Interior Point Methods
and Column Generation

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk
URL: http://www.maths.ed.ac.uk/~gondzio

Bromont, June 2012
Outline

- **Part 1: IPMs for Optimization**
 - IPM tricks: log barrier, central path
 - polynomial complexity
 - optimal partition

- **Part 2: Warmstarting IPMs**

- **Part 3: Column Generation with IPM**
 - cutting stock problem
 - vehicle routing problem with time windows

- **Conclusions**
Part 1:

Interior Point Methods for Optimization
Shocking mathematical concept:
Take \textit{linear} optimization problem and add \textit{nonlinear} function to the objective.

A step against common sense and centuries of mathematical practice:

\textbf{“nonlinearize” linear problem}
Logarithmic barrier

\[- \ln x_j \]

“replaces” the inequality

\[x_j \geq 0 \, . \]

Observe that

\[
\min e^{- \sum_{j=1}^{n} \ln x_j} \quad \Longleftrightarrow \quad \max \prod_{j=1}^{n} x_j
\]

The minimization of \(- \sum_{j=1}^{n} \ln x_j\) is equivalent to the maximization of the product of distances from all hyper-planes defining the positive orthant: it prevents all \(x_j\) from approaching zero.

Bromont, June 2012
LP Problem: \[\min c^T x \quad \text{s.t.} \quad Ax = b, \quad x \geq 0. \]

LP Barrier Prob: \[\min c^T x - \mu \sum_{j=1}^{n} \ln x_j \quad \text{s.t.} \quad Ax = b. \]

Lagrangian: \[L(x, y, \mu) = c^T x - y^T (Ax - b) - \mu \sum_{j=1}^{n} \ln x_j, \]

Stationarity: \[\nabla_x L(x, y, \mu) = c - A^T y - \mu X^{-1} e = 0 \]
\[\nabla_y L(x, y, \mu) = Ax - b = 0. \]

Denote: \[s = \mu X^{-1} e, \quad \text{i.e.} \quad XSe = \mu e. \]
Complementarity in the Interior Point Method

The first order optimality conditions (FOC)

\[Ax = b, \]
\[A^T y + s = c, \]
\[XSe = \mu e, \]
\[x, s \geq 0, \]

where \(X = \text{diag}\{x_j\}, \ S = \text{diag}\{s_j\} \) and \(e = (1, \ldots, 1) \in \mathbb{R}^n \).

Analytic centre (\(\mu \)-centre): a (unique) point \((x(\mu), y(\mu), s(\mu)) \), \(x(\mu) > 0, \ s(\mu) > 0 \) that satisfies FOC.

The interior point method gradually reduces the complementarity products

\[x_j \cdot s_j \approx \mu \rightarrow 0 \quad \forall j = 1, 2, \ldots, n. \]
Interior Point Methods

Theory: convergence in $O(\sqrt{n})$ or $O(n)$ iterations

Practice: convergence in $O(\log n)$ iterations

Expected number of IPM iterations:

<table>
<thead>
<tr>
<th>Problem Dimension</th>
<th>LP</th>
<th>QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>5 - 10</td>
<td>5 - 10</td>
</tr>
<tr>
<td>10,000</td>
<td>10 - 15</td>
<td>10 - 15</td>
</tr>
<tr>
<td>100,000</td>
<td>15 - 20</td>
<td>10 - 15</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20 - 25</td>
<td>15 - 20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>25 - 30</td>
<td>15 - 20</td>
</tr>
<tr>
<td>100,000,000</td>
<td>30 - 35</td>
<td>20 - 25</td>
</tr>
<tr>
<td>1000,000,000</td>
<td>35 - 40</td>
<td>20 - 25</td>
</tr>
</tbody>
</table>

... but one iteration may be expensive!
Complementarity \[x_j \cdot s_j = 0 \quad \forall j = 1, 2, \ldots, n. \]

Simplex Method guesses an optimal partition:

For basic variables, \(s_B = 0 \) and
\[(x_B)_j \cdot (s_B)_j = 0 \quad \forall j \in \mathcal{B}. \]

