J. Gondzio

IPMs and Column Generation

School of Mathematics

Interior Point Methods and Column Generation

Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

Outline

- Part 1: IPMs for Optimization
 - IPM tricks: log barrier, central path
 - polynomial complexity
 - optimal partition
- Part 2: Warmstarting IPMs
- Part 3: Column Generation with IPM
 - cutting stock problem
 - vehicle routing problem with time windows
- Conclusions

Part 1:

Interior Point Methods for Optimization

Interior Point Methods

- re-born in 1984
- Narendra Karmarkar, AT&T Bell Labs

Shocking mathematical concept:

Take **linear** optimization problem and add **nonlinear** function to the objective.

A step against common sense and centuries of mathematical practice:

"nonlinearize" linear problem

The minimization of $-\sum_{j=1}^{n} \ln x_j$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_j from approaching zero.

LP Problem: min $c^T x$ s.t. Ax = b, x > 0. **LP Barrier Prob:** min $c^T x - \mu \sum_{j=1}^{n} \ln x_j$ s.t. Ax = b. **Lagrangian:** $L(x, y, \mu) = c^T x - y^T (Ax - b) - \mu \sum \ln x_j,$ j=1 $\nabla_x L(x, y, \mu) = c - A^T y - \mu X^{-1} e = 0$ Stationarity: $\nabla_{\boldsymbol{y}} L(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\mu}) = A\boldsymbol{x} - \boldsymbol{b} = \boldsymbol{0}.$ $s = \mu X^{-1} e$, i.e. $XSe = \mu e$. Denote:

Complementarity in the Interior Point Method The first order optimality conditions (FOC)

$$Ax = b,$$

$$A^{T}y + s = c,$$

$$XSe = \mu e,$$

$$x, s \ge 0,$$

where $X = diag\{x_j\}, S = diag\{s_j\}$ and $e = (1, \dots, 1) \in \mathbb{R}^n$. **Analytic centre (\mu-centre):** a (unique) point $(x(\mu), y(\mu), s(\mu)), x(\mu) > 0, s(\mu) > 0$ that satisfies FOC.

The interior point method gradually reduces the complementarity products

$$x_j \cdot s_j \approx \mu \to 0 \quad \forall j = 1, 2, ..., n.$$

Interior Point Methods

Theory: convergence in $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations **Practice:** convergence in $\mathcal{O}(\log n)$ iterations

Expected number of IPM iterations:

Problem Dimension	LP	QP
1,000	5 - 10	5 - 10
10,000	10 - 15	10 - 15
100,000	15 - 20	10 - 15
1,000,000	20 - 25	15 - 20
10,000,000	25 - 30	15 - 20
100,000,000	30 - 35	20 - 25
1000,000,000	35 - 40	20 - 25

... but one iteration may be expensive!

IPMs and Column Generation

9

Complementarity $x_j \cdot s_j = 0 \quad \forall j = 1, 2, ..., n.$

Simplex Method guesses an optimal partition: For *basic* variables, $s_B = 0$ and $(x_B)_j \cdot (s_B)_j = 0 \quad \forall j \in \mathcal{B}.$

For *non-basic* variables, $x_N = 0$ hence $(x_N)_j \cdot (s_N)_j = 0 \quad \forall j \in \mathcal{N}.$

Interior Point Method uses ε **-mathematics**: Replace $x_j \cdot s_j = 0 \quad \forall j = 1, 2, ..., n$ by $x_j \cdot s_j = \mu \quad \forall j = 1, 2, ..., n$.

Force convergence $\mu \to 0$. Bromont, June 2012 IPMs and Column Generation

First Order Optimality Conditions

Simplex Method:

Ax = b $A^{T}y + s = c$ XSe = 0 $x, s \ge 0.$

Interior Point Method:

$$Ax = b$$

$$A^{T}y + s = c$$

$$XSe = \mu e$$

$$x, s \ge 0.$$

G, IPMs 25 years later, *EJOR* 218 (2012), 587–601. Bromont, June 2012

Part 2:

Warmstarting IPMs

A need to solve a sequence of similar problems

- column generation
- cutting plane methods
- subproblems in the block-angular LPs (Dantzig-Wolfe decomp., Benders decomp.)
- B&B, (and B&Cut, B&Cut&Price, etc)
- SQP
- any sequence of similar problems example: computing efficient frontier in Markowitz portfolio optimization

Warm Starts Which method should be used?

