
Efficient ng-Route Pricing

Efficient ng-Route Pricing

Diego Pecin, Rafael Martinelli, and Marcus Poggi
Departamento de Informática, PUC-Rio, Brazil

[dpecin, rmartinelli, poggi]@inf.puc-rio.br

June 12, 2012



Efficient ng-Route Pricing

Outlines

1 Introduction
Vehicle Routing Problem
The Set Partitioning Approach

2 Column Generation
Reduced Cost
ng-Routes

3 Computational Experiments
Results for CVRP



Efficient ng-Route Pricing

Introduction

Column generation is present in the current most efficient
approaches to routing problems

Set partitioning formulations model routing problems by
considering all possible routes and selecting a subset of them
that visits all customers

This formulation often produces tight linear relaxation lower
bounds and requires column generation for its pricing step

Recently, Baldacci, Mingozzi and Roberti (2011) proposed the
ng-routes as compromise between elementary and
non-elementary routes, known as q-routes.



Efficient ng-Route Pricing

Introduction

The ng-routes are non-elementary routes with the restriction
that following a customer it is not allowed to visit one that
was visited before, if it belongs to a dynamically computed set
associated with this first customer

This dynamic set is obtained from ng-sets of given size,
associated to each customer, which is usually composed by
the closest ones.



Efficient ng-Route Pricing

Introduction

Vehicle Routing Problem

Let G = (V ,E ) be an undirected connected graph with vertex
set V = {v0, v1, ..., vk} and edge set E = {{vi , vj}|vi , vj ∈ V }
There is a special vertex v0 ∈ V called the depot

There exists a demand function q : V → Z associated with all
vertices, in which the depot has demand q0 = 0

These demands are to be serviced by a set of K identical
vehicles with capacity Q, located at the depot



Efficient ng-Route Pricing

Introduction

Vehicle Routing Problem

There exists a traversal cost function c : E → Z associated
with each edge.

Let R be a set of all possible closed routes starting and
ending at the depot. The objective of the VRP is to select a
subset of K routes from R which:

Minimizes the total traversal cost
The demand from every vertex is serviced by a single vehicle
The total demand serviced by each route does not exceed the
vehicle capacity Q



Efficient ng-Route Pricing

Introduction

The Set Partitioning Approach

The Set Partitioning Approach

The number of possible routes is exponentially large

Dantzig-Wolfe decomposition of the undirected formulation
with an exponential number of constraints

This decomposition does not enforce the routes to be
elementary

Mathematical Notation

Ω – Set containing all possible routes

λr – Binary variable, 1 if route r is used

avr – The number of times vertex v is serviced by route r

ber – The number of times edge e is traversed by route r



Efficient ng-Route Pricing

Introduction

The Set Partitioning Approach

Minimize
∑
r∈Ω

crλr

subject to ∑
r∈Ω

λr = K∑
r∈Ω

avr λr = 1 ∀v ∈ V \{0}

λr ∈ [0, 1] ∀r ∈ Ω



Efficient ng-Route Pricing

Column Generation

Reduced Cost

Let γ and βv be the dual variables associated with the set
partitioning constraints respectively:

c̄r = cr − γ −
∑

v∈V \{0}

avr βv

Given an edge e = (vi , vj) ∈ E , the reduced cost c̄e of this
edge can be written as follows:

c̄e =

 ce −
(
βvi

+βvj

2

)
if e /∈ δ(v0)

ce −
(
βvi

+γ

2

)
if e ∈ δ(v0)



Efficient ng-Route Pricing

Column Generation

ng-Routes

Since an optimal solution to the VRP does not include routes
that visit a vertex more than once, ideally we want to price
elementary routes

This corresponds to solve the Elementary Shortest Path
Problem with Resource Constraints (ESPPRC) as a pricing
subproblem

An alternative to deal with this complexity is to relax the
elementarily constraint of the path, that means solving the
Shortest Path Problem with Resource Constraints (SPPRC),
also known as the q-route problem

The SPPRC can be tackled using a pseudo-polynomial
dynamic programming algorithm, as described in the seminal
work of Christofides et al



Efficient ng-Route Pricing

Column Generation

ng-Routes

Aiming to have a better compromise between pricing
efficiency and lower bounds, Baldacci, Mingozzi and Roberti
proposed the ng-route relaxation

This relaxation defines for each vertex vi ∈ V \{0} a subset of
vertex Ni ⊆ V \{0} which have a relationship with vertex vi

A possible representation for this relationship can be a
neighborhood relationship, i.e., Ni contains the nearest vertex
of vi



