

Branch-and-Price for Creating an Annual Delivery Program of MultiProduct Liquefied Natural Gas

Jørgen Glomvik Rakke ${ }^{\text {a,b }}$, Guy Desaulniers ${ }^{\text {c }}$, Henrik Andersson ${ }^{\text {a }}$, and Marielle Christiansen ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Industrial Economics and Technology Management, NTNU, Trondheim, Norway
${ }^{\text {b }}$ Norwegian Marine Technology Research Institute (MARINTEK), Trondheim, Norway
c Département de mathématiques et génie industriel, École Polytechnique International Workshop on Column Generation 2012 Bromont, June 10-13, 2012

Outline

Problem Description
Mathematical Model
Reformulation
Subproblem
Cuts
Results

Norwegian University of Science and Technology
Maximize revenue from selling LNG in the spot market

Time partitions

Full planning horizon

Partition 1

Interval 1
Interval 2
Interval 3
Partition 2
$C_{c 1}^{D+} C_{c 1}^{D-}$
Partition 1
$C_{c 2}^{D+} C_{c 2}^{D-}$
$C_{c 3}^{D+} C_{c 3}^{D-}$
$C_{c 4}^{D+} C_{c 4}^{D-}$
Partition 2

Norwegian University of Science and Technology

Basic Voyage Formulation (BVF)

- MIP model with scheduled voyages as binary variables
- A scheduled voyage consists of:
- Ship
- Destination (Contract + terminal)
- Departure day
- Based on pre-generation of all scheduled voyage
- The main decision is which combination of ships should deliver LNG to which contracts, and when the deliveries are to be made.

Mathematical Model

$$
\begin{array}{r}
\min \sum_{c \in \mathcal{C}} \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} C_{c v}^{T} x_{c v t} \\
+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D+} y_{c i}^{+}+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D-} y_{c i}^{-} \\
-\sum_{c \in \mathcal{C}^{S}} \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} R_{c}^{S} L_{v} x_{c v t}-\sum_{g \in \mathcal{G}} R_{g}^{I} q_{g T},
\end{array}
$$

(1) Objective
subject to:

$$
\begin{align*}
\sum_{c \in \mathcal{C}_{g} \backslash \mathcal{C}^{M}} \sum_{v \in \mathcal{V}_{c}} x_{c v t}+\sum_{c \in \mathcal{C}_{g} \cap \mathcal{C}^{M}} \sum_{: v \in \mathcal{V}^{M}} x_{c v\left(t-T_{c v}+1\right)} \leq B_{g}, & \forall g \in \mathcal{G}, t \in \mathcal{T}, \\
q_{g, t-1}+P_{g t}-q_{g t}-\sum_{c \in \mathcal{C}_{g} \backslash \mathcal{C}_{v}} \sum_{v \in \mathcal{V}_{c}} L_{v} x_{c v t}=0, & \forall g \in \mathcal{G}, t \in \mathcal{T}, \tag{3}\\
\sum_{v g t} \leq q_{g t} \leq \bar{Q}_{g t}, & \forall g \in \mathcal{G}, t \in \mathcal{T}, \tag{4}\\
\sum_{c \in \mathcal{C}}^{Q_{T \in \mathcal{T}_{v}}} x_{c v t} \leq 1, & \forall v \in \mathcal{V}, t \in \mathcal{T}_{v}, \\
\sum_{c \in \mathcal{C}_{c v}^{M<\tau \leq t}} \sum_{t \in \mathcal{T}_{v}^{M}} x_{c v t}=1, & \forall v \in \mathcal{V}^{M}, \\
\sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{i}^{I} \cap \mathcal{T}_{v}} L_{v} x_{c v t}+y_{c i}^{-}-y_{c i}^{+}=D_{c i}, & \forall c \in \mathcal{C}^{L T}, i \in \mathcal{I}_{c}, \\
x_{c v t} \in\{0,1\}, & \forall c \in \mathcal{C}, v \in \mathcal{V}_{c}, t \in \mathcal{T}_{v}, \tag{8}\\
y_{c i}^{+}, y_{c i}^{-} \geq 0, & \forall c \in \mathcal{C}^{L T}, i \in \mathcal{I}_{c} . \tag{9}
\end{align*}
$$

(2) Berth constraints
(5) Routing constraints
${ }^{(6)}$ Maintenance constraints
(7) Contractual constraints

Inventory constraints

- NTNU

Norwegian University of Science and Technology

Objective function

$$
\min \sum_{c \in \mathcal{C}} \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} C_{c v}^{T} x_{c v t} \quad \text { Transportation cost }
$$

$$
+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D+} y_{c i}^{+}+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D-} y_{c i}^{-} \quad \text { Penalty costs }
$$

$$
-\sum_{c \in \mathcal{C}^{S}} \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} R_{c}^{S} L_{v} x_{c v t}-\sum_{g \in \mathcal{G}} R_{g}^{I} q_{g \bar{T}}, \quad \text { Spot revenue }
$$

