

Branch-and-Price for Creating an Annual Delivery Program of Multi-Product Liquefied Natural Gas

Jørgen Glomvik Rakke^{a,b}, Guy Desaulniers^c, Henrik Andersson^a, and Marielle Christiansen^a

^a Department of Industrial Economics and Technology Management, NTNU, Trondheim, Norway ^b Norwegian Marine Technology Research Institute (MARINTEK), Trondheim, Norway

^c Département de mathématiques et génie industriel, École Polytechnique

International Workshop on Column Generation 2012

Bromont, June 10-13, 2012

Norwegian University of Science and Technology

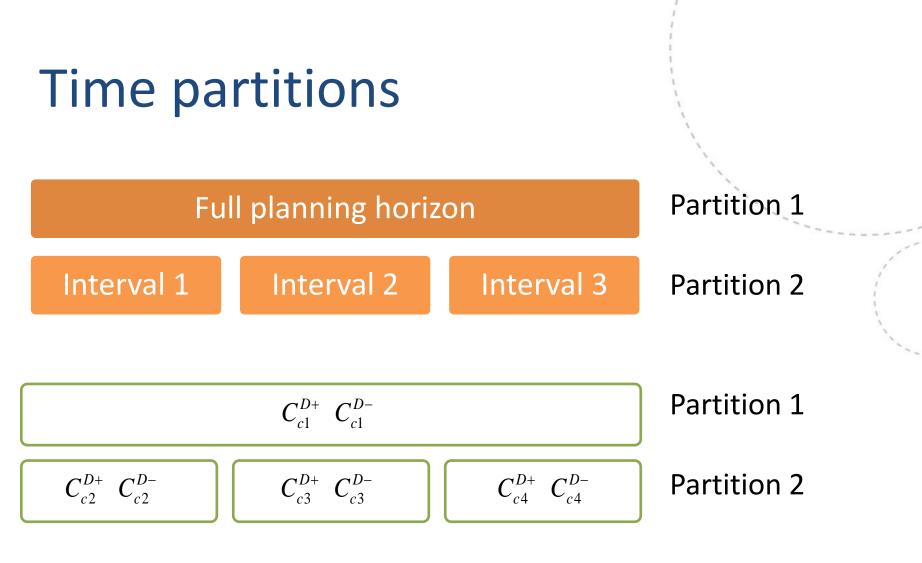
Outline

Problem Description Mathematical Model Reformulation Subproblem Cuts Results

2

Jørgen G. Rakke, LNG Inventory Routing Problem





www.ntnu.no

Basic Voyage Formulation (BVF)

- MIP model with scheduled voyages as binary variables
 - A scheduled voyage consists of:
 - Ship
 - Destination (Contract + terminal)
 - Departure day
- Based on pre-generation of all scheduled voyage
- The main decision is which combination of ships should deliver LNG to which contracts, and when the deliveries are to be made.

Mathematical Model

$$\min \sum_{c \in \mathcal{C}} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} C_{cv}^T x_{cvt} + \sum_{c \in \mathcal{C}^{LT}} \sum_{i \in \mathcal{I}_c} C_{ci}^{D+} y_{ci}^+ + \sum_{c \in \mathcal{C}^{LT}} \sum_{i \in \mathcal{I}_c} C_{ci}^{D-} y_{ci}^- - \sum_{c \in \mathcal{C}^S} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} R_c^S L_v x_{cvt} - \sum_{g \in \mathcal{G}} R_g^I q_{gT},$$

subject to:

$$\begin{split} \sum_{c \in \mathcal{C}_g \backslash \mathcal{C}^M} \sum_{v \in \mathcal{V}_c} x_{cvt} + \sum_{c \in \mathcal{C}_g \cap \mathcal{C}^M} \sum_{\substack{v \in \mathcal{V}^M \\ : t - T_{cv} - 1 \in \mathcal{T}_v}} x_{cv(t - T_{cv} + 1)} \leq B_g, \quad \forall g \in \mathcal{G}, t \in \mathcal{T}, \\ q_{g,t-1} + P_{gt} - q_{gt} - \sum_{c \in \mathcal{C}_g \backslash \mathcal{C}^M} \sum_{v \in \mathcal{V}_c} L_v x_{cvt} = 0, \quad \forall g \in \mathcal{G}, t \in \mathcal{T}, \\ \sum_{c \in \mathcal{C}_g \setminus \mathcal{C}^M} \sum_{v \in \mathcal{V}_c} \sum_{v \in \mathcal{V}_c} x_{cv\tau} \leq 1, \quad \forall g \in \mathcal{G}, t \in \mathcal{T}, \\ \sum_{c \in \mathcal{C}} \sum_{\substack{\tau \in \mathcal{T}_v \\ : t - T_{cv} < \tau \leq t}} x_{cv\tau} \leq 1, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}_v, \\ \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_i^I \cap \mathcal{T}_v} L_v x_{cvt} + y_{ci}^- - y_{ci}^+ = D_{ci}, \quad \forall c \in \mathcal{C}^{LT}, i \in \mathcal{I}_c, \\ x_{cvt} \in \{0, 1\}, \quad \forall c \in \mathcal{C}, v \in \mathcal{V}_c, t \in \mathcal{T}_v, \end{split}$$

(1) Objective

(4)

(9)

- (2) Berth constraints
- (3) Inventory constraints
- (5) Routing constraints
- ⁽⁶⁾ Maintenance constraints
- (7) Contractual constraints
 (8) **D** NTNU

Norwegian University of Science and Technology

Objective function

 $\min \sum_{c \in \mathcal{C}} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} C_{cv}^T x_{cvt} + \sum_{c \in \mathcal{C}^{LT}} \sum_{i \in \mathcal{I}_c} C_{ci}^{D+} y_{ci}^+ + \sum_{c \in \mathcal{C}^{LT}} \sum_{i \in \mathcal{I}_c} C_{ci}^{D-} y_{ci}^- - \sum_{c \in \mathcal{C}^S} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} R_c^S L_v x_{cvt} - \sum_{q \in \mathcal{G}} R_g^I q_{g\overline{T}},$

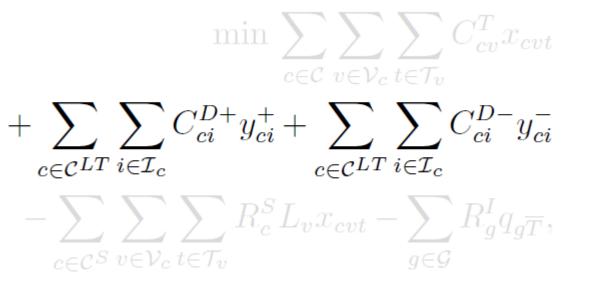
Transportation cost

Penalty costs

Spot revenue

Problems

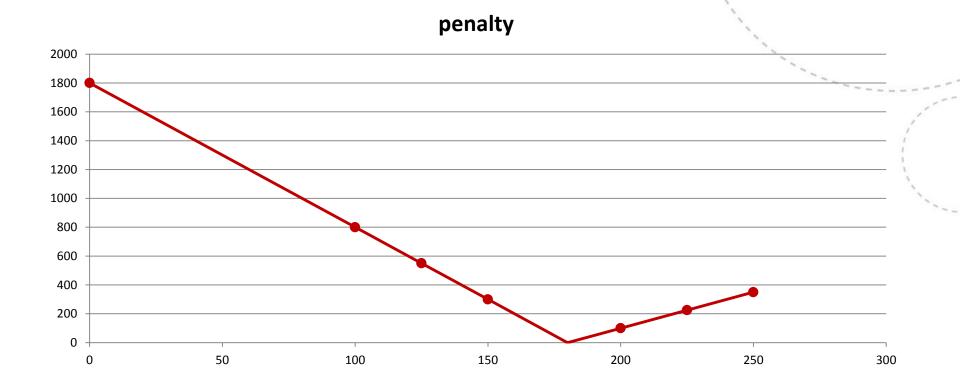
- Weak LP-relaxation
 - Mainly introduced by the penalties for over and under delivery