Efficient ng-Route Pricing

Column Generation

ng-Routes

ng-Sets

0

1
2

3

5

4
8

6

11

10

7

9

4

99

88

1111



Efficient ng-Route Pricing

Column Generation

ng-Routes

Given a path P = (v0, . . . , vi , . . . , vp), let V (P) be the set of
vertices visited by P. A function Π(P) of prohibited
extensions for the path P can be defined as

Π(P) =

{
vi ∈ V (P) : vi ∈

p⋂
s=i+1

Ns , i = 1, . . . , p − 1

}
∪ {vp}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 1

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

 

 
0 

π0 = {}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 1

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

 

  
0 1 

π0 = {}
π1 = π0 ∩ N1 ∪ {1}
π1 = {1}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 1

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

 

  
0 1 2 

π1 = {1}
π2 = π1 ∩ N2 ∪ {2}
π2 = {1, 2}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 1

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

 

  
0 1 2 3 

π2 = {1, 2}
π3 = π2 ∩ N3 ∪ {3}
π3 = {1, 3}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 1

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

 

  
0 1 2 3 1 

π3 = {1, 3}

The extension is not allowed!



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 2

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 2}

 

 
0 

π0 = {}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 2

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 2}

 

  
0 1 

π0 = {}
π1 = π0 ∩ N1 ∪ {1}
π1 = {1}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 2

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 2}

 

  
0 1 2 

π1 = {1}
π2 = π1 ∩ N2 ∪ {2}
π2 = {1, 2}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 2

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 2}

 

  
0 1 2 3 

π2 = {1, 2}
π3 = π2 ∩ N3 ∪ {3}
π3 = {2, 3}



Efficient ng-Route Pricing

Column Generation

ng-Routes

Example 2

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 2}

 

  
0 1 2 3 1 

π3 = {2, 3}

The extension is allowed.



Efficient ng-Route Pricing

Column Generation

ng-Routes

This pricing is solved exactly using a forward dynamic
programming algorithm

The algorithm stores every possible partial ng-route for each
capacity c and end vertex v

The complexity is still pseudo-polynomial when the size of
NGs is bounded by a constant factor

But it still needs some speed up techniques:

Simple heuristic to find ng-routes with negative reduced cost
Dominance rules (pricing with elementary routes)
Decremental State Space Relaxation (DSSR) (Righini and
Salani, 2008)
Completion bounds



Efficient ng-Route Pricing

Column Generation

ng-Routes

Heuristic Pricing

Simple but effective heuristic very similar to our basic dynamic
programming algorithm to compute ng-routes

During the dynamic programming algorithm, we store just the
best possible partial ng-route for each capacity c and end
vertex v

The resulting complexity of this algorithm is O(n2Q)

Dominance Rule

Given two paths P1 and P2, we say that P1 dominates P2 if
the following three conditions hold: (i) q(P1) ≤ q(P2), (ii)
c̄(P1) ≤ c̄(P2) and (iii) Π(P1) ⊆ Π(P2)

It is easy to see that this can be done because any possible
extension from P2, can be done from P1 with a lower reduced
cost



Efficient ng-Route Pricing

Column Generation

ng-Routes

Decremental State-Space Relaxation (DSSR)

The adapted DSSR algorithm is iterative and works by relaxing
the state space of the original neighborhood subsets Ni

Initially, we define these subsets as empty

At each iteration, it identifies which repeated vertices violates
the original subsets Ni on the best ng-routes

These vertives are then inserted into the related Ni subsets



Efficient ng-Route Pricing

Column Generation

ng-Routes

ng-Routes with DSSR: Exemple

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

First Iteration: N0
1 = {}, N0

2 = {}, N0
3 = {}

Best found:

It's not a valid ng-route!

0 01 12 3

Second Iteration: N1
1 = {1}, N1

2 = {1}, N1
3 = {1}

Best found:

It's not a valid ng-route!

0 01 22 3



Efficient ng-Route Pricing

Column Generation

ng-Routes

ng-Routes with DSSR: Exemple

N1 = {1, 2}, N2 = {2, 1}, N3 = {3, 1}

Second Iteration: N1
1 = {1}, N1

2 = {1}, N1
3 = {1}

Best found:

It's not a valid ng-route!

0 01 22 3

Third Iteration: N2
1 = {1, 2}, N2

2 = {2, 1}, N2
3 = {1}

Best found:

It's a valid ng-route!

0 01 323



Efficient ng-Route Pricing

Column Generation

ng-Routes

Completion Bounds

We calculate completion bounds at some DSSR iteration k .

