Efficient ng-Route Pricing

Efficient ng-Route Pricing

Diego Pecin, Rafael Martinelli, and Marcus Poggi
Departamento de Informéatica, PUC-Rio, Brazil
[dpecin, rmartinelli, poggil@inf.puc-rio.br

June 12, 2012

Efficient ng-Route Pricing
Outlines

© Introduction
@ Vehicle Routing Problem
@ The Set Partitioning Approach

© Column Generation
@ Reduced Cost
@ ng-Routes

e Computational Experiments
@ Results for CVRP

Efficient ng-Route Pricing
Introduction

@ Column generation is present in the current most efficient
approaches to routing problems

@ Set partitioning formulations model routing problems by
considering all possible routes and selecting a subset of them
that visits all customers

@ This formulation often produces tight linear relaxation lower
bounds and requires column generation for its pricing step

@ Recently, Baldacci, Mingozzi and Roberti (2011) proposed the
ng-routes as compromise between elementary and
non-elementary routes, known as g-routes.

Efficient ng-Route Pricing
Introduction

@ The ng-routes are non-elementary routes with the restriction
that following a customer it is not allowed to visit one that
was visited before, if it belongs to a dynamically computed set
associated with this first customer

@ This dynamic set is obtained from ng-sets of given size,
associated to each customer, which is usually composed by
the closest ones.

Efficient ng-Route Pricing
Introduction

Vehicle Routing Problem

e Let G =(V, E) be an undirected connected graph with vertex
set V = {v, v1,..., v} and edge set E = {{v;, vj}|v;,v; € V}

@ There is a special vertex vy € V called the depot

@ There exists a demand function q : V — Z associated with all
vertices, in which the depot has demand gg =0

@ These demands are to be serviced by a set of K identical
vehicles with capacity Q, located at the depot

Efficient ng-Route Pricing
Introduction

Vehicle Routing Problem

@ There exists a traversal cost function ¢ : E — Z associated
with each edge.

@ Let R be a set of all possible closed routes starting and
ending at the depot. The objective of the VRP is to select a
subset of K routes from R which:

e Minimizes the total traversal cost

e The demand from every vertex is serviced by a single vehicle

o The total demand serviced by each route does not exceed the
vehicle capacity @

Efficient ng-Route Pricing
Introduction

The Set Partitioning Approach

The Set Partitioning Approach

@ The number of possible routes is exponentially large
o Dantzig-Wolfe decomposition of the undirected formulation
with an exponential number of constraints

@ This decomposition does not enforce the routes to be
elementary

Mathematical Notation

Q — Set containing all possible routes

A, — Binary variable, 1 if route r is used

v

ar

— The number of times vertex v is serviced by route r

bf — The number of times edge e is traversed by route r

Efficient ng-Route Pricing
Introduction

The Set Partitioning Approach

MinimizeZc,A,

reQ
subject to
A=K
reQ
Z a/\ =1 Vv e V\{0}
reQ

Ar€10,1] VreQ

Efficient ng-Route Pricing
Column Generation
Reduced Cost

@ Let v and 3, be the dual variables associated with the set
partitioning constraints respectively:

r=¢—7— Z ayﬁv
veV\{0}

@ Given an edge e = (v;, vj) € E, the reduced cost T of this
edge can be written as follows:

Co — %) if e ¢ 3(vo)
Co — @) if e € 5(vo)

Efficient ng-Route Pricing
Column Generation

ng-Routes

@ Since an optimal solution to the VRP does not include routes
that visit a vertex more than once, ideally we want to price
elementary routes

@ This corresponds to solve the Elementary Shortest Path
Problem with Resource Constraints (ESPPRC) as a pricing
subproblem

@ An alternative to deal with this complexity is to relax the
elementarily constraint of the path, that means solving the
Shortest Path Problem with Resource Constraints (SPPRC),
also known as the g-route problem

@ The SPPRC can be tackled using a pseudo-polynomial
dynamic programming algorithm, as described in the seminal
work of Christofides et al

Efficient ng-Route Pricing
Column Generation

ng-Routes

@ Aiming to have a better compromise between pricing
efficiency and lower bounds, Baldacci, Mingozzi and Roberti
proposed the ng-route relaxation

@ This relaxation defines for each vertex v; € V\{0} a subset of
vertex N; C V\{0} which have a relationship with vertex v;

@ A possible representation for this relationship can be a
neighborhood relationship, i.e., N; contains the nearest vertex
of v;

Efficient ng-Route Pricing
Column Generation

ng-Routes

ng-Sets

Efficient ng-Route Pricing
Column Generation

ng-Routes

e Given a path P = (wy,...,Vi,...,Vp), let V(P) be the set of
vertices visited by P. A function N(P) of prohibited
extensions for the path P can be defined as