Norwegian University of Science and Technology

Problems

- Weak LP-relaxation
- Mainly introduced by the penalties for over and under delivery

$$
+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D+} y_{c i}^{+}+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} C_{c i}^{D-} y_{c i}^{-}
$$

Example

- Heterogeneous fleet, ship capacities = 100, 125, 150
- Demand = 180
- Under-delivery penalty $=10$
- Over-delivery penalty = 5
- Minimum under-delivery $=180-150=30$
- Minimum over-delivery $=100+100-180=20$

Penalty function

Norwegian University of Science and Technology

How to deal with this problem

- Create delivery patterns
- A delivery pattern specifies:
- Contract
- Time period
- Number of deliveries for all ships

Penalty function

Norwegian University of Science and Technology

Pattern Based Formulation (PBF)

- Set of delivery patterns for each time period and contract $\mathcal{P}_{c i}$
- Pattern variable $z_{c i p}$

$$
\begin{align*}
\min \sum_{c \in \mathcal{C}} & \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} C_{c v}^{T} x_{c v t}+\sum_{c \in \mathcal{C}^{L T}} \sum_{i \in \mathcal{I}_{c}} \sum_{p \in \mathcal{P}_{c i}} C_{c i p}^{P} z_{c i p} \\
& -\sum_{c \in \mathcal{C}^{S}} \sum_{v \in \mathcal{V}_{c}} \sum_{t \in \mathcal{T}_{v}} R_{c}^{S} L_{v} x_{c v t}-\sum_{g \in \mathcal{G}} R_{g}^{I} q_{g \bar{T}} \tag{10}
\end{align*}
$$

subject to:

$$
\begin{align*}
& \text { constraints (2)-(6), } \\
& \sum_{t \in \mathcal{T}_{i} \cap \mathcal{T}_{v}^{I}} x_{c v t}-\sum_{i \in \mathcal{P}_{c i}} N_{c i p v} z_{c i p}=0, \forall c \in \mathcal{C}^{L T}, i \in \mathcal{I}_{c}, v \in \mathcal{V}_{c} \\
& \sum_{i \in \mathcal{P}_{c i}} z_{c i p}=1, \forall c \in \mathcal{C}^{L T}, i \in \mathcal{I}_{c} \\
& x_{c v t} \in\{0,1\}, \forall c \in \mathcal{C}, v \in \mathcal{V}_{c}, t \in \mathcal{T}_{v} \tag{13}\\
& z_{c i p} \geq 0, \forall c \in \mathcal{C}^{L T}, i \in \mathcal{I}_{c}, p \in \mathcal{P}_{c i} \tag{14}
\end{align*}
$$

(11) Linking constraints
(12) Convexity constraints

Norwegian University of Science and Technology

How to generate delivery patterns

- Pre generate all possible delivery patterns
- Only feasible for really small test instances
- Column generation
- Split the problem into a master and sub problems to generate delivery patterns with negative reduced cost

Subproblem

$$
\bar{C}_{c i p}=C_{c i p}^{P}-\alpha_{c i}+\sum_{v \in \mathcal{V}_{c}} N_{c i p v} \beta_{c i v}
$$

$$
\begin{array}{cc}
\min & C^{D+} y^{+}+C^{D-} y^{-}-\alpha+\sum_{v \in \mathcal{V}_{c}} \beta_{v} n_{v} \\
\text { s.t. } & \sum_{v \in \mathcal{V}_{c}} L_{v} n_{v}+y^{-}-y^{+}=D
\end{array}
$$

$$
l_{v} \leq n_{v} \leq u_{v}, \text { integer, } \forall v \in \mathcal{V}_{c}
$$

$$
y^{+} \geq 0,
$$

$$
y^{-} \geq 0,
$$

Norwegian University of Science and Technology

Subproblem

- If $\beta_{v}-C^{D-} L_{v} \geq 0, n_{v}$ can be set to l_{v} and removed
- If $\beta_{v}+C^{D+} L_{v}<0, n_{v}$ can be set to u_{v} and removed
- Let $\overline{\mathcal{V}}_{c} \subseteq \mathcal{V}_{c}$ be the set of vessels such that $\beta_{v}<-C^{D+} L_{v}$
- Define \tilde{D} as $D-\sum_{v \in \mathcal{V}_{c}} L_{v} l_{v}-\sum_{v \in \overline{\mathcal{V}}_{c}} L_{v}\left(u_{v}-l_{v}\right)$
- Let $\mathcal{V}_{c}^{-} \subseteq \mathcal{V}_{c}$ be the set of vessels such that $-C^{D+} L_{v}<\beta_{v}<C^{D-} L_{v}$
- Let $u_{v}^{\prime}=u_{v}-l_{v}$

