The fire and rescue vehicle location problem

Henrik Andersson Norwegian University of Science and Technology Tobias Andersson Granberg Linköping University

Introduction

 The Swedish Civil Contingencies Agency is enhancing and supporting societal capacities for preparedness for and prevention of emergencies and crises

Introduction

 The Swedish Civil Contingencies Agency is enhancing and supporting societal capacities for preparedness for and prevention of emergencies and crises

How can this be done better using column generation?

Introduction

 Strategic decision support for locating emergency units

New ways of thinking about emergency response

Where to locate the units

- Location set covering problem
 - Define a response requirement
 - Minimize the number of units needed to fulfill the requirements
- Maximal covering location problem
 - Define a covering criterion
 - Maximize the population covered by a fixed fleet

Traditionally

- Station location
- Homogeneous fleet
 - Only one type of vehicle
- Homogeneous demand
 - One type of events
 - No or simple demand
- Only first response counts
 - Or not even this

Traditionally vs More realism

- Station location
- Homogeneous fleet

 Only one type of vehicle
- Homogeneous demand
 - One type of events
 - No or simple demand
- Only first response counts
 Or not even this

- Locating individual units
- Heterogeneous fleet
 - Multiple types of vehicles
- Heterogeneous demand
 - Multiple types of events
 - Demand based on statistics
- First and full response

Heterogeneous fleet and demand

- Different vehicles
 - Base unit
 - Ladder unit
 - Small unit
 - Different manning
- Different events
 - Fire in low-rise building
 - Fire in high-rise building
 - Traffic accident

Heterogeneous fleet and demand

- Different vehicles
 - Base unit
 - Ladder unit
 - Small unit
 - Different manning
- Different events
 - Fire in low-rise building
 - Fire in high-rise building
 - Traffic accident

Alarm plan								
	Base	Ladder	Small	# People				
Low building	1	0	0	5				
High building	1	1	0	6				
Traffic	1	0	0	5				

 Ideally we would like to minimize equivalence time

- Ideally we would like to minimize equivalence time
 - Fire in high-rise building
 - Base unit
 - Ladder unit
 - 6 fire fighters

- Ideally we would like to minimize equivalence time
 - Fire in high-rise building Base unit 4 Ladder unit (2) [6] 6 fire fighters 1-Ġ 8 time [2] Equivalence time = $2 \cdot 1 + 6 \cdot 3 + 8 \cdot 4 = 52 / 8 = 6.5$ (1)[8] (5)

Norwegian University of Science and Technology

 Ideally we would like to minimize equivalence time

Norwegian University of Science and Technology

First and full response

- First response
 - The time it takes for the first unit to get on site
- Full response
 - The time until all resources defined in the alarm plan are on site
- Minimize the total demand weighted $\alpha \cdot \text{First response} + (1 \alpha) \cdot \text{Full response}$

Sets, parameters and variables

- I Zones, $I = I^H \cup I^L$ [High, Low]
- *O* Accidents, $O = O^F \cup O^T$ [Fire, Traffic]
- V Vehicles, $V = V^B \cup V^L \cup V^S$ [Base, Ladder, Small]
- *D*_{*oi*} Expected number of accidents of type *o* in zone *i*
- *H*_{oi} Number of people needed for accident *o* in zone *i*
- P_v Number of people in vehicle v
- A_{v} Call out time for vehicle v
- T_{ii} Travel time between zone *i* and zone *j*
- W Weight factor for first response
- x_{vi} 1 if vehicle v is located in zone i
- y_{voi} 1 if vehicle v responds to an accident of type o in zone i
- z_{voi} 1 if vehicle v is the first response to an accident of type o in zone i
- t_{oi} Response time for the full response to an accident of type o in zone i
- f_{oi} Response time for the first response to an accident of type o in zone i

Original formulation

$$\begin{split} \min \sum_{o \in O} \sum_{i \in I} D_{oi} \left(W \cdot f_{oi} + (1 - W) \cdot t_{oi} \right) \\ \sum_{i \in I} x_{v_i} = 1 & v \in V & \text{Each vehicle must be located once} \\ \sum_{i \in I} z_{voi} = 1 & o \in O, i \in I & \text{Each accident must have a first response} \\ y_{voi} \geq 1 & o \in O, i \in I & A \text{ base unit is needed for each accident} \\ y_{voi} \geq 1 & o \in O^{f}, i \in I^{H} & A \text{ ladder unit is needed for fires in high buildings} \\ \sum_{v \in V^{I}} P_{v_{voi}} \geq H_{oi} & o \in O, i \in I & \text{Number of people needed for each accident} \\ \sum_{v \in V^{I}} X_{vi} - \sum_{v \in V^{B}} X_{vi} \leq 0 & i \in I & A \text{ ladder unit must be located in tandem with a base unit} \\ t_{oj} \geq \sum_{i \in I} (T_{ij} + A_{v}) x_{vi} - M(1 - y_{voj}) & v \in V, o \in O, j \in I & \text{First response time} \\ f_{oj} \geq \sum_{i \in I} (T_{ij} + A_{v}) x_{vi} - M(1 - z_{voj}) & v \in V, o \in O, j \in I & \text{First response time} \\ x_{vi}, y_{voi}, z_{voi} \in \{0, 1\} & v \in V, o \in O, i \in I & \text{First response time} \\ x_{vi}, y_{oi}, f_{oi} & v \in V, o \in O, i \in I & \text{First response time} \\ \end{bmatrix}$$