Example

- Heterogeneous fleet, ship capacities = 100, 125, 150
- Demand = 180
- Under-delivery penalty = 10
- Over-delivery penalty = 5
- Minimum under-delivery = 180 150 = 30
- Minimum over-delivery = 100 + 100 180 = 20

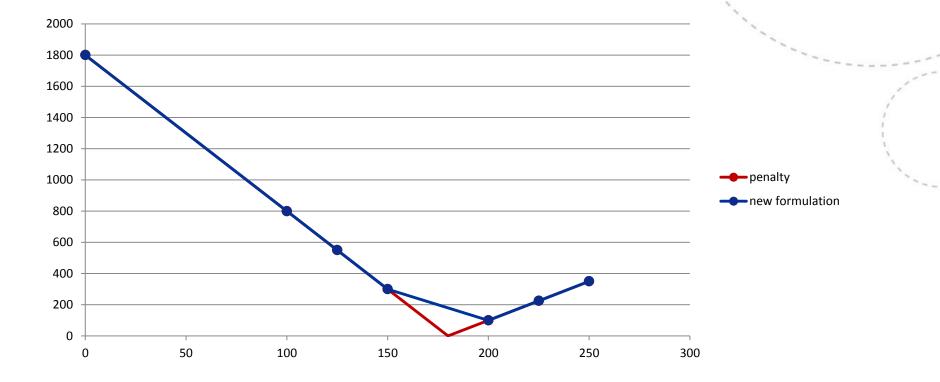
Penalty function



How to deal with this problem

- Create delivery patterns
 - A delivery pattern specifies:
 - Contract
 - Time period
 - Number of deliveries for all ships

Penalty function



Pattern Based Formulation (PBF)

- Set of delivery patterns for each time period and contract \mathcal{P}_{ci}
- Pattern variable z_{cip}

$$\begin{split} \min \, \sum_{c \in \mathcal{C}} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} C_{cv}^T x_{cvt} + & \sum_{c \in \mathcal{C}^{LT}} \sum_{i \in \mathcal{I}_c} \sum_{p \in \mathcal{P}_{ci}} C_{cip}^P z_{cip} \\ & - \sum_{c \in \mathcal{C}^S} \sum_{v \in \mathcal{V}_c} \sum_{t \in \mathcal{T}_v} R_c^S L_v x_{cvt} - \sum_{g \in \mathcal{G}} R_g^I q_{g\overline{T}}, \end{split}$$

(10)

(13)

(14)

subject to:

constraints (2)-(6),

$$\sum_{t \in \mathcal{T}_i \cap \mathcal{T}_v^I} x_{cvt} - \sum_{i \in \mathcal{P}_{ci}} N_{cipv} z_{cip} = 0, \quad \forall c \in \mathcal{C}^{LT}, i \in \mathcal{I}_c, v \in \mathcal{V}_c,$$

$$\sum_{i \in \mathcal{P}_{ci}} z_{cip} = 1, \quad \forall c \in \mathcal{C}^{LT}, i \in \mathcal{I}_c,$$

$$x_{cvt} \in \{0, 1\}, \quad \forall c \in \mathcal{C}, v \in \mathcal{V}_c, t \in \mathcal{T}_v,$$

$$z_{cip} \ge 0, \quad \forall c \in \mathcal{C}^{LT}, i \in \mathcal{I}_c, p \in \mathcal{P}_{ci}.$$

- (11) Linking constraints
- (12) Convexity constraints

How to generate delivery patterns

- Pre generate all possible delivery patterns
 - Only feasible for really small test instances
- Column generation
 - Split the problem into a master and sub problems to generate delivery patterns with negative reduced cost