For non-basic variables, \(x_N = 0 \) hence
\[(x_N)_j \cdot (s_N)_j = 0 \quad \forall j \in \mathcal{N}. \]

Interior Point Method uses \(\varepsilon \)-mathematics:

Replace \(x_j \cdot s_j = 0 \quad \forall j = 1, 2, \ldots, n \)
by \(x_j \cdot s_j = \mu \quad \forall j = 1, 2, \ldots, n. \)

Force convergence \(\mu \to 0. \)
First Order Optimality Conditions

Simplex Method:

\[Ax = b \]
\[A^T y + s = c \]
\[XSe = 0 \]
\[x, s \geq 0. \]

Interior Point Method:

\[Ax = b \]
\[A^T y + s = c \]
\[XSe = \mu e \]
\[x, s \geq 0. \]

Basic: \(x > 0, s = 0 \)
Nonbasic: \(x = 0, s > 0 \)

Bromont, June 2012
Part 2:

Warmstarting IPMs
A need to solve a sequence of similar problems

- column generation
- cutting plane methods
- subproblems in the block-angular LPs (Dantzig-Wolfe decomp., Benders decomp.)
- B&B, (and B&Cut, B&Cut&Price, etc)
- SQP
- any sequence of similar problems
 example: computing efficient frontier in Markowitz portfolio optimization
Warm Starts Which method should be used?
- Simplex Method, or
- Interior Point Method.

When is the Simplex Method better?
→ few indices change optimal partition
B & B, adding one cut in CPM, etc.

When is the Interior Point Method better?
→ many indices change optimal partition
adding many cuts in CPM,
dealing with a general change of problem data, etc

Conjecture:
The more changes in the (large) problem
the more attractive IPM-based warm starts are.

Bromont, June 2012
Difficulty of IPM Warm Starts

Modified Problem

Original Problem
Warm Starting in 1990+

Goffin & Vial et al., development of ACCPM 1990+
G. & Sarkissian, development of PDCGM in 1995

ACCPM Analytic Centre Cutting Plane Method
PDCGM Primal-Dual Column Generation Method
Warmstarting Heuristic

Idea: Start close to the (new) central path, not close to the (old) solution
Warm Start with μ-centres

Old Problem: \[\min \ c_0^T x + \frac{1}{2} x^T Q_0 x \]
\[\text{s.t. } A_0 x = b_0, \]
\[x \geq 0, \]

New Problem: \[\min \ c^T x + \frac{1}{2} x^T Q x \]
\[\text{s.t. } A x = b, \]
\[x \geq 0, \]

We assume:
\[c \approx c_0, \ Q \approx Q_0, \ A \approx A_0, \ b \approx b_0. \]
Warm Starting in 2000+

Colombo & Grothey, follow-up reports in 09,10
Benson & Mahanta, report in 2009
Ordonez & Waltz, report in 2009
Lemma. Let \((x, y, s) \in \mathcal{N}_{-\infty}(\gamma_0)\) for problem (LP) then the full Newton step \((\Delta x, \Delta y, \Delta s)\) in the perturbed problem (\(\tilde{\text{LP}}\)) is feasible and
\[
(x + \Delta x, y + \Delta y, s + \Delta s) \in \tilde{\mathcal{N}}_{-\infty}(\gamma)
\]
provided that
\[
\delta_{bc} = \|\xi_c\|_2 + \|A^T(AA^T)^{-1}\xi_b\|_2 \leq \|P\|_{\infty} \frac{\gamma_0}{1 + 1/\gamma^\mu},
\]
where
\[
P = I - S^{-1}A^T(AXS^{-1}A^T)^{-1}AX, \quad \xi_b = \tilde{b} - Ax, \quad \xi_c = \tilde{c} - A^Ty - s.
\]
LOQO vs OOPS warmstarting NETLIB problems

→ Unblocking technique ...

