
Recoverable Robustness 
by Column Generation 

 
Marjan van den Akker1 

Paul Bouman1,2 

Han Hoogeveen1 

 
1 Department of Information and Computing Sciences, Utrecht 
University 
2 Rotterdam School of Management, Erasmus University 

 



Overview 

• Introduction to Recoverable Robustness 

• Size Robust Knapsack Problems 

• Decomposition Framework 

• Experiments 

• Demand Robust Shortest Path 

• Conclusions 
 



Recoverable robustness 

• Method to cope with uncertainty 

• Combination of  

– Robust optimization 

– Two-phase stochastic programming 

• Reference:  

 Liebchen, Lübbecke, Möhring, Stiller 

 LNCS 5868, 2009 

• Much work done within the ARRIVAL project 



Example: European Soccer 
Championship 2012 

 
Scheme of the tournament 

1. Group phase. 

Four groups: numbers 1 and 2 advance 

2. Knock-out phase: 

1.  Quarter finals 

2.  Semi finals 

3.  Final 

  

 

 

 
 

 



We want to support our team! 

• We want to buy tickets 

• Tickets must be bought months in advance 

• The schedule for the group is known 

• The schedule for the quarter finals etc. depends on the 
results in the group phase 

• Which tickets should we buy? 

 

 

 

 



To make it more clear … 

• Group B: 

– Netherlands 

– Germany 

– Denmark 

– Portugal 

 

• Scenario 1: Netherlands B1, Germany B2 

• Scenario 2: Germany B1, Netherlands B2 

• …….alternative scenarios: other rankings 



Robust Optimization 

• Find the cheapest solution 

– You don’t know yet which scenario applies 

– It must be feasible for all scenarios (possibly excluding 
the very unlikely ones) 

– Recovery actions afterwards are not possible 

 

• Here: buy tickets for all matches for B1 and B2 

 

 



2-phase stochastic programming 

• Assumption: The probability of each scenario is known 

• A solution comprises of first stage and second stage 
decisions; its cost is the expected cost 

• The first stage decisions render a solution that can be made 
feasible through the second stage decisions when the real 
scenario gets revealed 

 

For our example: 

• First stage: buy tickets for the group phase now 

• Second stage: acquire the tickets for the knock-out phase 
you need in some way 

 



Recoverable robustness 

• Robust optimization: too conservative 

• 2-Phase stochastic programming: difficult models, may 
require lots of replanning  

 

• Recoverable robustness:  

– Find an initial solution (first stage decision) 

– You must be able to make it feasible using a 
simple recovery algorithm for scenarios under 
consideration 

– The cost includes the first stage cost and possibly 
second stage 



Recoverable robustness: example 

Initial plan 

• Suppose you think that Netherlands and Germany will 
advance, i.e., scenarios 1 and 2 are the scenarios under 
consideration 

• Solution: Dutch supporters buy tickets for all matches of B1 
and German supporters for B2, i.e., plan for scenario 1 

 

Recovery rule 

• Exchange tickets with a supporter of the other team 

 

      Cheap and simple 

 

 



Size Robust Knapsack Problem 

• Knapsack items with deterministic weight ai and profit ci 

• Select subset of the items: 

– Maximize profit while not exceeding knapsack volume 

 

• The volume of the knapsack is b, but this value may be 
smaller than originally assumed 

– Set of scenarios: scenario s has volume bs with 
probability ps (scenario 0 is the original case) 

 

• Initial knapsack must be recoverable according to given 
rules for each of the scenarios 

 

• Bϋsing, Koster, Kutschka (2010). Recoverable robust 
knapsack , uncertainty in weights and profits of items. 



Size Robust Knapsack Problem 

• Possible objectives:  

– Initial profit and Feasibility recovery 

– Initial profit + Worst-case recovery  

– Expected profit 

• Some possible recovery rules 

– Recovery by removal 

– Recovery by swapping 

– Cardinality constrained recovery 

– Greedy recovery (weight, profit, or profit per unit 
weight) 

 

• Certain variants can be solved by Dynamic Programming 
(Bouman 2011) 



Decomposition framework 

• Two variants: 

– Separate recovery decomposition 

– Combined recovery decomposition 

 

 

• Shown for demand robust knapsack problem with  

– Maximize expected profit 

– Recovery by removing items  

 

 



Decomposition Framework: 
separate recovery 

• Idea: a solution to a recoverable robust optimization 
problem is a combination of a single initial solution and a 
recovery solution for each scenario 

Recovery 
Knapsack 

Recovery 
Knapsack 

Recovery
Knapsack 

Initial 
Knapsack 

……. 

……. 