I'I(P)—{V;E V(P):vi e ﬁ Ns,i—l,...,p—l}u{vp}

s=i+1

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 1

Ny ={1,2}, Np ={2,1}, N3 = {3,1}

mo = {}

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 1

Ny = {172}v Ny = {2’ 1}, N3 = {3’ 1}

[——0

0 1

mo = {}

7T1:7l'0ﬂN1U{1}

m = {1}

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 1

Ny = {172}v Ny = {2’ 1}, N3 = {3’ 1}

[O O

0 1 2

m = {1}
7T2:7l'1ﬂN2U{2}
m ={1,2}

Efficient ng-Route Pricing
Column Generation
ng-Routes

Example 1

Ny = {172}v Ny = {2’ 1}, N3 = {3’ 1}

[}

0

m ={1,2}

O O O
1 2 3

7T3:7l'2ﬂN3U{3}

m3 = {1,3}

Efficient ng-Route Pricing
Column Generation

ng-Routes
Example 1
Ny = {1,2}, No = {2,1}, N3 = {3,1}
() () ()
l:l‘ -/ -/ -/ O
0 1 2 3 1
w3 = {1,3}

The extension is not allowed!)

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 2

Ny ={1,2}, Np ={2,1}, N3 = {3,2}

mo = {}

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 2

Ny = {172}v Ny = {2’ 1}, N3 = {3’2}

[——0

0 1

mo = {}

7T1:7l'0ﬂN1U{1}

m = {1}

Efficient ng-Route Pricing
Column Generation

ng-Routes

Example 2

Ny = {172}v Ny = {2’ 1}, N3 = {3’2}

[O O

0 1 2

m = {1}
7T2:7l'1ﬂN2U{2}
m ={1,2}

Efficient ng-Route Pricing
Column Generation
ng-Routes

Example 2

Ny = {172}v Ny = {2’ 1}, N3 = {3’2}

[}

0

m ={1,2}

O O O
1 2 3

7T3:7l'2ﬂN3U{3}

m3 = {2,3}

Efficient ng-Route Pricing
Column Generation

ng-Routes
Example 2
Ny = {1,2}, No = {2,1}, N3 = {3,2}
() () ()
l:l‘ -/ -/ -/ O
0 1 2 3 1
w3 = {2,3}

The extension is allowed.)

Efficient ng-Route Pricing
Column Generation

ng-Routes

@ This pricing is solved exactly using a forward dynamic
programming algorithm

@ The algorithm stores every possible partial ng-route for each
capacity ¢ and end vertex v

@ The complexity is still pseudo-polynomial when the size of
NGs is bounded by a constant factor
@ But it still needs some speed up techniques:

e Simple heuristic to find ng-routes with negative reduced cost
e Dominance rules (pricing with elementary routes)

o Decremental State Space Relaxation (DSSR) (Righini and
Salani, 2008)

Completion bounds

Efficient ng-Route Pricing
Column Generation

ng-Routes

Heuristic Pricing

@ Simple but effective heuristic very similar to our basic dynamic
programming algorithm to compute ng-routes

@ During the dynamic programming algorithm, we store just the
best possible partial ng-route for each capacity ¢ and end
vertex v

@ The resulting complexity of this algorithm is O(n?Q)

Dominance Rule

@ Given two paths P; and P,, we say that P; dominates P, if
the following three conditions hold: (i) q(P1) < q(P»), (ii)
¢(P1) < ¢(Pz) and (iii) N(P1) C M(P2)

@ It is easy to see that this can be done because any possible
extension from P,, can be done from P; with a lower reduced
cost

Efficient ng-Route Pricing
Column Generation

ng-Routes

Decremental State-Space Relaxation (DSSR)

@ The adapted DSSR algorithm is iterative and works by relaxing
the state space of the original neighborhood subsets N;

@ Initially, we define these subsets as empty

@ At each iteration, it identifies which repeated vertices violates
the original subsets N; on the best ng-routes

@ These vertives are then inserted into the related N; subsets

Efficient ng-Route Pricing
Column Generation

ng-Routes

ng-Routes with DSSR: Exemple
Ny ={1,2}, No = {2,1}, N3 = {3,1}
First Iteration: N = {}, N9 = {}, N§ = {}

Best found: — —

[L] L] L] L] L]
0 1 2 3 1 0

It's not a valid ng-route!
Second lteration: N} = {1}, Ni = {1}, N} = {1}

Best found: - —

[] L] L] L] L]
0 2 1 2 3 0

It's not a valid ng-route!

Efficient ng-Route Pricing
Column Generation
ng-Routes

ng-Routes with DSSR: Exemple
Ny ={1,2}, No = {2,1}, N3 = {3,1}
Second lteration: N} = {1}, N} = {1}, N} = {1}

Best found: - -
[L] L] L] L] L]
0 2 1 2 3 0
It's not a valid ng-route!
Third Iteration: N = {1,2}, N3 = {2,1}, N3 = {1}
Best found: — -
[] L] L] L] L]
0 3 2 1 3 0

It's a valid ng-route!