Column Generation 2012 / June 10 - 13 2012

DNTNU

Norwegian University of Science and Technology

Comments

- The LP bound is very weak
- The time constraints are challenging
- There are continuous variables
- The problem is easy if the location is fixed
- Only preliminary testing has been done

• First response

Base unit
 Ladder unit
 Small unit

- Coverage
 - Base
 - Demand
 - Ladder

Base unit
 Ladder unit
 Small unit

• Full response

New variable

• Define a variable to which we can assign a cost

- Create a structure that captures
 - Where the vehicle is located
 - Which zones the vehicle covers
 - How these zones are covered
- We call this a cover

Cover

E_v Covers for vehicle v

- $\begin{array}{ll}B_{vei} & 1 \text{ if vehicle } v \text{ is located in zone } i \text{ in cover } e \\ G_{veoi} & 1 \text{ if vehicle } v \text{ responds to an accident of type } o \text{ in zone } i \text{ in cover } e \\ L_{veoi} & 1 \text{ if vehicle } v \text{ is the last response to an accident of type } o \text{ in zone } i \text{ in cover } e \\ F_{veoi} & 1 \text{ if vehicle } v \text{ is the first response to an accident of type } o \text{ in zone } i \text{ in cover } e \\ C_{ve} & \text{The cost of cover } e \text{ for vehicle } v \end{array}$
- w_{ve} 1 if vehicle v is assigned cover e

$$C_{ve} = \sum_{o \in O} \sum_{i \in I} D_{oi} \cdot \left(\sum_{j \in I} T_{(i|B_{vei}=1), j} + A_v \right) \cdot \left(W \cdot F_{veoi} + (1 - W) \cdot L_{veoi} \right) \quad v \in V, e \in E_v$$

NTNU Norwegian University of Science and Technology

New formulation

$v \in V$	Each vehicle must be assigned one cover
<i>o</i> ∈ <i>0</i> , <i>i</i> ∈ <i>I</i>	Each accident must have a first response
o∈0,i∈I	Each accident must have a last response
o ∈ 0, i ∈ I	A base unit is needed for each accident
$o \in O^F$, $i \in I^H$	A ladder unit is needed for fires in high buildings
o∈0,i∈I	Number of people needed for each accident
i∈I	A ladder unit must be located in tandem with a base unit

 $v \in V, e \in E_{u}$

Column Generation 2012 / June 10 - 13 2012

Norwegian University of Science and Technology

Comments

• No complicating time constraints

• A pure binary problem

• Too many feasible covers

Solution approach

- Solve the LP relaxation with a small number of covers
 - This is the restricted master problem (RMP)
- Price the covers and add promising candidates to the RMP
- Embed this in a branch-and-bound framework to get integer feasibility

The pricing problem

- The pricing problem decomposes into one problem for
 - each vehicle and
 - each accident type and
 - each pair of zones
- One zone is the possible location of the vehicle
- The other is the zone to be covered

Pricing

- Contributions to the reduced cost
 - Location [Assignment ; Ladder/Base]
 - \odot Cover [Alarm plan ; Last being last]
 - \circ First [Real cost ; First]
 - Last [Real cost ; Last ; Last being last]
- Restrictions
 - Cannot be first or last and not cover
 - Cannot be both first and last if too small capacity

Reduced cost

 The reduced cost of locating a vehicle in a given zone is the sum of the contributions from all subproblems where the vehicle is located in that zone

 If a vehicle/zone combination has negative reduced cost a cover can be created based on the information from each subproblem

Branching

Branching is needed to guarantee integer feasible solutions

- The branching strategy is vehicle/zone
 - If a given vehicle is located in a given zone or not
 - Start with the base units
 - Corresponds to the original variable x_{vi}
 - Easy to handle in the pricing problem

Evaluating a location

- Branching on vehicle/zone is not enough
 - Different covers can be used
 - The original variables y_{voi} and z_{voi} can be fractional
 - But we have a fixed location
- Solve the original model to evaluate the location
 Forbid the solution by branching x_{vi} = 1 to 0

Computational study

• A straight forward implementation in Mosel/Xpress with little engineering

- One case
 - 300 zones, 17 with high buildings
 - 3 accident types
 - 37 vehicles; 22 base , 6 ladder , 9 small

Instances

• Extremely hard to solve

- Not even close to solve the original case

• Smaller instances where created

	# Zones	# High	# Base	# Ladder	# Small
I15	15	3	2	2	2
130	30	4	3	2	2
145	45	6	4	2	3
160	60	7	4	2	3

- The small instances are extended to larger

NTNU Norwegian University of Science and Technology

Results

	Root node			After 4 hours						
	LP	IP	# Iter	Bound	IP	# Nodes	Bound	IP	# Nodes	Time (s)
115	46952.3	54359.1	163	50844.5	50844.5	198	-	-	-	-
130	82663	105712	608	84415.4	93426.4	114	86682.9	92176.9	363	10 ⁶
145	118767	162192	1200	118835	162192	17	118937	162192	69	10 ⁶
160	198167	261933	3493	-	-	-	-	-	-	-

- I15 : Solved to optimality
 - Total time: 915.92 Master: 884.93 Sub: 11.48
- I30 : After 4 hours
 - Total time: 14412.98 Master: 14265.01 Sub: 104.74
- I45 : After 4 hours
 - Total time: 15733.07 Master: 15449.40 Sub: 259.61
- I60 : Root node solved after 283729 seconds

Future work

- Reduce the time spent in the master problem
 - Dual stabilization
 - More careful cover generation
- Strengthen the formulation
 - Valid inequalities from the demand constraints
 - Symmetry breaking
- Branching
 - More balanced branching

Thank you all for listening

