Branch-and-Price for Vehicle Routing Problems with Multiple Synchronization Constraints

Michael Drexl

Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz and Fraunhofer Centre for Applied Research on Supply Chain Services SCS, Nuremberg

International Workshop on Column Generation 2012, Bromont, 10th–13th June
Objectives of talk:

- Introduce ‘Vehicle routing problems with multiple synchronization constraints’
- Point out difficulties of a branch-and-price approach
- Present approaches for overcoming these difficulties
Three abbreviations:

VRP(TW):
Vehicle routing problem (with time windows)

VRPMS:
VRP with multiple synchronization constraints

VRPTT:
VRP with trailers and transshipments
Agenda

1 The VRPTT

2 VRPMSs

3 Solving VRPMSs by Branch-and-Price

4 Summary and Outlook
Agenda

1. The VRPTT
2. VRPMSs
3. Solving VRPMSs by Branch-and-Price
4. Summary and Outlook
VRP with Trailers and Transshipments (VRPTT):

Two extensions to basic VRP:

1. Heterogeneous locations: Four different types of location
2. Heterogeneous fleet: Four different types of vehicle
VRPTT: Relevant types of vehicle

- **Drawbar trailer combination**
 - Lorry
 - Drawbar trailer

- **Semi-trailer combination**
 - Tractor
 - Semi-trailer
VRPTT: Relevant types of vehicle

- Lorry
- Drawbar trailer
- Tractor
- Semi-trailer
The VRPTT

VRPTT: Locations

- ▲ Depot
- ● Lorry customer
- □ Trailer customer
- ♣ Transshipment location
The VRPTT

VRPTT: Locations and example route plan

- **Depot**
- **Lorry customer**
- **Trailer customer**
- **Transshipment location**
VRPTT: Locations and example route plan
VRPTT: Locations and example route plan

- Depot
- Lorry customer
- Trailer customer
- Transshipment location
- Lorry 1
- Lorry 2
The VRPTT

VRPTT: Locations and example route plan

- **Depot**
- **Lorry customer**
- **Trailer customer**
- **Transshipment location**
- **Lorry 1**
- **Lorry 2**
- **Lorry 3**
VRPTT: Locations and example route plan

- Depot
- Lorry customer
- Trailer customer
- Transshipment location
- Lorry 1
- Lorry 2
- Lorry 3
- Trailer
The VRPTT

VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:
1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)
 Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:

1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)

 Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:

1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)
 Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
The VRPTT

VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:

1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)
 - Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:

1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)
 Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
VRP with Trailers and Transshipments (VRPTT):

Crux of problem:

Close interdependency between vehicles!

Requires five-fold synchronization of vehicles:

1. Task synchronization (customer covering)
2. Operation synchronization (time and locations of transshipments)
3. Movement synchronization (of lorry pulling a trailer)
4. Load synchronization (quantity transshipped)
 Note: Duration of transfer depends on quantity transshipped
5. Resource synchronization (use of transshipment locations)
Agenda

1. The VRPTT
2. VRPMSs
3. Solving VRPMSs by Branch-and-Price
4. Summary and Outlook
Examples of VRPMSs

Real-world applications:

- Raw milk collection
- Food distribution to supermarkets
- Fuel oil delivery to private households
- Garbage collection
- City logistics
- Bitumen and concrete delivery
- Forest management
- Mid-air refuelling of aircraft
- Letter mail or parcel delivery
- Field service and homecare personnel dispatching
Examples of VRPMSs

Real-world applications:

- Raw milk collection
- Food distribution to supermarkets
- Fuel oil delivery to private households
- Garbage collection
- City logistics
- Bitumen and concrete delivery
- Forest management
- Mid-air refuelling of aircraft
- Letter mail or parcel delivery
- Field service and homecare personnel dispatching
Examples of VRPMSs

Real-world applications:

- Raw milk collection
- Food distribution to supermarkets
- Fuel oil delivery to private households
- Garbage collection
- City logistics
- Bitumen and concrete delivery
- Forest management
- Mid-air refuelling of aircraft
- Letter mail or parcel delivery
- Field service and homecare personnel dispatching
Generic characteristics:

- More than one (type of) vehicle may or must be used to fulfil tasks
- Possibility or requirement of transshipments
- Collection and/or transshipment quantities not fixed
- Common scarce resources

Important problem classes:

- Simultaneous vehicle and crew routing and scheduling
- Pickup-and-delivery with transshipments
- Single- and multi-echelon location-routing
VRPMSs

Generic characteristics:
- More than one (type of) vehicle may or must be used to fulfil tasks
- Possibility or requirement of transshipments
- Collection and/or transshipment quantities not fixed
- Common scarce resources

Important problem classes:
- Simultaneous vehicle and crew routing and scheduling
- Pickup-and-delivery with transshipments
- Single- and multi-echelon location-routing
Agenda