Average savings:

- LOQO (B&S, 2007) 20–30 %
- OOPS (G&G, 2008) 50–70 %

Bromont, June 2012
Part 3:

Primal-Dual Column Generation Method

Joint work with two PhD students:

Pablo Gonzalez-Brevis and Pedro Munari

Bromont, June 2012
Column Generation (CG)

MP

RMP

newRMP
Column Generation (CG)

Consider an LP, called the master problem (MP):

\[
\begin{align*}
 z^* &:= \min \sum_{j \in N} c_j \lambda_j, \\
 \text{s.t.} & \sum_{j \in N} a_j \lambda_j = b, \\
 & \lambda_j \geq 0, \quad \forall j \in N.
\end{align*}
\]

- \(N \) is too big;
- The columns \(a_j \) are implicit elements of \(\mathcal{A} \);
- We know how to generate them!
CG: Restricted master problem (RMP): $\overline{N} \subset N$

$$z_{RMP} := \min \sum_{j \in \overline{N}} c_j \lambda_j,$$

s.t. $$\sum_{j \in \overline{N}} a_j \lambda_j = b,$$

$$\lambda_j \geq 0, \quad \forall j \in \overline{N}.$$

- Optimal $\bar{\lambda}$ for the RMP \Rightarrow feasible $\hat{\lambda}$ for the MP;
- $\hat{\lambda}_j = \bar{\lambda}_j$, $\forall j \in \overline{N}$, and $\hat{\lambda}_j = 0$ otherwise;
- Hence, $z^* \leq z_{RMP} = UB$ (Upper Bound).
- How to know it is optimal?
 - Call the oracle!
CG:

- Oracle: check the feasibility of the dual \overline{u};
- Reduced costs: $s_j = c_j - \overline{u}^T a_j$, $\forall j \in N$;
- But the columns are not explicit and, hence,
 $$z_{SP} := \min\{c_j - \overline{u}^T a_j | a_j \in A\}.$$
- (we reset $z_{SP} := 0$, if $z_{SP} > 0$);
- Lower Bound: $LB = z_{RMP} + \kappa z_{SP} \leq z^*$, where
 $$\kappa \geq \sum_{i \in N} \lambda_i^*,$$
- If $z_{SP} < 0$, then new columns are generated;
- Otherwise, an optimal solution of the MP was found!
Appealing features of IPMs

- Use IPM to solve the RMP: → no degeneracy issues
- Terminate RMP solution early: → get stable dual solution \bar{u}
PDCGM Algorithm Parameters: $\varepsilon_{\text{max}}, D, \delta, \kappa$

1. set $\text{LB} = -\infty$, $\text{UB} = \infty$, $\text{gap} = \infty$, $\varepsilon = 0.5$;
2. while ($\text{gap} > \delta$) do
3. find a well-centred ε-optimal $(\tilde{\lambda}, \tilde{u})$ of the RMP;
4. $\text{UB} = \tilde{z}_{RMP}$;
5. call the oracle with the query point \tilde{u};
6. $\text{LB} = \kappa\tilde{z}_{SP} + b^T\tilde{u}$;
7. $\text{gap} = (\text{UB} - \text{LB})/(1 + |\text{UB}|)$;
8. $\varepsilon = \min\{\varepsilon_{\text{max}}, \text{gap}/D\}$;
9. if $(\tilde{z}_{SP} < 0)$ then add new columns into the RMP;
10. end(while)
CSP: Column Generation Formulation

Gilmore and Gomory (1961) formulation:

\[
\begin{align*}
\min & \quad \sum_{p \in P} \lambda_p, \\
\text{s.t.} & \quad \sum_{p \in P} a_p \lambda_p \geq d, \\
& \quad \lambda_p \geq 0 \text{ and integer, } \forall p \in P.
\end{align*}
\]

- Columns are cutting patterns;
- We do not need to enumerate all of them;
- They can be dynamically generated knapsack problem.
VRPTW: Column Generation Formulation

Desrochers et al. (1992):

\[
\min \sum_{p \in P} c_p \lambda_p \\
\text{s.t. } \sum_{p \in P} a_p \lambda_p = 1, \\
\lambda_p \in \{0, 1\}, \quad \forall p \in P.
\]

- Columns are possible vehicle paths;
- The columns can be dynamically generated shortest path problem with resource constraints.
Computational experiments

Solving LP relaxations

Comparison of:

- Standard column generation (**SCG**):
 - simplex-type methods of IBM/CPLEX v.12.1.

