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Problem Description

Consider a distribution network of one depot and multiple
customers:

Stage 1: Demand is uncertain, assign time windows

Stage 2: Demand is known, design routes adhering to the time
windows.
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Problem Definition

I n customers.

I Scenarios of demand Ω with each scenario ω ∈ Ω occurring
with probability pω.

I Demand dω for each ω ∈ Ω.

I Vehicle capacity Q.

I Travel costs cij and travel time tij for going from customer i
to j .

I Exogenous time windows [s, e].

I Endogenous time window widths w .

Time Window Assignment Vehicle Routing Problem:
Assign endogenous time windows to each customer such that the
expected costs of visiting them on the day of delivery are
minimized.
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TWAVRP model

I Let R(ω) be the set of feasible routes for scenario ω.

I Let cr be the costs of route r .

I Let avr be 1 if location v is visited on route r .

I Let tvr be the time of arrival at location v on route r , and 0 if
location v is not visited on route r .

Let yi ∈ [si , ei −wi ] be the start of the time window for customer i .
Let xωr indicate whether route r is used for scenario ω.
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TWAVRP model

min
∑
ω∈Ω

pω
∑

r∈R(ω)

crx
ω
r∑

r∈R(ω)

avr x
ω
r = 1 v = 1, ..., n,∀ω ∈ Ω

∑
r∈R(ω)

tvr x
ω
r ≥ yv v = 1, ..., n,∀ω ∈ Ω

∑
r∈R(ω)

tvr x
ω
r ≤ yv + wv v = 1, ..., n,∀ω ∈ Ω

xω ∈ {0, 1}|R(ω)| ∀ω ∈ Ω

y ∈ [s, e − w ]
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Solution Approach

Branch&Price.
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Pricing Problem

The pricing problem is a shortest path problem with:

I Positive costs for using an arc.

I Positive or negative costs for visiting a node.

I Costs for visiting a node that are linear in time, with positive
or negative coefficient.

I Time window constraints (exogenous).

I Capacity constraints.

I Elementarity constraint.

The pricing problem can be solved separately for each scenario.
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Pricing Problem

Relaxation:
Relax the elementarity condition.

Basic Algorithm:
Ioachim et al. (1998) propose a labeling procedure to solve the
shortest path problem with time window constraints and linear
costs in time.

Modifications:

I Incorporate capacity constraints

I Apply 2-Cycle elimination (see for instance Irnich and
Villeneuve (2003)).
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Column Generation Algorithm

Version 1:
Solve the pricing problem for all scenarios.

Idea:
Do not solve the pricing problem for all scenarios.

Version 2:

I Solve the pricing problems iteratively.

I When a route for scenario ω is feasible and has negative
reduced costs for scenario ω′, add it to the model and do not
solve the pricing problem for scenario ω′.
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Branch&Price

Branch&Price is used to solve the TWAVRP:

Lower Bounds LP relaxation.

Upper Bounds Integer solutions to the LP relaxation.

Branching Special Ordered Subset (SOS) branching on arcs.
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Computational Experiments

For the numerical experiments, several instances of the TWAVRP
are generated for different numbers of customer locations:

Locations: Uniformly distributed in a square (5× 5) area around the
depot.

Travel Costs: Equal to the Euclidean distance.

Travel Time: Equal to the Euclidean distance.

Exogenous Time Windows: Three versions [10, 16], [9, 18] and [7, 21]
randomly assigned to customers at fixed frequency
{0.1, 0.6, 0.3} respectively. The depot has time window
[6, 22].

Time Window Width: 2.

Demand Distribution: Normally distributed rounded up, with different
randomly generated mean per customer and variance 1. The
mean was generated using a normal distribution with mean 5
and variance 1 for each customer.

Vehicle Capacity: 30.

Scenario Distibution: Equal probabilities.
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Computational Experiments: LP relaxations

15 Customers using 10 scenarios
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Computational Experiments: LP relaxations

Table 1 : Averaged (over 25) computational results, 10 scenarios

CGA Version 1 CGA Version 2
Time Time

#Cust. Total LP Pricing Total LP Pricing
10 6.462 0.148 6.311 2.418 0.273 2.138
15 23.394 0.380 23.001 9.512 0.392 9.112
25 128.808 1.978 126.789 50.438 1.134 49.260
35 396.004 6.844 389.043 160.925 2.698 158.118
50 1278.150 24.010 1253.810 554.119 7.547 546.243

Table 2 : Averaged (over 25) computational results, 15 customers

CGA Version 1 CGA Version 2
Time Time

#Scenarios Total LP Pricing Total LP Pricing
2 4.643 0.117 4.520 2.992 0.119 2.870
5 12.224 0.153 12.065 5.451 0.196 5.247

10 26.132 0.412 25.708 9.730 0.367 9.351
25 68.393 2.006 66.360 24.422 1.446 22.952
50 140.090 6.287 133.754 49.311 4.367 44.896

100 296.201 16.405 279.699 144.515 15.169 129.254
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Computational Experiments: Branch&Price

Table 3 : 3 Scenarios

Inst. # Loc. LP gap Opt Found 5% 1% Opt Proven Gap
1 8 3.086 34.554 26.177 162.069 547.577 -
2 8 2.470 15.585 6.381 33.665 43.805 -
3 8 3.746 2.324 2.324 58.563 110.074 -
4 8 2.500 26.161 1.825 26.348 31.153 -
5 8 1.934 39.905 22.136 40.576 64.194 -
6 9 4.775 33934.1 393.027 28768.8 45170.1 -
7 9 4.259 18.782 18.798 97.453 399.751 -
8 9 5.053 11699.7 7325.59 28573.2 313155 -
9 9 - - - - - 1.15

10 9 0.776 2.106 2.106 2.106 34.227 -
11 10 0.153 1.466 0.842 0.842 2.839 -
12 10 4.940 5969.51 2111.48 9848.06 31036.7 -
13 10 - - - - - 17.87
14 10 8.223 13.697 296933 298143 298144 -
15 10 3.980 5791.97 241.317 4278.51 6593.7 -
16 12 - - - - - 13.59
17 12 2.442 312.391 5.944 315.121 2844.88 -
18 12 4.239 26212.8 397.208 31454.1 166823 -
19 12 4.914 74315.3 47.455 6239.62 91851.6 -
20 12 - - - - - 1.75
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Conclusions

I Adding columns in multiple scenarios speeds up the column
generation algorithm significantly.

I The LP bound with 2-cycle elimination is pretty tight.

I The optimal solution is found relatively early in the branching
tree.

I The Branch&Price algorithm spends most time on closing a
small gap.
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