Subproblem

$$\overline{C}_{cip} = C^P_{cip} - \alpha_{ci} + \sum_{v \in \mathcal{V}_c} N_{cipv} \beta_{civ}$$

min
$$C^{D+}y^+ + C^{D-}y^- - \alpha + \sum_{v \in \mathcal{V}_c} \beta_v n_v$$

s.t. $\sum_{v \in \mathcal{V}_c} L_v n_v + y^- - y^+ = D,$

$$U_v \leq n_v \leq u_v, \text{integer}, \quad \forall v \in \mathcal{V}_c,$$

$$y^+ \ge 0,$$

 $y^- \ge 0,$

Subproblem

- If $\beta_v C^{D-}L_v \ge 0$, n_v can be set to l_v and removed
- If $\beta_v + C^{D+}L_v < 0$, n_v can be set to u_v and removed
- Let $\bar{\mathcal{V}}_c \subseteq \mathcal{V}_c$ be the set of vessels such that $\beta_v < -C^{D+}L_v$
- Define \tilde{D} as $D \sum_{v \in \mathcal{V}_c} L_v l_v \sum_{v \in \bar{\mathcal{V}}_c} L_v (u_v l_v)$
- Let $\mathcal{V}_c^- \subseteq \mathcal{V}_c$ be the set of vessels such that $-C^{D+}L_v < \beta_v < C^{D-}L_v$
- Let $u'_v = u_v l_v$

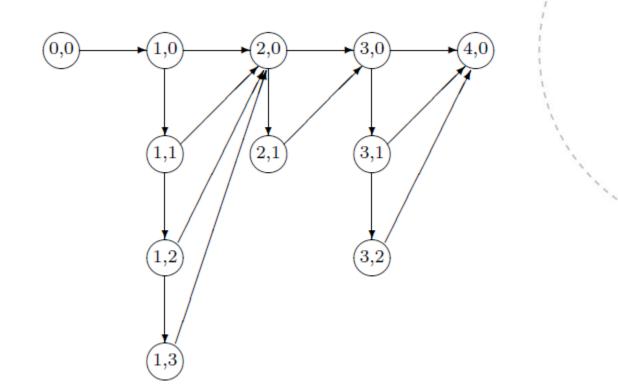
Subproblem

$$\begin{array}{ll} \min & K + (C^{D+} + C^{D-})y^+ + \sum_{v \in \mathcal{V}_c^-} (\beta_v - C^{D-}L_v)n_v \\ & \text{s.t.} & \sum_{v \in \mathcal{V}_c^-} L_v n_v \leq \tilde{D} + y^+, \\ & 0 \leq n_v \leq u_v', \text{integer}, \ \forall v \in \mathcal{V}_c^-, \end{array}$$

 $y^+ \ge 0.$

 $K = C^{D-}D - \alpha + \sum_{v \in \mathcal{V}_{c}} (\beta_{v} - C^{D-}L_{v})l_{v} + \sum_{v \in \bar{\mathcal{V}}_{c}} (\beta_{v} - C^{D-}L_{v})u_{v}'$

Science and Technology



 $c_{ij} = \begin{cases} K & \text{if } i = (0,0) \\ k(\beta_v - C^{D-}L_v) & \text{if } (i,j) \text{ is a select arc and } i = (v,k) \\ 0 & \text{otherwise.} \end{cases}$

 $q_{ij} = \begin{cases} kL_v \text{ if } (i,j) \text{ is a select arc and } i = (v,k) \\ 0 \quad \text{otherwise.} \end{cases}$