- Primal dual column generation (**PDCGM**):
 - interior point solver HOPDM.

- Analytic centre cutting plane (**ACCPM**):
 - open-source solver OBOE/COIN-OR.
Cutting stock problem

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Class</th>
<th>SCG</th>
<th>PDCGM</th>
<th>ACCPM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>iters</td>
<td>iters</td>
<td>iters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>time</td>
<td>time</td>
<td>time</td>
</tr>
<tr>
<td>10</td>
<td>Small</td>
<td>150</td>
<td>102</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>2.1</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>251</td>
<td>158</td>
<td>368</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77.0</td>
<td>18.3</td>
<td>148.7</td>
</tr>
<tr>
<td>50</td>
<td>Small</td>
<td>71</td>
<td>63</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>3.8</td>
<td>106.3</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>134</td>
<td>97</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.2</td>
<td>23.1</td>
<td>277.6</td>
</tr>
<tr>
<td>100</td>
<td>Small</td>
<td>54</td>
<td>54</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.2</td>
<td>7.3</td>
<td>221.8</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>101</td>
<td>82</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.8</td>
<td>31.5</td>
<td>525.2</td>
</tr>
</tbody>
</table>

262 instances:
178 small \((m \leq 199)\), 84 large \((m \geq 200)\)

http://www.tu-dresden.de/~capad/
CSP: Larger Instances: BPP-U09??? family

<table>
<thead>
<tr>
<th>Instance</th>
<th>m</th>
<th>SCG-Iter</th>
<th>SCG-Time</th>
<th>PDCGM-Iter</th>
<th>PDCGM-Time</th>
<th>ACCPM-Iter</th>
<th>ACCPM-Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>U09498</td>
<td>1005</td>
<td>548</td>
<td>12947</td>
<td>293</td>
<td>5678</td>
<td>762</td>
<td>21254</td>
</tr>
<tr>
<td>U09513</td>
<td>975</td>
<td>518</td>
<td>9904</td>
<td>267</td>
<td>4277</td>
<td>779</td>
<td>19362</td>
</tr>
<tr>
<td>U09528</td>
<td>945</td>
<td>541</td>
<td>9173</td>
<td>276</td>
<td>4924</td>
<td>740</td>
<td>15920</td>
</tr>
<tr>
<td>U09543</td>
<td>915</td>
<td>506</td>
<td>7798</td>
<td>263</td>
<td>3724</td>
<td>723</td>
<td>13449</td>
</tr>
<tr>
<td>U09558</td>
<td>885</td>
<td>482</td>
<td>5585</td>
<td>265</td>
<td>2730</td>
<td>683</td>
<td>10861</td>
</tr>
<tr>
<td>U09573</td>
<td>855</td>
<td>473</td>
<td>4771</td>
<td>230</td>
<td>2054</td>
<td>672</td>
<td>9794</td>
</tr>
<tr>
<td>U09588</td>
<td>825</td>
<td>467</td>
<td>4950</td>
<td>247</td>
<td>1649</td>
<td>658</td>
<td>9376</td>
</tr>
<tr>
<td>U09603</td>
<td>795</td>
<td>465</td>
<td>3962</td>
<td>237</td>
<td>1668</td>
<td>627</td>
<td>7504</td>
</tr>
</tbody>
</table>