Contains all 

items in each 

Does not exceed 

capacity of 

(Problem) 

(Solution) 



Knapsack – Separate Recovery 

 

 

otherwise 0 and s, scenariofor  selected isk knapsack  if 1y

otherwise 0 and selected, isk knapsack  if 1x

:Variables

ki if 1a    :)b(KkFor 

ki if 1a    :)b(KkFor 

cC

}ba|}n,,2,1{k{)b(K

s
k

k

s
iks

ik

ki ik

ki

i























 Objective: maximize expected profit 

 Recovery: remove items 



ILP-Model: branch-and-price 

 

}1,0{y,x

Ssi      0yaxa

Ss        1y

1x

.t.s

yCpxCpmax

s
kk

)b(Kk

s
k

s
ik

)b(Kk

kik

)b(Kk

s
k

)b(Kk

k

Ss )b(Kk

s
kks

)b(Kk

kk0

s

s

s

















 







 

Profit of the initial 
solution 

Profit of the recovery 
solution 

Select one valid initial 
knapsack 

Select one valid initial 
knapsack 

An item can only be in a 
recovery knapsack, if it 
is in the initial knapsack 



Pricing problem 

• Πis duals of recovery constraints 

• Pricing for initial problem variables (xk): 

– Find optimal knapsack with total weight at most b and 
profit (p0 ci – πis) 

• Pricing for scenario s variables (yk
s): 

– Find optimal knapsack with total  weight bs and profit  
(ps ci + πis) 

 



Decomposition Framework: 
Combined Recovery  

• The decomposition considers combinations of an initial 
solution and a recovery solution 

 

Recovery 
Solution 

Recovery 
Solution 

Recovery
Solution 

Initial 
Solution 

……. 

……. 

recoverable to 

feasible for 

(Problem) 

(Solution) 
Initial 

Solution 
Initial 

Solution 



Decomposition Framework: 
Combined Recovery  

• This may lead to a situation where we have a different 
initial solution for each scenario… 

– So we add the constraint that they must be equal 

 

Recovery 
Solution 

Recovery 
Solution 

Recovery
Solution 

……. 

……. 

recoverable to 

feasible for 

(Problem) 

(Solution) ……. 
Initial 

Solution 
Initial 

Solution 
Initial 

Solution 



ILP-Model: branch-and-price 

 

}1,0{,

      

          1

..

max

. scenariofor 

selected are solution recovery  and solution  initial if 

solution initialin  selected is  item if 

 :Variables

)()(),(

)(

)()(),(1













 





 

s

kqi

bKbKqk

s

kqiki

bKk

s

kq

Ss bKbKqk

s

kqqs

n

i

ii

s

kq

i

zx

Ssizax

Ssz

ts

zCpxc

s

qkz

ix

s

s

Select one combination 
of initial and recovery 
knapsack per scenario 

All initial knapsacks are 
identical 



Pricing problem 

• Find an optimal combination of an initial and recovery 
knapsack for a scenarios s 

 

– The profit of the initial knapsack items are determined by 
duals of the ´equal initial´ constraints 

– The profit of the recovery knapsack items are equal to original 
profits.  

 

• Solve by dynamic programming with state variables  

 

D(i, w0,ws)= Best value for a combination of an initial and 
recovery knapsack where the initial knapsack is a subset of 
{1,2,…,i} and the knapsacks have weights w0 and ws 



Computational experiments 

• 4 types of Exact Algorithms 

– Separate Recovery Branch & Price  

– Combined Recovery Branch & Price 

– Branch & Bound 

– Exact Dynamic Programming 

• Local search 

• Separate Recovery Branch&Price performs better than the 
Combined Recovery Branch&Price 

• Hillclimbing seems to perform quite good, but gives no 
guarantees 

• Separate Recovery Branch&Price best exact algorithm 

 



Demand Robust Shortest Path 



Demand Robust Shortest Path 

• Separate Recovery Decomposition seems quite complex wrt 
modeling 

• Use Combined Recovery Decomposition! 

• Minimize worst-case cost 

• Model similar to knapsack 

• Additional constraint for worst-case cost 

 

 

 



Demand Robust Shortest Path 

• Pricing problem becomes a shortest path problem: 

– Two prices for each edge: initial prices and recovery prices 

– Just take the cheapest 

– All prices include duals 

– Only initial prices can be negative due to duals. We take edges 
with negative price no matter what and consider their costs to 
be 0 

– Find the shortest path in a graph with non-negative edge 
weights 

 

 
Solve using Dijkstra’s 

Shortest Path Algorithm! 



Conclusions 

• The type of recovery has a lot of impact on finding an 
algorithm to the problem 

• The column generation framework is a great way to reduce 
recoverable robustness problems into regular problems 
(while customization remains possible) 

• We believe that it can be applied to many different 
problems (we already have some preliminary work on 
Demand robust shortest path and Network flows) 

 