NTNU

Norwegian University of Science and Technology

Labels

- A label contains two elements
 - The accumulated cost Z
 - The accumulated quantity Q
- By using arc (i, j) you update label $E_i = (Z_i, Q_i)$ to label $E_j = (Z_j, Q_j)$

$$Q_j = Q_i + q_{ij}$$
$$Z_j = Z_i + c_{ij} + z_{ij}(Q_i)$$

$$z_{ij}(Q_i) = \begin{cases} 0 & \text{if } Q_i + q_{ij} \leq \tilde{D} \\ \infty & \text{if } q_{ij} > 0 \text{ and } Q_i \geq \tilde{D} \\ (C^{D+} + C^{D-})(Q_i + q_{ij} - \tilde{D}) \text{ otherwise.} \end{cases}$$

Norwegian University of Science and Technology

Dominance

Consider two labels

 $E_1 = (Z_1, Q_1)$ $E_2 = (Z_2, Q_2)$

• E_1 dominates E_2 if:

 $Z_1 \leq Z_2 \text{ and } Q_1 \leq Q_2$

Given that the amount delivered is not constrained we can strengthen this dominance rule to:

 $Z_1 + (C^{D+} + C^{D-}) \max\{0, Q_1 - Q_2\} \le Z_2$

• Where we can discard label E_2 even if $Q_2 < Q_1$

Cuts

- Timing cuts (similar to the ones presented in Engineer et al. (2012)
- Minimum number of loadings
- Maximum number of loadings

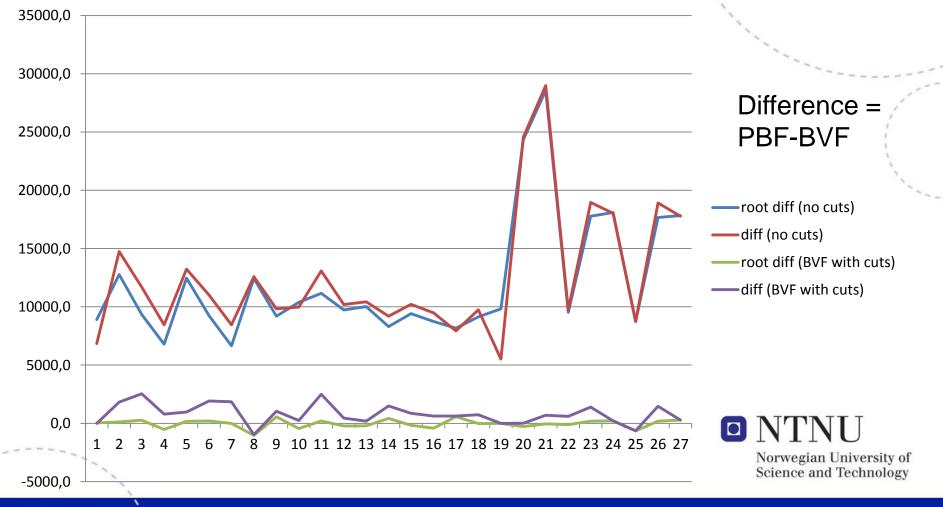
Solution method

- Branch-price-and-cut
 - Subproblem solved as a shortest path problem with resource constraints
 - The *n* best patterns priced in until no negative reduced cost pattern found
 - Generate only the k most violated cuts, until no violated cuts found

Tests

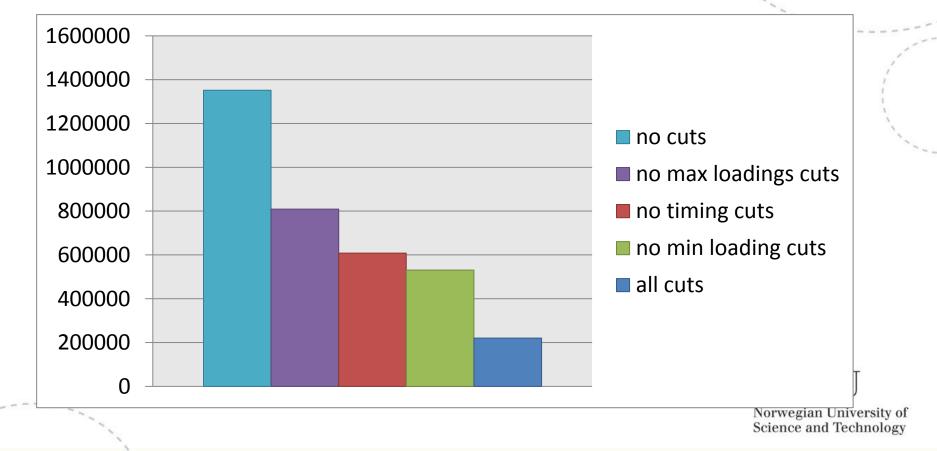
- Root node solutions of BVF vs. PBF
- Effect of cuts
- BVF vs. PBF