Bromont, June 2012
Vehicle routing problem with time windows

<table>
<thead>
<tr>
<th>Cuts</th>
<th>Class</th>
<th>SCG iters</th>
<th>SCG time</th>
<th>PDCGM iters</th>
<th>PDCGM time</th>
<th>ACCPM iters</th>
<th>ACCPM time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Small</td>
<td>26</td>
<td>0.3</td>
<td>22</td>
<td>0.2</td>
<td>94</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>67</td>
<td>6.2</td>
<td>38</td>
<td>2.6</td>
<td>122</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>188</td>
<td>114.1</td>
<td>73</td>
<td>41.6</td>
<td>171</td>
<td>92.1</td>
</tr>
<tr>
<td>100</td>
<td>Small</td>
<td>12</td>
<td>0.2</td>
<td>17</td>
<td>0.2</td>
<td>92</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>26</td>
<td>3.0</td>
<td>23</td>
<td>1.7</td>
<td>120</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>65</td>
<td>42.4</td>
<td>38</td>
<td>21.5</td>
<td>166</td>
<td>87.5</td>
</tr>
</tbody>
</table>

87 instances:
29 small \((n = 25) \), 29 med \((n = 50) \), 29 large \((n = 100) \)

http://www2.imm.dtu.dk/~jla/solomon.html
VRPTW: Larger Instances

<table>
<thead>
<tr>
<th>Instance</th>
<th>n</th>
<th>SCG</th>
<th>PDCGM</th>
<th>ACCPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1_2_1</td>
<td>200</td>
<td>57</td>
<td>45</td>
<td>423</td>
</tr>
<tr>
<td>C_1_2_1</td>
<td>200</td>
<td>85</td>
<td>29</td>
<td>169</td>
</tr>
<tr>
<td>RC_1_2_1</td>
<td>200</td>
<td>67</td>
<td>57</td>
<td>385</td>
</tr>
<tr>
<td>R_1_4_1</td>
<td>400</td>
<td>131</td>
<td>84</td>
<td>636</td>
</tr>
<tr>
<td>C_1_4_1</td>
<td>400</td>
<td>137</td>
<td>53</td>
<td>272</td>
</tr>
<tr>
<td>RC_1_4_1</td>
<td>400</td>
<td>189</td>
<td>113</td>
<td>521</td>
</tr>
<tr>
<td>R_1_6_1</td>
<td>600</td>
<td>222</td>
<td>118</td>
<td>897</td>
</tr>
<tr>
<td>C_1_6_1</td>
<td>600</td>
<td>183</td>
<td>48</td>
<td>482</td>
</tr>
<tr>
<td>RC_1_6_1</td>
<td>600</td>
<td>258</td>
<td>150</td>
<td>923</td>
</tr>
</tbody>
</table>
Integer optimization
J. Gondzio

Integer VRPTW solved to optimality
Branch-Price-and-Cut, Pedro Munari’s PhD

<table>
<thead>
<tr>
<th>Problem</th>
<th>DLH08 cuts</th>
<th>nodes</th>
<th>time</th>
<th>I-PDCGM cuts</th>
<th>nodes</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C103</td>
<td>0</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>C104</td>
<td>0</td>
<td>1</td>
<td>86</td>
<td>0</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>RC103</td>
<td>262</td>
<td>5</td>
<td>541</td>
<td>162</td>
<td>5</td>
<td>429</td>
</tr>
<tr>
<td>RC104</td>
<td>437</td>
<td>21</td>
<td>11773</td>
<td>251</td>
<td>7</td>
<td>3436</td>
</tr>
<tr>
<td>R103</td>
<td>53</td>
<td>1</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>R104</td>
<td>391</td>
<td>11</td>
<td>3103</td>
<td>216</td>
<td>7</td>
<td>949</td>
</tr>
</tbody>
</table>

DLH08: Desaulniers, Lessard & Hadjar,
Transportation Science **42** (2008) **387-404.**

Bromont, June 2012
Conclusions

A completely new perspective is needed to exploit the insight offered by IPMs in a number of combinational optimization applications:

- column generation
- cutting plane methods
- B & B, (and B & Cut, B & Cut & Price, etc)

Warmstarting works well in the CG context: problems are re-optimized in **3-5** IPM iterations
References

Example: Cutting Stock Problem (CSP)

A set N of large pieces of wood of length W is given. We need to cut them into smaller pieces. We need d_j units of small piece $j \in M$ of length w_j.