1. The VRPTT
2. VRPMSs
3. Solving VRPMSs by Branch-and-Price
4. Summary and Outlook
Decomposition Approach

Basic decomposition approach for VRPTW:

Master problem:
Coupling constraints:
- Customer covering synchronization

One pricing problem:
Non-coupling constraints (individual routes/vehicles):
- Flow conservation
- Vehicle capacity
- Static time windows
Decomposition Approach

Basic decomposition approach for *VRPTT*:

Master problem (coupling constraints):
- Customer covering synchronization
- Operation synchronization
- Movement synchronization
- Load synchronization
- Resource synchronization

Several pricing problems (individual routes/vehicles):
- Flow conversation
- Vehicle capacity
- Static time windows
Pricing Problem

Pricing problem:

- (Elementary) shortest path problem with resource constraints ((E)SPPRC)
- Traditionally solved by dynamic-programming based labelling algorithm
- Uses resources and resource extension functions (REFs)

Resources and REFs in VRPTW pricing problem:

- Cost c_i: $f_{ij}^{cost}(c_i) = c_i + \tilde{c}_{ij}$
- Time t_i: $f_{ij}^{time}(t_i) = \max(a_j, t_i + t_{ij}^{travel})$
- Load l_i: $f_{ij}^{load}(l_i) = l_i + s_i$
Pricing Problem

Pricing problem:

- (Elementary) shortest path problem with resource constraints ((E)SPPRC)
- Traditionally solved by dynamic-programming based labelling algorithm
- Uses resources and resource extension functions (REFs)

Resources and REFs in VRPTW pricing problem:

- Cost c_i: $f_{ij}^{\text{cost}}(c_i) = c_i + \tilde{c}_{ij}$
- Time t_i: $f_{ij}^{\text{time}}(t_i) = \max(\alpha_j, t_i + t_{ij}^{\text{travel}})$
- Load l_i: $f_{ij}^{\text{load}}(l_i) = l_i + s_i$
Pricing Problem

Two desirable properties of REFs (Desaulniers et al. 1998):

1. **All REFs for an arc \((i, j)\) should depend only on the resource vector at \(i\).**
 → Intermediate resource values can be computed; yield lower bounds for values of resource variables

2. **All REFs should be non-decreasing.**
 → Lowest cost at \(j\) always obtained for smallest possible resource values

REFs in VRPTW pricing problem possess both properties:

- **Cost:** \(f_{ij}^{\text{cost}}(c_i) = c_i + \tilde{c}_{ij}\)
- **Time:** \(f_{ij}^{\text{time}}(t_i) = \max(a_j, t_i + t_{ij}^{\text{travel}})\)
- **Load:** \(f_{ij}^{\text{load}}(l_i) = l_i + s_i\)
Pricing Problem

Two desirable properties of REFs (Desaulniers et al. 1998):

1. All REFs for an arc \((i, j)\) should depend only on the resource vector at \(i\).
 \[\rightarrow \text{Intermediate resource values can be computed; yield lower bounds for values of resource variables} \]

2. All REFs should be non-decreasing.
 \[\rightarrow \text{Lowest cost at } j \text{ always obtained for smallest possible resource values} \]

REFs in VRPTW pricing problem possess both properties:

- **Cost:** \(f_{ij}^{\text{cost}}(c_i) = c_i + \tilde{c}_{ij} \)
- **Time:** \(f_{ij}^{\text{time}}(t_i) = \max(a_j, t_i + t_{ij}^{\text{travel}}) \)
- **Load:** \(f_{ij}^{\text{load}}(l_i) = l_i + s_i \)
Pricing Problem Issues

REFs in VRPTT pricing problems:
- Load and time influenced by other vehicles
 → REFs not only dependent on resource vector at \(i \)
- Two trade-offs:
 - Load: gain capacity or save time
 - Time: provide capacity early or avoid binding lorries
 → REFs not non-decreasing
→ REFs possess neither property

Essentially, the determination of a cost-optimal schedule and load plan for a fixed path becomes an optimization problem in itself.
Pricing Problem Issues

REFs in VRPTT pricing problems:
- Load and time influenced by other vehicles
 → REFs not only dependent on resource vector at i
- Two trade-offs:
 - Load: gain capacity or save time
 - Time: provide capacity early or avoid binding lorries
 → REFs not non-decreasing
→ REFs possess neither property

Essentially, the determination of a cost-optimal schedule and load plan for a fixed path becomes an optimization problem in itself.
Approaches for Solving the Pricing Problems

Approaches for dealing with synchronization requirements:

■ **Solution by dynamic programming/labelling:**
 ■ Discretization (Desrosiers 2005)
 ■ Branching (Dohn, Rasmussen, and Larsen 2011)
 ■ Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998)
 ■ Point-in-polyhedron tests used in computational geometry (O’Rourke 1998)