- Simplex Method, or
- Interior Point Method.

When is the Simplex Method better?

- \rightarrow \mathbf{few} indices change optimal partition
- B & B, adding *one* cut in CPM, etc.

When is the Interior Point Method better? \rightarrow many indices change optimal partition adding *many* cuts in CPM, dealing with a general change of problem data, etc

Conjecture:

The more changes in the (large) problem the more attractive IPM-based warm starts are.

IPMs and Column Generation

Difficulty of IPM Warm Starts

Warm Starting in 1990+

Mitchell, PhD Thesis, Cornell Univ. 1988
Goffin & Vial et al., development of ACCPM 1990+
G. & Sarkissian, development of PDCGM in 1995
G., Math. Prog. 83 (1998) 125–143
G. & Vial, COAP 14 (1999) 17–36

ACCPM Analytic Centre Cutting Plane Method PDCGM Primal-Dual Column Generation Method

Warmstarting Heuristic

Idea: Start close to the (new) central path, not close to the (old) solution

G., Mathematical Programming 83 (1998) 125–143

Warm Start with μ -centres

Old Problem:

$$\begin{array}{ll} \min & c_0^T x + \frac{1}{2} x^T Q_0 x \\ \text{s.t.} & A_0 x = b_0, \\ & x \ge 0, \end{array}$$

$$\begin{array}{ll} \min & c^T x + \frac{1}{2} x^T Q \, x \\ \text{s.t.} & A x = b, \\ & x \ge 0, \end{array}$$

We assume: $c \approx c_0, \ Q \approx Q_0, \ A \approx A_0, \ b \approx b_0.$

Warm Starting in 2000+

Yildirim & Wright, *SIOPT* 12 (2002) 782–810 G. & Grothey, SIOPT 13 (2003) 842–864 Fliege, Maths of OR 31 (2006) 825–845 Benson & Shanno, COAP 38 (2007) 371–399 Benson & Shanno, COAP 40 (2008) 143–189 G. & Grothey, SIOPT 19 (2008) 1184–1210 John & Yildirim, COAP 41 (2008) 151–183 Colombo, G. & Grothey, MP 127 (2011) 371-397 Colombo & Grothey, follow-up reports in 09,10 Engau, Anjos & Vannelli, *SIOPT* 20 (2010) 1828 Benson & Mahanta, report in 2009 Ordonez & Waltz, report in 2009

IPM Warmstarts: Theoretical Results Yildirim & Wright, *SIOPT* 12 (2002) 782–810 G. & Grothey, *SIOPT* 13 (2003) 842–864

Lemma. Let $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma_0)$ for problem (LP) then the full Newton step $(\Delta x, \Delta y, \Delta s)$ in the perturbed problem (\tilde{LP}) is feasible and

$$(x + \Delta x, y + \Delta y, s + \Delta s) \in \tilde{\mathcal{N}}_{-\infty}(\gamma)$$

provided that

$$\delta_{bc} = \|\xi_c\|_2 + \|A^T (AA^T)^{-1} \xi_b\|_2 \le \|P\|_{\infty} \frac{\gamma_0}{1 + 1/\gamma} \mu,$$

where

$$P = I - S^{-1}A^{T} (AXS^{-1}A^{T})^{-1}AX, \ \xi_{b} = \tilde{b} - Ax, \ \xi_{c} = \tilde{c} - A^{T}y - s.$$

LOQO vs OOPS warmstarting NETLIB problems

- Benson & Shanno, COAP 38 (2007) 371–399
- **G. & Grothey**, *SIOPT* 19 (2008) 1184–1210 \rightarrow *Unblocking technique* ...

