Recoverable Robustness
by Column Generation

Marjan van den Akkerl
Paul Boumanl2
Han Hoogeveen!

1 Department of Information and Computing Sciences, Utrecht
University

2 Rotterdam School of Management, Erasmus University

Universiteit Utrecht

Overview

« Introduction to Recoverable Robustness
« Size Robust Knapsack Problems

« Decomposition Framework

« Experiments

« Demand Robust Shortest Path

« Conclusions

Recoverable robustness

« Method to cope with uncertainty
« Combination of
— Robust optimization
— Two-phase stochastic programming
« Reference:
Liebchen, Lubbecke, Mdhring, Stiller
LNCS 5868, 2009
« Much work done within the ARRIVAL project

3
= Universiteit Utrecht

Example: European Soccer
Championship 2012

Scheme of the tournament
1. Group phase.

Four groups: numbers 1 and 2 advance
2. Knock-out phase:

1. Quarter finals

2. Semi finals

3. Final

' Universiteit Utrecht

« We want to buy tickets
« Tickets must be bought months in advance
« The schedule for the group is known

« The schedule for the quarter finals etc. depends on the
results in the group phase

« Which tickets should we buy?

Universiteit Utrecht

To make it more clear ...

Group B:

— Netherlands
— Germany

— Denmark

— Portugal

Scenario 1: Netherlands B1, Germany B2
Scenario 2: Germany B1, Netherlands B2
...... .alternative scenarios: other rankings

3
= Universiteit Utrecht

Robust Optimization

* Find the cheapest solution
— You don't know yet which scenario applies

— It must be feasible for all scenarios (possibly excluding
the very unlikely ones)

— Recovery actions afterwards are not possible

« Here: buy tickets for all matches for B1 and B2

= Universiteit Utrecht

2-phase stochastic programming

« Assumption: The probability of each scenario is known

« A solution comprises of first stage and second stage
decisions; its cost is the expected cost

« The first stage decisions render a solution that can be made
feasible through the second stage decisions when the real
scenario gets revealed

For our example:
« First stage: buy tickets for the group phase now

« Second stage: acquire the tickets for the knock-out phase
you need in some way

ii { Universiteit Utrecht

Recoverable robustness

« Robust optimization: too conservative

« 2-Phase stochastic programming: difficult models, may
require lots of replanning

« Recoverable robustness:
— Find an initial solution (first stage decision)

— You must be able to make it feasible using a
simple recovery algorithm for scenarios under
consideration

— The cost includes the first stage cost and possibly
second stage

Universiteit Utrecht

Recoverable robustness: example

Initial plan

« Suppose you think that Netherlands and Germany will
advance, i.e., scenarios 1 and 2 are the scenarios under
consideration

« Solution: Dutch supporters buy tickets for all matches of Bl
and German supporters for B2, i.e., plan for scenario 1

Recovery rule
« Exchange tickets with a supporter of the other team

Cheap and simple

ii { Universiteit Utrecht

Size Robust Knapsack Problem

- Knapsack items with deterministic weight a; and profit c;
« Select subset of the items:
— Maximize profit while not exceeding knapsack volume

« The volume of the knapsack is b, but this value may be
smaller than originally assumed

— Set of scenarios: scenario s has volume b, with
probability p. (scenario O is the original case)

« Initial knapsack must be recoverable according to given
rules for each of the scenarios

« BUsing, Koster, Kutschka (2010). Recoverable robust
knapsack , uncertainty in weights and profits of items.

Universiteit Utrecht

Size Robust Knapsack Problem

« Possible objectives:
— Initial profit and Feasibility recovery
— Initial profit + Worst-case recovery
— Expected profit

« Some possible recovery rules
— Recovery by removal
— Recovery by swapping
— Cardinality constrained recovery

— Greedy recovery (weight, profit, or profit per unit
weight)

« Certain variants can be solved by Dynamic Programming
(Bouman 2011)

i;’ 5 Universiteit Utrecht

Decomposition framework

« Two variants:
— Separate recovery decomposition
— Combined recovery decomposition

« Shown for demand robust knapsack problem with
— Maximize expected profit
— Recovery by removing items

3
= Universiteit Utrecht

Decomposition Framework:
separate recovery

« Idea: a solution to a recoverable robust optimization
problem is a combination of a single initial solution and a
recovery solution for each scenario

(Solution)