LB comparison PBF vs. BVF



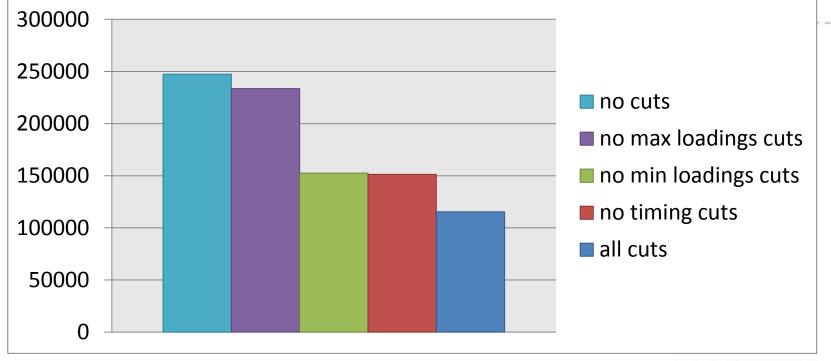
Effect of cuts for PBF

Number of nodes



Effect of cuts for PBF

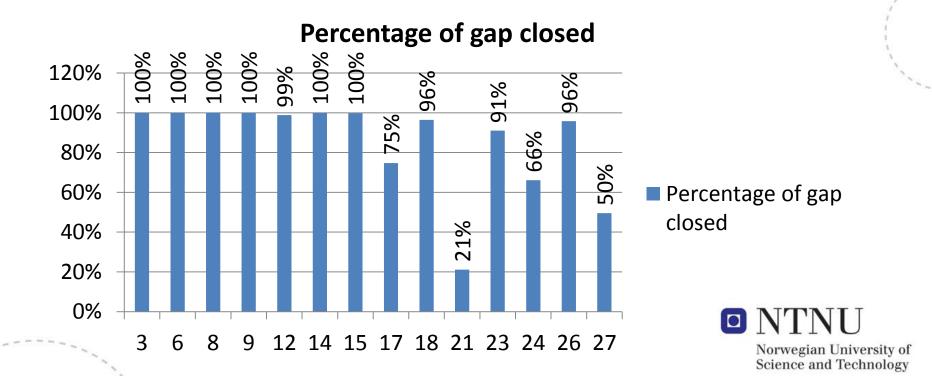
Solution time



Norwegian University of Science and Technology

Gap closed by the PBF

- 13 instances solved by both solution methods
 - Instances 1,2,4,5,7,10,11,13,16,19,20,22 and 25



Concluding remarks

- Results show that the new formulation has a much stronger LP relaxation
- Solve more instances to optimality
- Close most of the gap for the remaining instances

Branch-and-Price for Creating an Annual Delivery Program of Multi-Product Liquefied Natural Gas

Jørgen Glomvik Rakke^{a,b}, Guy Desaulniers^c, Henrik Andersson^a, and Marielle Christiansen^a

^a Department of Industrial Economics and Technology Management, NTNU, Trondheim, Norway ^b Norwegian Marine Technology Research Institute (MARINTEK), Trondheim, Norway

^c Département de mathématiques et génie industriel, École Polytechnique

International Workshop on Column Generation 2012

Bromont, June 10-13, 2012

Norwegian University of Science and Technology