Let T ∗k (q,w) be the value of the best path which starts at
depot v0 and ends at vertex w with a total demand of q,
obtained at the end of iteration k . The completion bound is
calculated as

T̂ (q,w) = minq′≤q {T ∗k (q′,w)}
These bounds can be used in the subsequent iterations in
order to avoid extensions on which the generated label would
never result in an optimal ng-route

The extension of a label L(P) = (wp, q(P),Π(P), c̄(P)) to a
vertex w , w /∈ Π(P), can only be done if

c̄(P) + c̄wpw + T̂ (Q − q(P),w) < 0



Efficient ng-Route Pricing

Computational Experiments

Computational Experiments

The algorithms were implemented in C++ using Microsoft
Visual C++ 2010 Express

IBM ILOG CPLEX Optimizer 12.3 was used for solving the
formulations

The experiments were conducted on an Intel Core 2 Duo
E7400 2.8 GHz with 4GB RAM running Microsoft Windows
Vista Business 32-bits



Efficient ng-Route Pricing

Computational Experiments

Best Bounds QR-2 NG=8 NG=16 NG=32 NG=64

Instance LB UB Value Time Value Time Value Time Value Time Value Time

A-n63-k10 1314 1314 1267.42 1.44 1286.58 3.29 1286.81 3.00 1286.83 3.54 1286.83 4.08
A-n64-k9 1401 1401 1353.27 1.89 1368.24 3.89 1374.49 3.69 1376.90 5.07 1376.90 9.25
A-n69-k9 1159 1159 1113.24 2.49 1129.97 3.16 1131.33 3.46 1131.34 4.64 1131.34 6.81

A-n80-k10 1763 1763 1712.17 4.28 1729.81 7.23 1731.45 8.28 1731.58 9.29 1731.58 14.40
B-n50-k8 1312 1312 1217.52 0.74 1266.45 1.99 1266.63 1.95 1266.64 2.05 1266.64 2.97
B-n68-k9 1275 1275 1163.87 1.87 1198.20 3.32 1203.78 5.63 1204.00 5.65 1204.00 14.99

E-n101-k14 1067 1067 1045.11 7.23 1047.20 10.00 1048.45 10.79 1050.42 10.83 1050.42 14.71
E-n101-k8 815 815 786.36 17.67 789.37 25.45 790.71 30.01 790.99 36.13 790.99 54.28
E-n51-k5 521 521 512.92 1.80 517.14 3.05 517.14 4.82 517.14 2.83 517.14 4.57

E-n76-k10 830 830 811.39 3.58 811.77 3.96 811.87 4.59 812.48 5.35 812.48 8.52
E-n76-k14 1021 1021 999.58 2.07 1001.85 2.50 1002.77 3.00 1002.77 4.09 1002.77 4.30
E-n76-k7 682 682 663.31 7.17 664.20 12.48 664.82 12.85 665.59 16.27 665.59 25.56
E-n76-k8 735 735 716.71 5.49 717.82 7.67 718.74 9.15 718.78 8.07 718.78 14.52
P-n50-k8 631 631 612.54 0.82 614.64 1.12 615.55 1.34 615.55 1.29 615.55 2.01

P-n70-k10 827 827 808.31 2.32 809.29 2.78 810.61 4.24 810.94 3.00 810.94 4.64
M-n121-k7 1034 1034 1013.00 26.66 1026.37 167.93 1029.21 2609.38 — — — —

M-n151-k12 1003 1015 991.49 57.15 995.73 96.14 996.64 126.56 997.28 172.54 997.43 3946.30
M-n200-k16 1256.4 1278 1240.44 116.10 1250.23 260.57 1250.87 269.28 1251.36 261.28 1252.05 1528.53
M-n200-k17 1256.8 1275 1243.32 123.11 1252.52 237.15 1252.87 207.09 1253.43 273.82 1254.01 765.77
G-n262-k25 5064.0 5530 5361.79 1242.14 5418.51 1369.33 5425.95 1428.45 5429.20 1587.43 5429.46 1953.33



Efficient ng-Route Pricing

Concluding Remarks

Concluding Remarks

We show how to implement an efficient algorithm to price
ng-routes to a set partitioning formulation for VRP

This was done by combining the Decremental State Space
Relaxation technique with completion bounds within a basic
algorithm for pricing ng-routes

The resulting algorithm was tested extensively on a large set
of VRP instances, where some of them are still far from an
optimality proof

As far as we know, up to this date, the best column
generations with ng-route pricing could only run for subsets
up to 13



Efficient ng-Route Pricing

Thank you!


	Introduction
	Vehicle Routing Problem
	The Set Partitioning Approach

	Column Generation
	Reduced Cost
	ng-Routes

	Computational Experiments
	Results for CVRP


