TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

olution Approach

Computational Experiments

Conclusions

References

The Time Window Assignment Vehicle Routing Problem

Remy Spliet, Adriana F. Gabor

Erasmus University Rotterdam

June 13, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Problem Description

Consider a distribution network of one depot and multiple customers:

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider a distribution network of one depot and multiple customers:

Stage 1: Demand is uncertain, assign time windows

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Consider a distribution network of one depot and multiple customers:

Stage 1: Demand is uncertain, assign time windows

Stage 2: Demand is known, design routes adhering to the time windows.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

Problem Definition

- n customers.
- Scenarios of demand Ω with each scenario ω ∈ Ω occurring with probability p_ω.
- Demand d^{ω} for each $\omega \in \Omega$.
- ► Vehicle capacity Q.
- Travel costs c_{ij} and travel time t_{ij} for going from customer i to j.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

- Exogenous time windows [s, e].
- Endogenous time window widths w.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

olution Approach

Computational Experiments

Conclusions

Problem Definition

- n customers.
- Scenarios of demand Ω with each scenario ω ∈ Ω occurring with probability p_ω.
- Demand d^{ω} for each $\omega \in \Omega$.
- ► Vehicle capacity Q.
- Travel costs c_{ij} and travel time t_{ij} for going from customer i to j.
- Exogenous time windows [s, e].
- Endogenous time window widths w.

Time Window Assignment Vehicle Routing Problem:

Assign endogenous time windows to each customer such that the expected costs of visiting them on the day of delivery are minimized.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

olution Approach

Computational Experiments

Conclusions

• Let $R(\omega)$ be the set of feasible routes for scenario ω .

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

- Let $R(\omega)$ be the set of feasible routes for scenario ω .
- Let c_r be the costs of route r.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- Let $R(\omega)$ be the set of feasible routes for scenario ω .
- Let c_r be the costs of route r.
- Let a_r^v be 1 if location v is visited on route r.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

- Let $R(\omega)$ be the set of feasible routes for scenario ω .
- Let c_r be the costs of route r.
- Let a_r^v be 1 if location v is visited on route r.
- Let t^v_r be the time of arrival at location v on route r, and 0 if location v is not visited on route r.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRF

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

- Let $R(\omega)$ be the set of feasible routes for scenario ω .
- Let c_r be the costs of route r.
- Let a_r^v be 1 if location v is visited on route r.
- Let t^v_r be the time of arrival at location v on route r, and 0 if location v is not visited on route r.

Let $y_i \in [s_i, e_i - w_i]$ be the start of the time window for customer *i*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

TWAVRF

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

- Let $R(\omega)$ be the set of feasible routes for scenario ω .
- Let c_r be the costs of route r.
- Let a_r^v be 1 if location v is visited on route r.
- Let t^v_r be the time of arrival at location v on route r, and 0 if location v is not visited on route r.

Let $y_i \in [s_i, e_i - w_i]$ be the start of the time window for customer *i*. Let x_r^{ω} indicate whether route *r* is used for scenario ω .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

$$\min \sum_{\omega \in \Omega} p_{\omega} \sum_{r \in R(\omega)} c_r x_r^{\omega}$$

$$\sum_{r \in R(\omega)} a_r^{\nu} x_r^{\omega} = 1 \qquad \nu = 1, ..., n, \forall \omega \in \Omega$$

$$\sum_{r \in R(\omega)} t_r^{\nu} x_r^{\omega} \ge y_{\nu} \qquad \nu = 1, ..., n, \forall \omega \in \Omega$$

$$\sum_{r \in R(\omega)} t_r^{\nu} x_r^{\omega} \le y_{\nu} + w_{\nu} \qquad \nu = 1, ..., n, \forall \omega \in \Omega$$

$$x^{\omega} \in \{0, 1\}^{|R(\omega)|} \qquad \forall \omega \in \Omega$$

$$y \in [s, e - w]$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

Solution Approach

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

Branch&Price.

The pricing problem is a shortest path problem with:

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

The pricing problem is a shortest path problem with:

Positive costs for using an arc.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.
- Costs for visiting a node that are linear in time, with positive or negative coefficient.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRF

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.
- Costs for visiting a node that are linear in time, with positive or negative coefficient.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Time window constraints (exogenous).

TWAVRF

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.
- Costs for visiting a node that are linear in time, with positive or negative coefficient.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Time window constraints (exogenous).
- Capacity constraints.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.
- Costs for visiting a node that are linear in time, with positive or negative coefficient.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Time window constraints (exogenous).
- Capacity constraints.
- Elementarity constraint.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

The pricing problem is a shortest path problem with:

- Positive costs for using an arc.
- Positive or negative costs for visiting a node.
- Costs for visiting a node that are linear in time, with positive or negative coefficient.
- Time window constraints (exogenous).
- Capacity constraints.
- Elementarity constraint.

