School of Mathematics

Interior Point Methods and Column Generation

Jacek Gondzio

Email: J. Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~ gondzio

Outline

- Part 1: IPMs for Optimization
- IPM tricks: log barrier, central path
- polynomial complexity
- optimal partition
- Part 2: Warmstarting IPMs
- Part 3: Column Generation with IPM
- cutting stock problem
- vehicle routing problem with time windows
- Conclusions

Part 1:

Interior Point Methods for Optimization

Interior Point Methods

- re-born in 1984
- Narendra Karmarkar, AT\&T Bell Labs

Shocking mathematical concept:

Take linear optimization problem and add nonlinear function to the objective.

A step against common sense and centuries of mathematical practice:
"nonlinearize" linear problem
Bromont, June 2012

Logarithmic barrier

$-\ln x_{j}$
"replaces" the inequality

$$
x_{j} \geq 0 .
$$

Observe that

$\min \mathrm{e}^{-\sum_{j=1}^{n} \ln x_{j}} \Longleftrightarrow \max \prod_{j=1}^{n} x_{j}$
The minimization of $-\sum_{j=1}^{n} \ln x_{j}$ is equivalent to the maximization of the product of distances from all hyperplanes defining the positive orthant: it prevents all x_{j} from approaching zero.
Bromont, June 2012

IPMs and Column Generation

LP Problem: $\min c^{T} x$ s.t. $A x=b, x \geq 0$.

LP Barrier Prob: $\min c^{T} x-\mu \sum_{j=1}^{n} \ln x_{j}$ s.t. $A x=b$.
Lagrangian: $\quad L(x, y, \mu)=c^{T} x-y^{T}(A x-b)-\mu \sum_{j=1}^{n} \ln x_{j}$,
Stationarity: $\quad \nabla_{x} L(x, y, \mu)=c-A^{T} y-\mu X^{-1} e=0$
$\nabla_{y} L(x, y, \mu)=A x-b=0$.
Denote:

$$
s=\mu X^{-1} e, \quad \text { i.e. } \quad X S e=\mu e .
$$

Complementarity in the Interior Point Method The first order optimality conditions (FOC)

$$
\begin{aligned}
A x & =b, \\
A^{T} y+s & =c \\
X S e & =\mu e, \\
x, s & \geq 0
\end{aligned}
$$

where $X=\operatorname{diag}\left\{x_{j}\right\}, S=\operatorname{diag}\left\{s_{j}\right\}$ and $e=(1, \cdots, 1) \in \mathcal{R}^{n}$.
Analytic centre (μ-centre): a (unique) point $(x(\mu), y(\mu), s(\mu)), x(\mu)>0, s(\mu)>0$ that satisfies FOC.
The interior point method gradually reduces the complementarity products

$$
x_{j} \cdot s_{j} \approx \mu \rightarrow 0 \quad \forall j=1,2, \ldots, n .
$$

Bromont, June 2012

Interior Point Methods

Theory: convergence in $\mathcal{O}(\sqrt{n})$ or $\mathcal{O}(n)$ iterations Practice: convergence in $\mathcal{O}(\log n)$ iterations

Expected number of IPM iterations:

Problem Dimension	LP	QP
1,000	$5-10$	$5-10$
10,000	$10-15$	$10-15$
100,000	$15-20$	$10-15$
$1,000,000$	$20-25$	$15-20$
$10,000,000$	$25-30$	$15-20$
$100,000,000$	$30-35$	$20-25$
$1000,000,000$	$35-40$	$20-25$

... but one iteration may be expensive!
Bromont, June 2012

Complementarity $\quad x_{j} \cdot s_{j}=0 \quad \forall j=1,2, \ldots, n$.
Simplex Method guesses an optimal partition:
For basic variables, $s_{B}=0$ and

$$
\left(x_{B}\right)_{j} \cdot\left(s_{B}\right)_{j}=0 \quad \forall j \in \mathcal{B} .
$$

For non-basic variables, $x_{N}=0$ hence

$$
\left(x_{N}\right)_{j} \cdot\left(s_{N}\right)_{j}=0 \quad \forall j \in \mathcal{N} .
$$

Interior Point Method uses ε-mathematics:
Replace $\quad x_{j} \cdot s_{j}=0 \quad \forall j=1,2, \ldots, n$
by $\quad x_{j} \cdot s_{j}=\mu \quad \forall j=1,2, \ldots, n$.
Force convergence $\mu \rightarrow 0$.
Bromont, June 2012

First Order Optimality Conditions

Simplex Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =0 \\
x, s & \geq 0
\end{aligned}
$$

Interior Point Method:

$$
\begin{aligned}
A x & =b \\
A^{T} y+s & =c \\
X S e & =\mu e \\
x, s & \geq 0 .
\end{aligned}
$$

Basic: $x>0, s=0 \quad$ Nonbasic: $x=0, s>0$

"Basic": $\mathrm{x}>0, \mathrm{~s}=0$

"Nonbasic": $\mathrm{x}=0, \mathrm{~s}>0$

G, IPMs 25 years later, EJOR 218 (2012), 587-601.