Minimize the number of units of large pieces of wood.

Define binary variable y_i which takes value 1 if i-th large piece of wood is cut and 0 if it is not used.

Define integer variable x_{ij} which determines the number of units of small piece of wood $j \in M$ obtained by cutting the large piece $i \in N$.
Cutting Stock Problem (CSP)

Kantorovich’s formulation:

\[
\begin{align*}
\min \quad & \sum_{i \in N} y_i \\
\text{s.t.} \quad & \sum_{i \in N} x_{ij} \geq d_j \quad \forall j \in M, \\
\sum_{j \in M} x_{ij} w_j & \leq W y_i \quad \forall i \in N, \\
\end{align*}
\]

\(y_i \in \{0, 1\} \quad \forall i \in N,
\]

\(x_{ij} \geq 0 \text{ and integer} \quad \forall j \in M, \forall i \in N.
\]

LP relaxation gives very weak bound.
Vehicle Routing Problem with Time Windows

A company delivers goods to customers $i \in C$. The company has vehicles $k \in V$ and each of them starts at a depot, travels to several customers and returns to the depot. The visit of vehicle k to customer i needs to take place in a specific time window: $a_i \leq s_{ik} \leq b_i$, where s_{ik} is the time when vehicle k reaches customer i.

Objective: Minimize the total cost of delivery.

Define binary variable x_{ijk} which takes value 1 if vehicle k travels from customer i to customer j ($k \in V$, $i, j \in C$) and takes value zero otherwise.
Vehicle Routing Problem with Time Windows

Constraints:

Exactly one vehicle leaves customer i:

$$\sum_{k \in V} \sum_{j \in N} x_{ijk} = 1, \quad \forall i \in C$$

Vehicle capacity constraint:

$$\sum_{i \in C} d_i \sum_{j \in N} x_{ijk} \leq q, \quad \forall k \in V$$

Each vehicle leaves the depot and returns to it:

$$\sum_{j \in N} x_{0jk} = 1 \quad \text{and} \quad \sum_{j \in N} x_{i(n+1)k} = 1, \quad \forall k \in V$$
VRPTW: Constraints (continued)

Time-window constraint

\[s_{ik} + t_{ij} - M(1 - x_{ijk}) \leq s_{jk}, \quad \forall i, j \in N, \forall k \in V. \]

Since \(x_{ijk} \) is binary the above constraint has the following meaning: If \(x_{ijk} = 1 \) (vehicle \(k \) travels from customer \(i \) to customer \(j \)) then

\[s_{ik} + t_{ij} \leq s_{jk} \]

that is, the arrival time of vehicle \(k \) to customer \(j \) is greater than or equal the sum of time when vehicle \(k \) arrives to customer \(i \) and the time \(t_{ij} \) it takes to travel from \(i \) to \(j \). Otherwise (if \(x_{ijk} = 0 \)) the presence of “big” \(M \) guarantees that the constraint is always inactive.
VRPTW

\[
\min \sum_{k \in V} \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ijk}
\]

s.t.
\[
\sum_{k \in V} \sum_{j \in N} x_{ijk} = 1, \quad \forall i \in C,
\]
\[
\sum_{i \in C} d_i \sum_{j \in N} x_{ijk} \leq q, \quad \forall k \in V,
\]
\[
\sum_{j \in N} x_{0jk} = 1, \sum_{i \in N} x_{i(n+1)k} = 1, \quad \forall k \in V,
\]
\[
\sum_{i \in N} x_{ihk} - \sum_{j \in N} x_{jhk} = 0, \quad \forall h \in C, \forall k \in V,
\]
\[
s_{ik} + t_{ij} - M(1 - x_{ijk}) \leq s_{jk}, \quad \forall i, j \in N, \forall k \in V,
\]
\[
a_i \leq s_{ik} \leq b_i, \quad \forall i \in N, \forall k \in V,
\]
\[
x_{ijk} \in \{0, 1\}, \quad \forall i, j \in N, \forall k \in V.
\]