Average savings:

- LOQO (B&S, 2007) 20–30 %
- OOPS (G&G, 2008) 50–70 %

Part 3:

Primal-Dual Column Generation Method

Joint work with two PhD students:

Pablo Gonzalez-Brevis and Pedro Munari

IPMs and Column Generation

Column Generation (CG)

Column Generation (CG)

Consider an LP, called the master problem (MP):

$$z^{\star} := \min \sum_{\substack{j \in N}} c_j \lambda_j,$$

s.t.
$$\sum_{j \in N} a_j \lambda_j = b,$$
$$\lambda_j \ge 0, \quad \forall j \in N.$$

- N is too big;
- The columns a_j are implicit elements of \mathcal{A} ;
- We know how to generate them!

IPMs and Column Generation

CG: Restricted master problem (RMP): $\overline{N} \subset N$

$$z_{RMP} := \min \sum_{\substack{j \in \overline{N} \\ j \in \overline{N}}} c_j \lambda_j,$$

s.t.
$$\sum_{\substack{j \in \overline{N} \\ \lambda_j \ge 0, \quad \forall j \in \overline{N}.}} \forall j \in \overline{N}.$$

• Optimal $\overline{\lambda}$ for the RMP \Rightarrow feasible $\hat{\lambda}$ for the MP;

•
$$\hat{\lambda}_j = \overline{\lambda}_j, \forall j \in \overline{N}, \text{ and } \hat{\lambda}_j = 0 \text{ otherwise;}$$

- Hence, $z^* \leq z_{RMP} = UB$ (Upper Bound).
- How to know it is optimal?
 - Call the oracle!

CG:

- Oracle: check the feasibility of the dual \overline{u} ;
- Reduced costs: $s_j = c_j \overline{u}^T a_j, \forall j \in N;$
- But the columns are not explicit and, hence, $z_{SP} := \min\{c_j - \overline{u}^T a_j | a_j \in \mathcal{A}\}.$
- (we reset $z_{SP} := 0$, if $z_{SP} > 0$);
- Lower Bound: $LB = z_{RMP} + \kappa z_{SP} \leq z^*$, where

$$\kappa \ge \sum_{i \in N} \lambda_i^\star,$$

- If $z_{SP} < 0$, then new columns are generated;
- Otherwise, an optimal solution of the MP was found!

Appealing features of IPMs

Use IPM to solve the RMP: → no degeneracy issues
Terminate RMP solution early: → get stable dual solution u J. Gondzio

IPMs and Column Generation

PDCGM Algorithm Parameters: ε_{max} , D, δ , κ

1. set
$$LB = -\infty$$
, $UB = \infty$, $gap = \infty$, $\varepsilon = 0.5$;

- 2. while $(gap > \delta)$ do
- 3. find a well-centred ε -optimal $(\tilde{\lambda}, \tilde{u})$ of the RMP;

4. UB =
$$\tilde{z}_{RMP}$$
;

5. call the oracle with the query point \tilde{u} ;

6.
$$LB = \kappa \tilde{z}_{SP} + b^T \tilde{u};$$

7.
$$gap = (UB - LB)/(1 + |UB|);$$

- 8. $\varepsilon = \min\{\varepsilon_{\max}, \operatorname{gap}/D\};$
- 9. if $(\tilde{z}_{SP} < 0)$ then add new columns into the RMP;

10. end(while)

CSP: Column Generation Formulation

Gilmore and Gomory (1961) formulation:

$$\min \sum_{p \in P} \lambda_p, \\ \text{s.t.} \sum_{p \in P} a_p \lambda_p \ge d, \\ \lambda_p \ge 0 \text{ and integer}, \quad \forall p \in P.$$

- Columns are cutting patterns;
- We do not need to enumerate all of them;
- They can be dynamically generated *knapsack problem*.

VRPTW: Column Generation Formulation

Desrochers et al. (1992):

$$\min \sum_{p \in P} c_p \lambda_p$$

s.t.
$$\sum_{p \in P} a_p \lambda_p = \mathbf{1},$$
$$\lambda_p \in \{0, 1\}, \quad \forall p \in P.$$

- Columns are possible vehicle paths;
- The columns can be dynamically generated shortest path problem with resource constraints.