■ **Solution as MIP:**
 ■ Branch-and-cut (Jepsen, Petersen, Spoorendonk, and Pisinger 2011)
 ■ Branch-and-price (Hennig, Nygreen, and Lübbecke 2010)
Approaches for dealing with synchronization requirements:

- **Solution by dynamic programming/labelling:**
 - Discretization (Desrosiers 2005)
 - Branching (Dohn, Rasmussen, and Larsen 2011)
 - Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998)
 - Point-in-polyhedron tests used in computational geometry (O’Rourke 1998)

- **Solution as MIP:**
 - Branch-and-cut (Jepsen, Petersen, Spoorendonk, and Pisinger 2011)
 - Branch-and-price (Hennig, Nygreen, and Lübbecke 2010)
DP Approaches for Solving the Pricing Problems

Discretization (Desrosiers 2005):

- **Space-time-vehicle-load network**
- One vertex for each combination of
 - Location
 - Point in time
 - Passive vehicle
 - Load transfer quantity
- Allows using standard labelling algorithms
- Trade-off between granularity of discretization and network size
- Important special cases: discrete load quantities by nature (swap-body platforms, garages)
- Partial discretization possible (only load, only time)
DP Approaches for Solving the Pricing Problems

Discretization (Desrosiers 2005):
- *Space-time-vehicle-load network*
- One vertex for each combination of:
 - Location
 - Point in time
 - Passive vehicle
 - Load transfer quantity
- Allows using standard labelling algorithms
- Trade-off between granularity of discretization and network size
- Important special cases: discrete load quantities by nature (swap-body platforms, garages)
- Partial discretization possible (only load, only time)
Branching (Dohn, Rasmussen, and Larsen 2011):

- Use idea of \textit{branching on resource variables} introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching
Branching (Dohn, Rasmussen, and Larsen 2011):

- Use idea of *branching on resource variables* introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching:

![Diagram showing visit times and splitting decision in lorry and trailer routes.](image_url)
Branching (Dohn, Rasmussen, and Larsen 2011):

- Use idea of *branching on resource variables* introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching:

Transshipment location l in lorry route r_1:

Transshipment location l in trailer route r_2:

Visit time

Split time
DP Approaches for Solving the Pricing Problems

Branching (Dohn, Rasmussen, and Larsen 2011):

- Use idea of *branching on resource variables* introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching:

![Diagram showing branching on resource variables with transshipment locations and routes](image)

Transshipment location l in lorry route r_1:

- Left branch: r_2 infeasible

Transshipment location l in trailer route r_2:

- Right branch: r_1 infeasible
DP Approaches for Solving the Pricing Problems

Branching (Dohn, Rasmussen, and Larsen 2011):
- Use idea of *branching on resource variables* introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching:

```
Transshipment location \( l \) in lorry route \( r_1 \):

Transshipment location \( l \) in trailer route \( r_2 \):

Left branch: \( r_2 \) infeasible

Right branch: \( r_1 \) infeasible
```

Visit time

Split time
DP Approaches for Solving the Pricing Problems

Branching (Dohn, Rasmussen, and Larsen 2011):
- Use idea of *branching on resource variables* introduced by Gélinas, Desrochers, Desrosiers, and Solomon (1995)
- Ignore synchronization constraints in master problem
- Check for violated synchronization constraints when branching:

Transshipment location l in lorry route r_1:

Transshipment location l in trailer route r_2:

Left branch: r_2 infeasible

Right branch: r_1 infeasible

VRPTT requires branching on both time and load
Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998):

- Pricing problem with *linear time costs at vertices*

- Vertex cost function $f^p(t)$ for given path p:
 - Piecewise linear
 - Convex
 - Finite number of linear pieces
 - Increasing pieces can be ignored
DP Approaches for Solving the Pricing Problems

Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998):

- Pricing problem with *linear time costs at vertices*

Modified vertex cost function $g^p(t)$ for given path p:

- Piecewise linear
- Convex
- Nonincreasing
- At most as many linear pieces as there are vertices in p
Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998):

- **Non-pairwise dominance**:

\[
D_{i}(t) = \begin{cases}
\text{piecewise linear} \\
\text{nonincreasing} \\
\text{not necessarily convex or continuous} \\
\text{labels: Breakpoints of } D_{i}(t): (t_{i}^{k}, D_{i}(t_{i}^{k}), s_{i}^{k})
\end{cases}
\]
Non-pairwise dominance between sets of functions (Ioachim, Gélinas, Soumis, and Desrosiers 1998):

- Non-pairwise dominance:

\[D_i(t) \]