Subproblem

$$
\begin{aligned}
\min K+\left(C^{D+}+C^{D-}\right) y^{+}+ & \sum_{v \in \mathcal{V}_{c}^{-}}\left(\beta_{v}-C^{D-} L_{v}\right) n_{v} \\
\text { s.t. } & \sum_{v \in \mathcal{V}_{c}^{-}} L_{v} n_{v} \leq \tilde{D}+y^{+} \\
& 0 \leq n_{v} \leq u_{v}^{\prime}, \text { integer, } \forall v \in \mathcal{V}_{c}^{-} \\
& y^{+} \geq 0
\end{aligned}
$$

$$
K=C^{D-} D-\alpha+\sum_{v \in \mathcal{V}_{c}}\left(\beta_{v}-C^{D-} L_{v}\right) l_{v}+\sum_{v \in \overline{\mathcal{V}}_{c}}\left(\beta_{v}-C^{D-} L_{v}\right) u_{v}^{\prime}
$$

Norwegian University of Science and Technology

$$
\begin{aligned}
& c_{i j}= \begin{cases}K & \text { if } i=(0,0) \\
k\left(\beta_{v}-C^{D-}-L_{v}\right) & \text { if }(i, j) \text { is a select arc and } i=(v, k) \\
0 & \text { otherwise. }\end{cases} \\
& q_{i j}= \begin{cases}k L_{v} \text { if }(i, j) \text { is a select arc and } i=(v, k) \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Norwegian University of Science and Technology

Labels

- A label contains two elements
- The accumulated cost Z
- The accumulated quantity Q
- By using arc (i, j) you update label $E_{i}=\left(Z_{i}, Q_{i}\right)$ to label $E_{j}=\left(Z_{j}, Q_{j}\right)$

$$
\begin{aligned}
Q_{j} & =Q_{i}+q_{i j} \\
Z_{j} & =Z_{i}+c_{i j}+z_{i j}\left(Q_{i}\right)
\end{aligned}
$$

$$
z_{i j}\left(Q_{i}\right)= \begin{cases}0 & \text { if } Q_{i}+q_{i j} \leq \tilde{D} \\ \infty & \text { if } q_{i j}>0 \text { and } Q_{i} \geq \tilde{D} \\ \left(C^{D+}+C^{D-}\right)\left(Q_{i}+q_{i j}-\tilde{D}\right) & \text { otherwise }\end{cases}
$$

Norwegian University of Science and Technology

Dominance

- Consider two labels

$$
\begin{aligned}
& E_{1}=\left(Z_{1}, Q_{1}\right) \\
& E_{2}=\left(Z_{2}, Q_{2}\right)
\end{aligned}
$$

- E_{1} dominates E_{2} if:

$$
Z_{1} \leq Z_{2} \text { and } Q_{1} \leq Q_{2}
$$

- Given that the amount delivered is not constrained we can strengthen this dominance rule to:

$$
Z_{1}+\left(C^{D+}+C^{D-}\right) \max \left\{0, Q_{1}-Q_{2}\right\} \leq Z_{2}
$$

- Where we can discard label E_{2} even if $Q_{2}<Q_{1}$

Norwegian University of Science and Technology

Cuts

- Timing cuts (similar to the ones presented in Engineer et al. (2012)
- Minimum number of loadings
- Maximum number of loadings

Norwegian University of Science and Technology

Solution method

- Branch-price-and-cut
- Subproblem solved as a shortest path problem with resource constraints
- The n best patterns priced in until no negative reduced cost pattern found
- Generate only the k most violated cuts, until no violated cuts found

Tests

- Root node solutions of BVF vs. PBF
- Effect of cuts
- BVF vs. PBF

Norwegian University of Science and Technology

LB comparison PBF vs. BVF

Difference = PBF-BVF
_root diff (no cuts)
_diff (no cuts)
_root diff (BVF with cuts)
_diff (BVF with cuts)
© NTNU
Norwegian University of Science and Technology

Effect of cuts for PBF

Number of nodes

Effect of cuts for PBF

Solution time

Norwegian University of Science and Technology

Gap closed by the PBF

- 13 instances solved by both solution methods
- Instances 1,2,4,5,7,10,11,13,16,19,20,22 and 25

Concluding remarks

- Results show that the new formulation has a much stronger LP relaxation
- Solve more instances to optimality
- Close most of the gap for the remaining instances

Branch-and-Price for Creating an Annual Delivery Program of MultiProduct Liquefied Natural Gas

Jørgen Glomvik Rakke ${ }^{\text {a,b }}$, Guy Desaulniers ${ }^{\text {c }}$, Henrik Andersson ${ }^{\text {a }}$, and Marielle Christiansen ${ }^{\text {a }}$
a Department of Industrial Economics and Technology Management, NTNU, Trondheim, Norway
${ }^{\text {b }}$ Norwegian Marine Technology Research Institute (MARINTEK), Trondheim, Norway
c Département de mathématiques et génie industriel, École Polytechnique International Workshop on Column Generation 2012 Bromont, June 10-13, 2012