Part 2:

Warmstarting IPMs

A need to solve a sequence of similar problems

- column generation
- cutting plane methods
- subproblems in the block-angular LPs (Dantzig-Wolfe decomp., Benders decomp.)
- B\&B, (and B\&Cut, B\&Cut\&Price, etc)
- SQP
- any sequence of similar problems example: computing efficient frontier in Markowitz portfolio optimization

Warm Starts Which method should be used?

- Simplex Method, or
- Interior Point Method.

When is the Simplex Method better?
\rightarrow few indices change optimal partition
B \& B, adding one cut in CPM, etc.
When is the Interior Point Method better?
\rightarrow many indices change optimal partition adding many cuts in CPM, dealing with a general change of problem data, etc
Conjecture:
The more changes in the (large) problem the more attractive IPM-based warm starts are.

Bromont, June 2012

Warm Starting in 1990+

Mitchell, PhD Thesis, Cornell Univ. 1988
Goffin \& Vial et al., development of ACCPM 1990+
G. \& Sarkissian, development of PDCGM in 1995
G., Math. Prog. 83 (1998) 125-143
G. \& Vial, COAP 14 (1999) 17-36

ACCPM Analytic Centre Cutting Plane Method PDCGM Primal-Dual Column Generation Method

Warmstarting Heuristic

Idea: Start close to the (new) central path, not close to the (old) solution

G., Mathematical Programming 83 (1998) 125-143

Warm Start with μ-centres

Old Problem:

$$
\begin{array}{ll}
\min & c_{0}^{T} x+\frac{1}{2} x^{T} Q_{0} x \\
\text { s.t. } & A_{0} x=b_{0}, \\
& x \geq 0,
\end{array}
$$

$$
\min c^{T} x+\frac{1}{2} x^{T} Q x
$$

$$
\text { s.t. } A x=b,
$$

$$
x \geq 0,
$$

We assume:
$c \approx c_{0}, Q \approx Q_{0}, A \approx A_{0}, b \approx b_{0}$.

Warm Starting in 2000+
Yildirim \& Wright, SIOPT 12 (2002) 782-810
G. \& Grothey, SIOPT 13 (2003) 842-864

Fliege, Maths of OR 31 (2006) 825-845
Benson \& Shanno, COAP 38 (2007) 371-399
Benson \& Shanno, COAP 40 (2008) 143-189
G. \& Grothey, SIOPT 19 (2008) 1184-1210

John \& Yildirim, COAP 41 (2008) 151-183
Colombo, G. \& Grothey, MP 127 (2011) 371-397
Colombo \& Grothey, follow-up reports in 09,10
Engau, Anjos \& Vannelli, SIOPT 20 (2010) 1828
Benson \& Mahanta, report in 2009
Ordonez \& Waltz, report in 2009
Bromont, June 2012

IPM Warmstarts: Theoretical Results

Yildirim \& Wright, SIOPT 12 (2002) 782-810
G. \& Grothey, SIOPT 13 (2003) 842-864

Lemma. Let $(x, y, s) \in \mathcal{N}_{-\infty}\left(\gamma_{0}\right)$ for problem (LP) then the full Newton step $(\Delta x, \Delta y, \Delta s)$ in the perturbed problem ($\tilde{L P}$) is feasible and

$$
(x+\Delta x, y+\Delta y, s+\Delta s) \in \tilde{\mathcal{N}}_{-\infty}(\gamma)
$$

provided that

$$
\delta_{b c}=\left\|\xi_{c}\right\|_{2}+\left\|A^{T}\left(A A^{T}\right)^{-1} \xi_{b}\right\|_{2} \leq\|P\|_{\infty} \frac{\gamma_{0}}{1+1 / \gamma} \mu,
$$

where
$P=I-S^{-1} A^{T}\left(A X S^{-1} A^{T}\right)^{-1} A X, \xi_{b}=\tilde{b}-A x, \xi_{c}=\tilde{c}-A^{T} y-s$.
Bromont, June 2012

LOQO vs OOPS warmstarting NETLIB problems

Benson \& Shanno, COAP 38 (2007) 371-399
G. \& Grothey, SIOPT 19 (2008) 1184-1210
\rightarrow Unblocking technique ...