Contains all
items In each

Does not exceed
capacity of

(Problem)

Universiteit Utrecht

Knapsack - Separate Recovery

= Objective: maximize expected profit
= Recovery: remove items

K(b)={k ={L.2,....n}| D a; <b}
iek
Ck - Ziekci

ForkeK(b): a, =1lifiek
ForkeK(b,): a =lifiek

Variables :

X, =1if knapsackk is selected,and 0 otherwise

y; =1if knapsackk is selectedforscenarios, and 0 otherwise

3
= Universiteit Utrecht

Profit of the initial

ILP-Model: branch-and

Profit of the recovery

solution
MaxXx Z 0oL X +Z Select one valid initial
keK (b) e -
s.t Select one valid initial

knapsack

An item can only be in a
Zys recovery knapsack, if it
is in the initial knapsack

Y =0 VivseS
keK (b) keK(b,)

XYy €{0,1}

3 N -

Pricing problem

« [l duals of recovery constraints
« Pricing for initial problem variables (x,):
— Find optimal knapsack with total weight at most b and
profit (py ¢; = s)
« Pricing for scenario s variables (y,®):
— Find optimal knapsack with total weight b, and profit

(ps Ci + nis)

N2,
= bl == Universiteit Utrecht

Decomposition Framework:
Combined Recovery

« The decomposition considers combinations of an initial
solution and a recovery solution

Initial
Solution

Initial
Solution

(Solution)

recoverable to

(Problem)

S DS Universiteit Utrecht

Decomposition Framework:
Combined Recovery

« This may lead to a situation where we have a different
initial solution for each scenario...

— So we add the constraint that they must be equal

Initial Initial
Solution Solution

Initial

(Solution)
Solution

recoverable to

(Problem)

= = Universiteit Utrecht

ILP-Model: branch-and-price

Variables :

X; If item i is selected in initial solution

Z,, If initial solution k and recovery solution g are selected
for scenario s.

Select one combination
of initial and recovery

n

S -
max > CX,+) P, >.C.z, knapsack per scenario
i-1 ses (k,q)eK (b)xK (by)

st All initial knapsacks are
identical
Yz, =1 VseS
keK(b)

S
X = Zaikqu

(k,q)eK (b)xK (b)

Xir Zog €{0,1}

Pricing problem

Find an optimal combination of an initial and recovery
knapsack for a scenarios s

— The profit of the initial knapsack items are determined by
duals of the “equal initial” constraints

— The profit of the recovery knapsack items are equal to original
profits.

Solve by dynamic programming with state variables

D(i, w,w,)= Best value for a combination of an initial and
recovery knapsack where the initial knapsack is a subset of
{1,2,...,i} and the knapsacks have weights w, and w,

Universiteit Utrecht

Computational experiments

« 4 types of Exact Algorithms
— Separate Recovery Branch & Price
— Combined Recovery Branch & Price
— Branch & Bound
— Exact Dynamic Programming

« Local search

« Separate Recovery Branch&Price performs better than the
Combined Recovery Branch&Price

« Hillclimbing seems to perform quite good, but gives no
guarantees

« Separate Recovery Branch&Price best exact algorithm

ii { Universiteit Utrecht

Demand Robust Shortest Path

« Shortest path problem

« Single source src, scenarios define sinks

« Buy edges during a cheaper initial phase

« When sink is known, edges are more expensive

A

@

Universiteit Utrecht

Demand Robust Shortest Path

« Separate Recovery Decomposition seems quite complex wrt
modeling

« Use Combined Recovery Decomposition!
« Minimize worst-case cost

« Model similar to knapsack

« Additional constraint for worst-case cost

3
= Universiteit Utrecht

Demand Robust Shortest Path

« Pricing problem becomes a shortest path problem:

Two prices for each edge: initial prices and recovery prices
Just take the cheapest

All prices include duals

Only initial prices can be negative due to duals. We take edges

with negative price no matter what and consider their costs to
be O

Find the shortest path in a graph with non-negative edge
weights

Shortest Path Algorithm!

3
: Universiteit Utrecht

Conclusions

 The type of recovery has a lot of impact on finding an
algorithm to the problem

« The column generation framework is a great way to reduce
recoverable robustness problems into regular problems
(while customization remains possible)

« We believe that it can be applied to many different
problems (we already have some preliminary work on
Demand robust shortest path and Network flows)

Universiteit Utrecht