The pricing problem can be solved separately for each scenario.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

Relaxation: Relax the elementarity condition.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Relaxation:

Relax the elementarity condition.

Basic Algorithm:

loachim et al. (1998) propose a labeling procedure to solve the shortest path problem with time window constraints and linear costs in time.

TWAVRF

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Relaxation:

Relax the elementarity condition.

Basic Algorithm:

loachim et al. (1998) propose a labeling procedure to solve the shortest path problem with time window constraints and linear costs in time.

Modifications:

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Relaxation:

Relax the elementarity condition.

Basic Algorithm:

loachim et al. (1998) propose a labeling procedure to solve the shortest path problem with time window constraints and linear costs in time.

Modifications:

Incorporate capacity constraints

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Relaxation:

Relax the elementarity condition.

Basic Algorithm:

loachim et al. (1998) propose a labeling procedure to solve the shortest path problem with time window constraints and linear costs in time.

Modifications:

- Incorporate capacity constraints
- Apply 2-Cycle elimination (see for instance Irnich and Villeneuve (2003)).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

Column Generation Algorithm

Version 1:

Solve the pricing problem for all scenarios.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Column Generation Algorithm

Version 1:

Solve the pricing problem for all scenarios.

Idea:

Do not solve the pricing problem for all scenarios.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Column Generation Algorithm

Version 1:

Solve the pricing problem for all scenarios.

Idea:

Do not solve the pricing problem for all scenarios.

Version 2:

- Solve the pricing problems iteratively.
- When a route for scenario ω is feasible and has negative reduced costs for scenario ω', add it to the model and do not solve the pricing problem for scenario ω'.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Mode

Solution Approach

Computational Experiments

Conclusions

References

・ロト・日本・山田・ 山田・ 山田・

Branch&Price is used to solve the TWAVRP:

Lower Bounds LP relaxation.

Upper Bounds Integer solutions to the LP relaxation.

Branching Special Ordered Subset (SOS) branching on arcs.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

Computational Experiments

For the numerical experiments, several instances of the TWAVRP are generated for different numbers of customer locations:

Locations: Uniformly distributed in a square (5×5) area around the depot.

Travel Costs: Equal to the Euclidean distance.

Travel Time: Equal to the Euclidean distance.

Exogenous Time Windows: Three versions [10, 16], [9, 18] and [7, 21] randomly assigned to customers at fixed frequency $\{0.1, 0.6, 0.3\}$ respectively. The depot has time window [6, 22].

Time Window Width: 2.

Demand Distribution: Normally distributed rounded up, with different randomly generated mean per customer and variance 1. The mean was generated using a normal distribution with mean 5 and variance 1 for each customer.

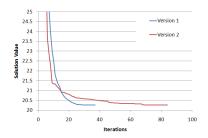
Vehicle Capacity: 30.

Scenario Distibution: Equal probabilities.

TWAVRP

Erasmus University Rotterdam

Problem Definition


/lodel

olution Approach

Computational Experiments

Conclusions

15 Customers using 10 scenarios

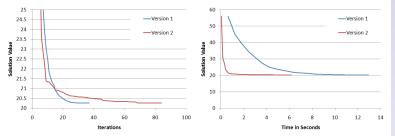
TWAVRP

Erasmus University Rotterdam

Problem Definition

Vodel

Solution Approach


Computational Experiments

Conclusions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

15 Customers using 10 scenarios

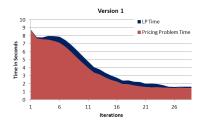
TWAVRP

Erasmus University Rotterdam

Problem Definition

Nodel

Solution Approach


Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

15 Customers using 100 scenarios

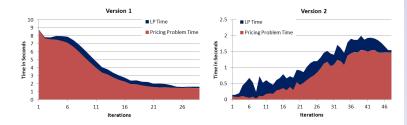
TWAVRP

Erasmus University Rotterdam

Problem Definition

Vodel

Solution Approach


Computational Experiments

Conclusions

References

・ロト ・ 日本・ 小田・ ・ 田・ うらぐ

15 Customers using 100 scenarios

TWAVRP

Erasmus University Rotterdam

Problem Definition

Vlodel

Solution Approach

Computational Experiments

Conclusions

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

	C	GA Version	1	CGA Version 2		
		Time		Time		
#Cust.	Total	LP	Pricing	Total	LP	Pricing
10	6.462	0.148	6.311	2.418	0.273	2.138
15	23.394	0.380	23.001	9.512	0.392	9.112
25	128.808	1.978	126.789	50.438	1.134	49.260
35	396.004	6.844	389.043	160.925	2.698	158.118
50	1278.150	24.010	1253.810	554.119	7.547	546.243

