#k \ jeN
s.t. Z Oizi < (b — Ok)
i€ N-ik

zy € {0,1} VieN,i#k.



Solution Method

Column Generation: Lagrangean Relaxation for RMP

Lagrangean Function:

Ls(u, v) =L, (u,v)+ Lf(u, V)

L3(u, v) = min DD (Fikm + ik + Vim) Xikm

iEN jJEN k€S; meS;;

s.t. > Xgm=1 VijeEN

kes;jmes,‘j
Xijkm > 0 Vi,jeN,Yk mesS.

A lower bound for the RMP is:

5 =L5(u°,v°) = max L5(u,v)
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Column Generation: Pricing Problem

For i,j € N, the route i — k — m — j with minimum

= S S S5(,,S ,S
Cijkm = Ukm+UUk+VUm—Wi-(U , Vv )

can be determined by solving the semi-assignment problem:

s S . s . =
qij(u”, v7, w?) = min E E CijkmXijkm
kEN meN
s.t. E E Xijkm = 1
kEN meN

Xjkm =0 Y k,me N,

e When g;(u®,v®,w®) > 0,Vi,j € N, then z§ is a valid lower bound
@ Otherwise, for each i,j € N such that q,-j(us, v>, w®) < 0 we enlarge
Sij = 5; U {k, m}



Solution Method

Column Generation: Valid Lower Bounds

A valid lower bound for MP is given by

LBY(S) = z5 + Z min {0, qi(u®, v®, ws)}
ijeN

We can use a valid lower bound to:
@ Apply an early termination criteria:

zp — LBY(S) < ¢

o Apply reduction tests: eliminate variables and constraints



Solution Method

Column Generation: Valid Lower Bounds

Consider LB?(S) = L(u, V) obtained by perturbing (u>, v®)
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Column Generation: Valid Lower Bounds

Consider LB?(S) = L(u, V) obtained by perturbing (u>, v®)
Define U = u® + o and V = v° + (3 such that

min z3 — L(T,V)

«,

subject to

Fijkm+ (Ui + i)+ (Vi + Bijm) —wi (i +a, v>+8) > 0, Vi,j,k,me N



Solution Method

Column Generation: Valid Lower Bounds

Consider LB?(S) = L(u, V) obtained by perturbing (u>, v®)
Define U = u® + o and V = v° + (3 such that
min z3 — L(T,V)
a,B
subject to
Fijkm+ (Ui + i)+ (Vi + Bijm) —wi (i +a, v>+8) > 0, Vi,j,k,me N

Observe that

28— L(0,7) = Ly(u%, vO) + L5(u,v9) — L,(G,7) — Le(3, V)



Solution Method

Column Generation: Valid Lower Bounds

To approximately solve the problem, we impose that

Lf(us,vs) = L(u,v)

and thus
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Column Generation: Valid Lower Bounds

To approximately solve the problem, we impose that

L3(u®,v) = L (T, V)

and thus

An indirect way of solving the problem is by minimizing the sum of
perturbations, i.e.,

min ZZ Z a,-jk—i— Z ﬂijm (1)

ieN jeN kEN\/I; meN\m
s.t. a;jk—l—ﬁ,-ij—(_:,-jkm Vi, j,kymeN (2)
ag >0 VijeNVkeN\k (3)

Bijm >0 Vi,j € N,Vme N\ m (4)
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Column Generation: Valid Lower Bounds

LB2(S)=L(4,V)
LBY(S) =L’ V)

vy (,7)

Figure 2: Comparison between LBY(S) and LB?(S)
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Column Generation: Quality of Bounds
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Figure 2: Comparison between LBY(S) and LB?(S) using the 70TT
instance of the AP data set



Solution Method

Comparison of Standard and Stabilized CG
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Figure 3. Comparison of CPU times between different versions of CG
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Solution Method

Branch and Price for CHLPSA

@ The CG procedure is embedded into a branch and bound
@ The enumeration algorithm consist of three phases:

o Partial enumeration
e Branch in location variables
e Branch in assignment variables
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Computational Results for the

Computational Experiments

Branch and Price

Root Node Totaltime

Prob Dev time BP CPLEX
70LL 0.80 29.26 | 214.23 170.84
70LT 0.84 28.75 | 245.76 1122.67
70TL 0.00 9.80 9.47 43.27
70TT 0.29 8.16 48.55 292.44
75LL 0.20 20.73 48.60 43.61
75LT 0.33 22.88 33.90 726.91
75TL 0.27 13.64 14.86 89.39
75TT 2.50 13.31 24.83 | 14400.00
90LL 0.10 39.28 39.28 79.11
90LT 0.18 33.56 80.87 4182.70
90TL 0.85 25.92 | 228.87 971.57
90TT 0.52 27.12 213.90 1220.51
100LL 0.69 | 138.18 | 459.89 862.93
100LT 0.30 83.10 | 347.95 1068.98
100TL 3.43 41.20 | 124.92 1571.71
100TT | 0.79 40.92 | 328.11 | 14400.00

Table: Branch and Price results



Computational Experiments

Computational Results for the Branch and Price

Root Node Totaltime

Prob Dev time BP CPLEX
125LL 1.70 338.89 1650.57 | memory
125LT 0.46 294.60 552.99 | memory
125TL 0.10 37.57 41.22 memory
125TT 0.29 51.68 322.73 memory
150LL 0.39 738.17 3347.21 | memory
150LT 1.63 990.73 | 11818.19 | memory
150TL 0.99 191.52 1114.95 | memory
150TT | 1.73 174.94 4299.28 | memory
175LL 0.32 | 1349.70 3418.10 | memory
175LT 1.23 | 1632.84 | 12408.50 | memory
175TL 0.30 232.80 256.60 memory
175TT | 1.34 307.60 4886.88 | memory
200LL 0.49 | 1606.28 5813.00 | memory
200LT 1.36 | 1984.47 | 45874.73 | memory
200TL 0.34 706.52 869.67 | memory
200TT | 0.46 447.92 3211.40 | memory

Table: Branch and Price results
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Conclusions

Conclusions and Future Research

@ Bounding procedure: combination of column generation and
lagrangean relaxation methods

o Constraint stabilization method improves the performance of
standard CG

@ Branch and price optimally solves large-scale instances with up to
200 nondes

@ Generalize and extend the stabilization method to other classes of
optimization problems



	Introduction
	Problem Description
	Solution Method
	Computational Experiments
	Conclusions