Computational experiments

Solving LP relaxations

Comparison of:

- Standard column generation (**SCG**):
 - simplex-type methods of IBM/CPLEX v.12.1.
- Primal dual column generation (**PDCGM**):

- interior point solver HOPDM.

Analytic centre cutting plane (ACCPM):
 – open-source solver OBOE/COIN-OR.

Cutting stock problem

262 instances: 178 small ($m \le 199$), 84 large ($m \ge 200$) http://www.tu-dresden.de/~capad/

IPMs and Column Generation

CSP: Larger Instances: BPP-U09??? family

		\mathbf{SCG}		PDCGM		ACCPM	
Instance	m	iters	time	iters	time	iters	time
U09498	1005	548	12947	293	5678	762	21254
U09513	975	518	9904	267	4277	779	19362
U09528	945	541	9173	276	4924	740	15920
U09543	915	506	7798	263	3724	723	13449
U09558	885	482	5585	265	2730	683	10861
U09573	855	473	4771	230	2054	672	9794
U09588	825	467	4950	247	1649	658	9376
U09603	795	465	3962	237	1668	627	7504

Vehicle routing problem with time windows

		\mathbf{SCG}		PDCGM		ACCPM	
Cuts	Class	iters	time	iters	time	iters	time
10	Small	26	0.3	22	0.2	94	0.5
	Medium	67	6.2	38	2.6	122	5.7
	Large	188	114.1	73	41.6	171	92.1
100	Small	12	0.2	17	0.2	92	0.6
	Medium	26	3.0	23	1.7	120	5.8
	Large	65	42.4	38	21.5	166	87.5

87 instances: 29 small (n = 25), 29 med (n = 50), 29 large (n = 100)http://www2.imm.dtu.dk/~jla/solomon.html

IPMs and Column Generation

VRPTW: Larger Instances

		\mathbf{SCG}		PDCGM		\mathbf{ACCPM}	
Instance	n	iters	time	iters	time	iters	time
R_1_2_1	200	57	43	45	34	423	202
$C_{1_{2_{1}}}$	200	85	41	29	15	169	82
RC_1_2_1	200	67	110	57	88	385	607
R_1_4_1	400	131	865	84	641	636	3076
$C_{1_{4_{1}}}$	400	137	552	53	186	272	909
RC_1_4_1	400	189	2789	113	1436	521	6649
R_1_6_1	600	222	7558	118	4260	897	25870
$C_{1_{6_{1}}}$	600	183	2335	48	510	482	5173
RC_1_6_1	600	258	18972	150	8844	923	56683

Integer optimization

Integer VRPTW solved to optimality								
Branch-Price-and-Cut, Pedro Munari's PhD								
	Γ)LH08	8	I-P	I-PDCGM			
Problem	cuts i	nodes	time	cuts :	nodes	time		
C103	0	1	28	0	1	8		
C104	0	1	86	0	1	17		
RC103	262	5	541	162	5	429		
RC104	437	21	11773	251	7	3436		
R103	53	1	20	15	1	9		
R104	391	11	3103	216	7	949		

DLH08: **Desaulniers, Lessard & Hadjar**, *Transportation Science* 42 (2008) 387-404.

Solomon, *Operations Research* 35 (1987) 254–265. **Homberger&Gehring**, *EJOR* 162 (2005) 220-238.

Conclusions

A completely new perspective is needed to exploit the insight offered by IPMs in a number of **combinatorial optimization** applications:

- column generation
- cutting plane methods
- B & B, (and B & Cut, B & Cut & Price, etc)

Warmstarting works well in the CG context: problems are re-optimized in **3-5** IPM iterations

References

- G., Gonzalez-Brevis, Munari, New developments in the primal-dual column generation technique, ERGO Tech Rep, Edinburgh, 2011.
- Munari, G., Using the primal-dual interior point algorithm within the branch-price-and-cut method, ERGO Tech Rep, Edinburgh, 2012.
- G., Gonzalez-Brevis, A new warmstarting strategy for the primal-dual column generation method, ERGO Tech Rep, Edinburgh, 2012.