Average savings:

- LOQO (B\&S, 2007) 20-30 \%
- OOPS (G\&G, 2008) 50-70 \%

Part 3:

Primal-Dual

Column Generation Method

Joint work with two PhD students:
Pablo Gonzalez-Brevis and Pedro Munari

Bromont, June 2012

Column Generation (CG)

MP

RMP

newRMP

Bromont, June 2012

Column Generation (CG)

Consider an LP, called the master problem (MP):

$$
\begin{aligned}
z^{\star}:=\min & \quad \sum_{j \in N} c_{j} \lambda_{j}, \\
\text { s.t. } & \sum_{j \in N} a_{j} \lambda_{j}=b, \\
& \lambda_{j} \geq 0, \quad \forall j \in N .
\end{aligned}
$$

- N is too big;
- The columns a_{j} are implicit elements of \mathcal{A};
- We know how to generate them!

CG: Restricted master problem (RMP): $\bar{N} \subset N$

$$
\begin{aligned}
z_{R M P}:= & \min \quad \sum_{j \in \bar{N}} c_{j} \lambda_{j}, \\
& \text { s.t. } \sum_{j \in \bar{N}} a_{j} \lambda_{j}=b, \\
& \lambda_{j} \geq 0, \quad \forall j \in \bar{N} .
\end{aligned}
$$

- Optimal $\bar{\lambda}$ for the RMP \Rightarrow feasible $\hat{\lambda}$ for the MP;
- $\hat{\lambda}_{j}=\bar{\lambda}_{j}, \forall j \in \bar{N}$, and $\hat{\lambda}_{j}=0$ otherwise;
- Hence, $z^{\star} \leq z_{R M P}=U B$ (Upper Bound).
- How to know it is optimal?
- Call the oracle!

CG:

- Oracle: check the feasibility of the dual \bar{u};
- Reduced costs: $s_{j}=c_{j}-\bar{u}^{T} a_{j}, \forall j \in N$;
- But the columns are not explicit and, hence,

$$
z_{S P}:=\min \left\{c_{j}-\bar{u}^{T} a_{j} \mid a_{j} \in \mathcal{A}\right\} .
$$

- (we reset $z_{S P}:=0$, if $z_{S P}>0$);
- Lower Bound: $L B=z_{R M P}+\kappa z_{S P} \leq z^{\star}$, where

$$
\kappa \geq \sum_{i \in N} \lambda_{i}^{\star},
$$

- If $z_{S P}<0$, then new columns are generated;
- Otherwise, an optimal solution of the MP was found!

Appealing features of IPMs

- Use IPM to solve the RMP: \rightarrow no degeneracy issues
- Terminate RMP solution early: \rightarrow get stable dual solution \bar{u}

2. while (gap $>\delta$) do
3. find a well-centred ε-optimal $(\tilde{\lambda}, \tilde{u})$ of the RMP;
4. $\mathrm{UB}=\tilde{z}_{R M P}$;
5. call the oracle with the query point \tilde{u};
6. $\quad \mathrm{LB}=\kappa \tilde{z}_{S P}+b^{T} \tilde{u}$;
7. $\operatorname{gap}=(\mathrm{UB}-\mathrm{LB}) /(1+|\mathrm{UB}|)$;
8. $\varepsilon=\min \left\{\varepsilon_{\max }\right.$, gap $\left./ D\right\}$;
9. if $\left(\tilde{z}_{S P}<0\right)$ then add new columns into the RMP;
10. end(while)

CSP: Column Generation Formulation

Gilmore and Gomory (1961) formulation:

$$
\begin{array}{ll}
\text { min } & \sum_{p \in P} \lambda_{p}, \\
\text { s.t. } & \sum_{p \in P} a_{p} \lambda_{p} \geq d, \\
\lambda_{p} \geq 0 \text { and integer, } \forall p \in P .
\end{array}
$$

- Columns are cutting patterns;
- We do not need to enumerate all of them;
- They can be dynamically generated knapsack problem.

VRPTW: Column Generation Formulation

Desrochers et al. (1992):

$$
\begin{array}{ll}
\min & \quad \sum_{p \in P} c_{p} \lambda_{p} \\
\text { s.t. } & \sum_{p \in P} a_{p} \lambda_{p}=\mathbf{1}, \\
& \lambda_{p} \in\{0,1\}, \quad \forall p \in P .
\end{array}
$$

- Columns are possible vehicle paths;
- The columns can be dynamically generated shortest path problem with resource constraints.