Dominance function \(D_i(t) \):
- Piecewise linear
- Nonincreasing
- Not necessarily convex or continuous
- Labels: Breakpoints of \(D_i(t) \): \((t_i^k, D_i(t_i^k), s_i^k)\)
Point-in-polyhedron tests used in computational geometry (O’Rourke 1998):

- Extension of algorithm of Ioachim et al. to higher dimensions
- More difficult for non-convex point sets
- Fast and numerically robust implementation appears non-trivial (K. Mehlhorn, 2006)
MIP Approaches for Solving the Pricing Problems

Branch-and-cut (Jepsen, Petersen, Spoorendonk, and Pisinger 2011):

- Promising results for ESPP with a capacity constraint
- Ten types of valid inequalities used
- Behaviour for VRPTT pricing problem unclear
MIP Approaches for Solving the Pricing Problems

Branch-and-price (Hennig, Nygreen, and Lübbecke 2010):

- ‘Nested column generation for the crude oil tanker routing and scheduling problem with split pickup and split delivery’
- Issue of loading/unloading quantities similar to VRPTT
- Two-level approach:

 \[\begin{align*}
 \text{Level 1 master problem:} \\
 \text{Binary ship routing and continuous cargo pattern variables} \\
 \downarrow \\
 \text{Level 2 master problem (= level 1 pricing problem):} \\
 \text{Receives dual information on supply constraints, returns ship routing variables} \\
 \downarrow \\
 \text{Level 2 pricing problem (ESPP with time windows):} \\
 \text{Receives dual information on load and time restrictions along arcs, generates ship routing variables}
 \end{align*}\]
MIP Approaches for Solving the Pricing Problems

Branch-and-price (Hennig, Nygreen, and Lübbecke 2010):

- ‘Nested column generation for the crude oil tanker routing and scheduling problem with split pickup and split delivery’
- Issue of loading/unloading quantities similar to VRPTT
- Two-level approach:

 Level 1 master problem:
 Binary ship routing and continuous cargo pattern variables

 ↓

 Level 2 master problem (= level 1 pricing problem):
 Receives dual information on supply constraints, returns ship routing variables

 ↓

 Level 2 pricing problem (ESPP with time windows):
 Receives dual information on load and time restrictions along arcs, generates ship routing variables
Branch-and-price (Hennig, Nygreen, and Lübbecke 2010):

- ‘Nested column generation for the crude oil tanker routing and scheduling problem with split pickup and split delivery’
- Issue of loading/unloading quantities similar to VRPTT
- Two-level approach:

 Level 1 master problem:
 Binary ship routing and continuous cargo pattern variables

 Level 2 master problem (= level 1 pricing problem):
 Receives dual information on supply constraints, returns ship routing variables

 Level 2 pricing problem (ESPP with time windows):
 Receives dual information on load and time restrictions along arcs, generates ship routing variables
MIP Approaches for Solving the Pricing Problems

Branch-and-price (Hennig, Nygreen, and Lübbecke 2010):
- ‘Nested column generation for the crude oil tanker routing and scheduling problem with split pickup and split delivery’
- Issue of loading/unloading quantities similar to VRPTT
- Two-level approach:

 Level 1 master problem:
 Binary ship routing and continuous cargo pattern variables

 ↓

 Level 2 master problem (= level 1 pricing problem):
 Receives dual information on supply constraints, returns ship routing variables

 ↓

 Level 2 pricing problem (ESPP with time windows):
 Receives dual information on load and time restrictions along arcs, generates ship routing variables
Agenda

1. The VRPTT
2. VRPMSs
3. Solving VRPMSs by Branch-and-Price
4. Summary and Outlook
Summary

VRPMSs are a practically relevant and scientifically challenging object of study.

The VRPTT is a suitable unified model for representing most kinds of VRPMSs.

It is not evident how the synchronization requirements can best be considered in an MIP approach.
Summary

VRPMSs are a practically relevant and scientifically challenging object of study.

The VRPTT is a suitable unified model for representing most kinds of VRPMSs.

It is not evident how the synchronization requirements can best be considered in an MIP approach.
VRPMSs are a practically relevant and scientifically challenging object of study.

The VRPTT is a suitable unified model for representing most kinds of VRPMSs.

It is not evident how the synchronization requirements can best be considered in an MIP approach.
Outlook

Open questions:

- How do presented approaches compare with each other?
- Which one(s) is/are best
 - for which problem types?
 - for which data?
- What about assumption of one pricing problem per vehicle class?
- Which other (CG-based) solution approaches are there?
Branch-and-Price for Vehicle Routing Problems with Multiple Synchronization Constraints

Michael Drexl

Chair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz
and
Fraunhofer Centre for Applied Research on Supply Chain Services SCS,
Nuremberg

International Workshop on Column Generation 2012,
Bromont, 10th–13th June