Efficient ng-Route Pricing
Column Generation
ng-Routes

Completion Bounds

We calculate completion bounds at some DSSR iteration k.

Let T;(g,w) be the value of the best path which starts at
depot vy and ends at vertex w with a total demand of q,
obtained at the end of iteration k. The completion bound is
calculated as

T(q, w) = ming<q{T;(q', w)}
These bounds can be used in the subsequent iterations in
order to avoid extensions on which the generated label would
never result in an optimal ng-route

The extension of a label £(P) = (wp, q(P),M(P),c(P)) to a
vertex w, w ¢ N(P), can only be done if

(P) + Cwpw + T(Q — q(P), w) < 0

Efficient ng-Route Pricing
Computational Experiments

Computational Experiments

@ The algorithms were implemented in C++ using Microsoft
Visual C++ 2010 Express

e IBM ILOG CPLEX Optimizer 12.3 was used for solving the
formulations

@ The experiments were conducted on an Intel Core 2 Duo
E7400 2.8 GHz with 4GB RAM running Microsoft Windows
Vista Business 32-bits

Efficient ng-Route Pricing

Computational Experiments

Best Bounds QR-2 NG=8 NG=16 NG=32 NG=64

Instance LB UB Value Time Value Time Value Time Value Time Value Time

A-n63-k10 1314 1314 1267.42 1.44 1286.58 3.29 1286.81 3.00 1286.83 3.54 1286.83 4.08
A-n64-k9 1401 1401 1353.27 1.89 1368.24 3.89 137449 3.69 1376.90 5.07 1376.90 9.25
A-n69-k9 1159 1159 1113.24 249 1129.97 3.16 1131.33 3.46 1131.34 4.64 1131.34 6.81
A-n80-k10 1763 1763 1712.17 428 1729.81 7.23 1731.45 8.28 173158 9.29 1731.58 14.40
B-n50-k8 1312 1312 1217.52 0.74 1266.45 1.99 1266.63 1.95 1266.64 2.05 1266.64 2.97
B-n68-k9 1275 1275 1163.87 1.87 1198.20 3.32 1203.78 5.63 1204.00 5.65 1204.00 14.99
E-n101-k14 1067 1067 1045.11 7.23 1047.20 10.00 1048.45 10.79 1050.42 10.83 1050.42 14.71
E-n101-k8 815 815 786.36 17.67 789.37 25.45 790.71 30.01 790.99 36.13 790.99 5428
E-n51-k5 521 521 51292 1.80 517.14 3.05 517.14 4.82 517.14 283 517.14 457
E-n76-k10 830 830 811.39 358 811.77 3.96 811.87 4.59 81248 535 81248 8.52
E-n76-k14 1021 1021 999.58 2.07 1001.85 2.50 1002.77 3.00 1002.77 4.09 1002.77 4.30
E-n76-k7 682 682 663.31 7.17 664.20 1248 664.82 12.85 66559 16.27 665.59 25.56
E-n76-k8 735 735 716.71 5.49 717.82 7.67 71874 9.15 718.78 8.07 718.78 14.52
P-n50-k8 631 631 61254 0.82 614.64 1.12 61555 134 61555 1.29 61555 2.01
P-n70-k10 827 827 808.31 232 809.29 278 810.61 4.24 810.94 3.00 810.94 4.64
M-n121-k7 1034 1034 1013.00 26.66 1026.37 167.93 1029.21 2609.38 — — — —
M-n151-k12 1003 1015 991.49 57.15 995.73 96.14 996.64 126.56 997.28 172.54 997.43 3946.30
M-n200-k16 1256.4 1278 1240.44 116.10 1250.23 260.57 1250.87 269.28 1251.36 261.28 1252.05 1528.53
M-n200-k17 1256.8 1275 1243.32 123.11 1252.52 237.15 1252.87 207.09 1253.43 273.82 1254.01 765.77
G-n262-k25 5064.0 5530 5361.79 1242.14 5418.51 1369.33 5425.95 1428.45 5429.20 1587.43 5429.46 1953.33

Efficient ng-Route Pricing
Concluding Remarks

Concluding Remarks

@ We show how to implement an efficient algorithm to price
ng-routes to a set partitioning formulation for VRP

@ This was done by combining the Decremental State Space
Relaxation technique with completion bounds within a basic
algorithm for pricing ng-routes

@ The resulting algorithm was tested extensively on a large set
of VRP instances, where some of them are still far from an
optimality proof

@ As far as we know, up to this date, the best column
generations with ng-route pricing could only run for subsets
up to 13

Thank you!

	Introduction
	Vehicle Routing Problem
	The Set Partitioning Approach

	Column Generation
	Reduced Cost
	ng-Routes

	Computational Experiments
	Results for CVRP