Computational experiments

Solving LP relaxations
Comparison of:

- Standard column generation (SCG):
- simplex-type methods of IBM/CPLEX v.12.1.
- Primal dual column generation (PDCGM):
- interior point solver HOPDM.
- Analytic centre cutting plane (ACCPM):
- open-source solver OBOE/COIN-OR.

Cutting stock problem

SCG PDCGM ACCPM

Cuts	Class	iters time		iters	time		iters
Cime							
10	Small	150	1.2	102	2.1	253	26.1
	Large	251	77.0	158	$\mathbf{1 8 . 3}$	368	148.7
50	Small	71	2.1	63	3.8	277	106.3
	Large	134	58.2	97	$\mathbf{2 3 . 1}$	400	277.6
100	Small	54	4.2	54	7.3	308	221.8
	Large	101	67.8	82	$\mathbf{3 1 . 5}$	449	525.2

262 instances:
178 small ($m \leq 199$), 84 large ($m \geq 200$)
http://www.tu-dresden.de/~capad/

Bromont, June 2012

CSP: Larger Instances: BPP-U09??? family

SCG PDCGM ACCPM

Instance	m	iters	time	iters	time	iters	time
U09498	1005	548	12947	293	5678	762	21254
U09513	975	518	9904	267	4277	779	19362
U09528	945	541	9173	276	$\mathbf{4 9 2 4}$	740	15920
U09543	915	506	7798	263	$\mathbf{3 7 2 4}$	723	13449
U09558	885	482	5585	265	$\mathbf{2 7 3 0}$	683	10861
U09573	855	473	4771	230	$\mathbf{2 0 5 4}$	672	9794
U09588	825	467	4950	247	$\mathbf{1 6 4 9}$	658	9376
U09603	795	465	3962	237	$\mathbf{1 6 6 8}$	627	7504

Bromont, June 2012

Vehicle routing problem with time windows

SCG PDCGM ACCPM

Cuts Class	iters	time		iters	time	iters	time
10	Small	26	0.3	22	0.2	94	0.5
	Medium	67	6.2	38	$\mathbf{2 . 6}$	122	5.7
	Large	188	114.1	73	41.6	171	92.1
100	Small	12	0.2	17	0.2	92	0.6
	Medium	26	3.0	23	$\mathbf{1 . 7}$	120	5.8
	Large	65	42.4	38	$\mathbf{2 1 . 5}$	166	87.5

87 instances:
29 small $(n=25)$, 29 med $(n=50)$, 29 large $(n=100)$
http://www2.imm.dtu.dk/~jla/solomon.html

Bromont, June 2012

VRPTW: Larger Instances

SCG
 PDCGM
 ACCPM

Instance n iters time

Instance	n	iters	time	iters	time	iters	time
R_1_2_1 200	57	43	45	34	423	202	
C_1_2_1 200	85	41	29	15	169	82	
RC_1_2_1 200	67	110	57	88	385	607	
R_1_4_1 400	131	865	84	641	636	3076	
C_1_4_1 400	137	552	53	$\mathbf{1 8 6}$	272	909	
RC_1_4_1 400	189	2789	113	$\mathbf{1 4 3 6}$	521	6649	
R_1_6_1 600	222	7558	118	4260	897	25870	
C_1_6_1 600	183	2335	48	510	482	5173	
RC_1_6_1 600	258	18972	150	8844	923	56683	

Bromont, June 2012

Integer optimization

Integer VRPTW solved to optimality
Branch-Price-and-Cut, Pedro Munari's PhD DLH08 I-PDCGM
Problem cuts nodes time cuts nodes time

C103	0	1	28	0	1	8
C104	0	1	86	0	1	17
RC103	262	5	541	162	5	429
RC104	437	21	11773	251	7	3436
R103	53	1	20	15	1	9
R104	391	11	3103	216	7	949

DLH08: Desaulniers, Lessard \& Hadjar,
Transportation Science 42 (2008) 387-404.
Solomon, Operations Research 35 (1987) 254-265. Homberger\&Gehring, EJOR 162 (2005) 220-238.