Example: Cutting Stock Problem (CSP)

A set N of large pieces of wood of length W is given. We need to cut them into smaller pieces. We need d_j units of small piece $j \in M$ of length w_j .

Minimize the number of units of large pieces of wood.

Define binary variable y_i which takes value 1 if *i*-th large piece of wood is cut and 0 if it is not used.

Define integer variable x_{ij} which determines the number of units of small piece of wood $j \in M$ obtained by cutting the large piece $i \in N$.

Cutting Stock Problem (CSP)

Kantorovich's formulation:

$$\begin{array}{ll} \min & \sum_{i \in N} y_i \\ \text{s.t.} & \sum_{i \in N} x_{ij} \geq d_j & \forall j \in M, \\ & \sum_{i \in N} x_{ij} w_j \leq W y_i & \forall i \in N, \\ & & y_i \in \{0, 1\} & \forall i \in N, \\ & & x_{ij} \geq 0 \text{ and integer } \forall j \in M, \forall i \in N. \end{array}$$

LP relaxation gives very weak bound.

J. Gondzio

Vehicle Routing Problem with Time Windows

A company delivers goods to customers $i \in C$. The company has vehicles $k \in V$ and each of them starts at a depot, travels to several customers and returns to the depot. The visit of vehicle k to customer i needs to take place in a specific time window: $a_i \leq s_{ik} \leq b_i$, where s_{ik} is the time when vehicle k reaches customer i.

Objective: Minimize the total cost of delivery.

Define binary variable x_{ijk} which takes value 1 if vehicle k travels from customer i to customer j ($k \in V, i, j \in C$) and takes value zero otherwise.

Vehicle Routing Problem with Time Windows Constraints:

Exactly one vehicle leaves customer i:

$$\sum_{k \in V} \sum_{j \in N} x_{ijk} = 1, \quad \forall i \in C$$

Vehicle capacity constraint:

$$\sum_{i \in C} d_i \sum_{j \in N} x_{ijk} \le q, \quad \forall k \in V$$

Each vehicle leaves the depot and returns to it:

$$\sum_{j \in N} x_{0jk} = 1 \quad \text{and} \quad \sum_{j \in N} x_{i(n+1)k} = 1, \quad \forall k \in V$$

VRPTW: Constraints (continued)

Time-window constraint

$$s_{ik} + t_{ij} - M(1 - x_{ijk}) \le s_{jk}, \quad \forall i, j \in N, \forall k \in V.$$

Since x_{ijk} is binary the above constraint has the following meaning: If $x_{ijk} = 1$ (vehicle k travels from customer i to customer j) then

$$s_{ik} + t_{ij} \le s_{jk}$$

that is, the arrival time of vehicle k to customer j is greater than or equal the sum of time when vehicle k arrives to customer i and the time t_{ij} it takes to travel from i to j. Otherwise (if $x_{ijk} = 0$) the presence of "big" M guarantees that the constraint is always inactive.

J. Gondzio

 \mathbf{VRPTW} min $\sum \sum \sum c_{ij} x_{ijk}$ $k \in V i \in N j \in N$ s.t. $\sum \sum x_{ijk} = 1, \quad \forall i \in C,$ $k \in V j \in N$ $\sum d_i \sum x_{ijk} \le q,$ $\forall k \in V,$ $i \in C$ $j \in N$ $\sum x_{0jk} = 1, \ \sum x_{i(n+1)k} = 1,$ $\forall k \in V,$ $j \in N$ $i \in N$ $\sum x_{ihk} - \sum x_{jhk} = 0,$ $\forall h \in C, \forall k \in V,$ $i \in N$ $j \in N$ $s_{ik} + t_{ij} - M(1 - x_{ijk}) \le s_{jk}, \quad \forall i, j \in N, \forall k \in V,$ $\forall i \in N, \forall k \in V,$ $a_i \leq s_{ik} \leq b_i$ $x_{iik} \in \{0, 1\},\$ $\forall i, j \in N, \forall k \in V.$

Bromont, June 2012

44