Table 1 : Averaged (over 25) computational results, 10 scenarios

TWAVRP

Erasmus University Rotterdam

Problem Definition

Nodel

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

	C	GA Version	1	CGA Version 2		
		Time		Time		
#Cust.	Total	LP	Pricing	Total	LP	Pricing
10	6.462	0.148	6.311	2.418	0.273	2.138
15	23.394	0.380	23.001	9.512	0.392	9.112
25	128.808	1.978	126.789	50.438	1.134	49.260
35	396.004	6.844	389.043	160.925	2.698	158.118
50	1278.150	24.010	1253.810	554.119	7.547	546.243

Table 1 : Averaged (over 25) computational results, 10 scenarios

Table 2 : Averaged (over 25) computational results, 15 customers

	C	GA Version	1	C	GA Version	2
		Time			Time	
#Scenarios	Total	LP	Pricing	Total	LP	Pricing
2	4.643	0.117	4.520	2.992	0.119	2.870
5	12.224	0.153	12.065	5.451	0.196	5.247
10	26.132	0.412	25.708	9.730	0.367	9.351
25	68.393	2.006	66.360	24.422	1.446	22.952
50	140.090	6.287	133.754	49.311	4.367	44.896
100	296.201	16.405	279.699	144.515	15.169	129.254

TWAVRP

Erasmus University Rotterdam

Problem Definition

/lodel

Solution Approach

Computational Experiments

Conclusions

References

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Computational Experiments: Branch&Price

Table 3 : 3 Scenarios

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

Inst.	# Loc.	LP gap	Opt Found	5%	1%	Opt Proven	Gap
1	8	3.086	34.554	26.177	162.069	547.577	-
2	8	2.470	15.585	6.381	33.665	43.805	-
3	8	3.746	2.324	2.324	58.563	110.074	-
4	8	2.500	26.161	1.825	26.348	31.153	-
5	8	1.934	39.905	22.136	40.576	64.194	-
6	9	4.775	33934.1	393.027	28768.8	45170.1	-
7	9	4.259	18.782	18.798	97.453	399.751	-
8	9	5.053	11699.7	7325.59	28573.2	313155	-
9	9	-	-	-	-	-	1.15
10	9	0.776	2.106	2.106	2.106	34.227	-
11	10	0.153	1.466	0.842	0.842	2.839	-
12	10	4.940	5969.51	2111.48	9848.06	31036.7	-
13	10	-	-	-	-	-	17.87
14	10	8.223	13.697	296933	298143	298144	-
15	10	3.980	5791.97	241.317	4278.51	6593.7	-
16	12	-	-	-	-	-	13.59
17	12	2.442	312.391	5.944	315.121	2844.88	-
18	12	4.239	26212.8	397.208	31454.1	166823	-
19	12	4.914	74315.3	47.455	6239.62	91851.6	-
20	12	-	-	-	-	-	1.75

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

 Adding columns in multiple scenarios speeds up the column generation algorithm significantly.

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Adding columns in multiple scenarios speeds up the column generation algorithm significantly.
- ▶ The LP bound with 2-cycle elimination is pretty tight.

- Adding columns in multiple scenarios speeds up the column generation algorithm significantly.
- The LP bound with 2-cycle elimination is pretty tight.
- The optimal solution is found relatively early in the branching tree.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

- Adding columns in multiple scenarios speeds up the column generation algorithm significantly.
- The LP bound with 2-cycle elimination is pretty tight.
- The optimal solution is found relatively early in the branching tree.
- The Branch&Price algorithm spends most time on closing a small gap.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions

References

- Ioachim, I., Gélinas, S., Soumis, F. and Desrosiers, J. 1998, 'A Dynamic Programming Algorithm for the Shortest Path Problem with Time Windows and Linear Node Costs', *Networks*, 31, pp. 193-204.
- Irnich, S. and Villeneuve, D. 2003, 'The Shortest Path Problem with Resource Constraints and *k*-Cycle Elimination for *k* ≥ 3', *Les Cahiers du GERAD*, 55.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

TWAVRP

Erasmus University Rotterdam

Problem Definition

Model

Solution Approach

Computational Experiments

Conclusions