Bromont, June 2012

Conclusions

A completely new perspective is needed to exploit the insight offered by IPMs in a number of combinatorial optimization applications:

- column generation
- cutting plane methods
- B \& B, (and B \& Cut, B \& Cut \& Price, etc)

Warmstarting works well in the CG context: problems are re-optimized in 3-5 IPM iterations

References

- G., Gonzalez-Brevis, Munari, New developments in the primal-dual column generation technique, ERGO Tech Rep, Edinburgh, 2011.
- Munari, G., Using the primal-dual interior point algorithm within the branch-price-and-cut method, ERGO Tech Rep, Edinburgh, 2012.
- G., Gonzalez-Brevis, A new warmstarting strategy for the primal-dual column generation method, ERGO Tech Rep, Edinburgh, 2012.

Example: Cutting Stock Problem (CSP)

A set N of large pieces of wood of length W is given.
We need to cut them into smaller pieces.
We need d_{j} units of small piece $j \in M$ of length w_{j}.
Minimize the number of units of large pieces of wood.
Define binary variable y_{i} which takes value 1 if i-th large piece of wood is cut and 0 if it is not used.

Define integer variable $x_{i j}$ which determines the number of units of small piece of wood $j \in M$ obtained by cutting the large piece $i \in N$.

Cutting Stock Problem (CSP)

Kantorovich's formulation:

$$
\begin{array}{lcl}
\text { min } & \sum_{i \in N} y_{i} & \\
\text { s.t. } & \sum_{i \in N} x_{i j} \geq d_{j} & \forall j \in M, \\
& \sum_{j \in M} x_{i j} w_{j} \leq W y_{i} & \forall i \in N, \\
y_{i} \in\{0,1\} & \forall i \in N, \\
x_{i j} \geq 0 \text { and integer } & \forall j \in M, \forall i \in N .
\end{array}
$$

LP relaxation gives very weak bound.

Bromont, June 2012

Vehicle Routing Problem with Time Windows

A company delivers goods to customers $i \in C$.
The company has vehicles $k \in V$ and each of them starts at a depot, travels to several customers and returns to the depot. The visit of vehicle k to customer i needs to take place in a specific time window: $a_{i} \leq s_{i k} \leq b_{i}$, where $s_{i k}$ is the time when vehicle k reaches customer i.

Objective: Minimize the total cost of delivery.
Define binary variable $x_{i j k}$ which takes value 1 if vehicle k travels from customer i to customer $j(k \in V, i, j \in C)$ and takes value zero otherwise.

Vehicle Routing Problem with Time Windows

 Constraints:Exactly one vehicle leaves customer i :

$$
\sum_{k \in V} \sum_{j \in N} x_{i j k}=1, \quad \forall i \in C
$$

Vehicle capacity constraint:

$$
\sum_{i \in C} d_{i} \sum_{j \in N} x_{i j k} \leq q, \quad \forall k \in V
$$

Each vehicle leaves the depot and returns to it:

$$
\sum_{j \in N} x_{0 j k}=1 \quad \text { and } \quad \sum_{j \in N} x_{i(n+1) k}=1, \quad \forall k \in V
$$

Bromont, June 2012

VRPTW: Constraints (continued)

Time-window constraint

$$
s_{i k}+t_{i j}-M\left(1-x_{i j k}\right) \leq s_{j k}, \quad \forall i, j \in N, \forall k \in V .
$$

Since $x_{i j k}$ is binary the above constraint has the following meaning: If $x_{i j k}=1$ (vehicle k travels from customer i to customer j) then

$$
s_{i k}+t_{i j} \leq s_{j k}
$$

that is, the arrival time of vehicle k to customer j is greater than or equal the sum of time when vehicle k arrives to customer i and the time $t_{i j}$ it takes to travel from i to j. Otherwise (if $x_{i j k}=0$) the presence of "big" M guarantees that the constraint is always inactive.

VRPTW min

$$
\begin{array}{cl}
V_{\min } \sum_{k \in V} \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j k} & \\
\text { s.t. } \sum_{k \in V} \sum_{j \in N} x_{i j k}=1, & \forall i \in C, \\
\sum_{i \in C} d_{i} \sum_{j \in N} x_{i j k} \leq q, & \forall k \in V, \\
\sum_{j \in N} x_{0 j k}=1, \sum_{i \in N} x_{i(n+1) k}=1, & \forall k \in V, \\
\sum_{i \in N} x_{i h k}-\sum_{j \in N} x_{j h k}=0, & \forall h \in C, \forall k \in V, \\
s_{i k}+t_{i j}-M\left(1-x_{i j k}\right) \leq s_{j k}, & \forall i, j \in N, \forall k \in V, \\
a_{i} \leq s_{i k} \leq b_{i}, & \forall i \in N, \forall k \in V, \\
x_{i j k} \in\{0,1\}, & \forall i, j \in N, \forall k \in V .
\end{array}
$$

