Row-Reduced Column Generation

J. Desrosiers and J.B. Gauthier ${ }^{1,2}$ M.E. Lübbecke ${ }^{3}$

$\left({ }^{1}\right)$ GERAD, $\left({ }^{2}\right)$ HEC Montréal, $\left({ }^{3}\right)$ RWTH Aachen University

International Workshop on Column Generation Bromont June 11, 2012
(1) Column Generation (CG)
(2) Improved Column Generation (ICG)
(3) Computational experiments: IPS, DCA, and SDCA

Column Generation

$\boldsymbol{\lambda} \in \mathbb{R}_{+}^{n}$: variables
$A \in \mathbb{R}^{m} \times \mathbb{R}^{n}$: constraint matrix $\pi \in \mathbb{R}^{m}$: vector of dual variables
$\mathbf{c} \in \mathbb{R}^{n}$: cost vector
$\mathbf{b} \in \mathbb{R}^{m}:$ right-hand side $\mathbf{x} \in X$: a combinatorial object

Master problem (MP)

$$
\begin{array}{rrll}
\min & \mathbf{c}^{\top} \boldsymbol{\lambda} & & \\
\text { st: } & A \boldsymbol{\lambda} & =\mathbf{b} & {[\boldsymbol{\pi}]} \\
& \boldsymbol{\lambda} & \geq \mathbf{0} .
\end{array}
$$

Subproblem (SP)

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\boldsymbol{\pi}^{\top} \mathbf{a}(\mathbf{x})\right\}
$$

Restricted master problem (RMP)

Defined on a small subset of the variables of MP.

Optimality test

If $\bar{c}_{\text {SP }}^{\star} \geq 0$, no negative reduced cost variables exist. Solution of RMP (embedded into \mathbb{R}_{+}^{n}) optimally solves MP.

Otherwise, add to RMP several variables derived from the subproblem's solution and start a new iteration.

Improved Column Generation (ICG)

Notation

- A_{B} : sub-matrix of A indexed by columns in $\mathrm{B} \subset \mathrm{N}$,
- A^{P} : sub-matrix of A indexed by rows in $\mathrm{P} \subset \mathrm{M}$,
- \bar{A} : linear transformation of A.

Spot intervention

Given is a basis for MP: $A_{B}, \quad \mathrm{~B} \subset \mathrm{~N}$.

$$
\overline{\mathbf{b}}=A_{\mathrm{B}}^{-1} \mathbf{b}
$$

Simplex-Tableau Transformation by Inverse Basis

MP

$$
\bar{A}=A_{\mathrm{B}}^{-1} A, \quad \overline{\mathbf{b}}=A_{\mathrm{B}}^{-1} \mathbf{b}, \quad \overline{\boldsymbol{\pi}}^{\top}=\pi^{\top} A_{\mathrm{B}}
$$

$$
\begin{array}{rrl}
\min & \mathbf{c}^{\top} \boldsymbol{\lambda} & \\
\text { st: } & \bar{A} \boldsymbol{\lambda} & =\overline{\mathbf{b}} \quad[\overline{\boldsymbol{\pi}}] \\
& \boldsymbol{\lambda} \geq \mathbf{0} .
\end{array}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\overline{\boldsymbol{\pi}}^{\top} \overline{\mathbf{a}}(\mathbf{x})\right\}
$$

Row-partition of MP

Row-partition

Let $\mathrm{P}:=\left\{i \in \mathrm{M} \mid \bar{b}_{i}>0\right\} \quad$ and $\quad \mathrm{Z}:=\left\{i \in \mathrm{M} \mid \bar{b}_{i}=0\right\}$.
$\overline{\mathbf{b}}^{\mathrm{P}}>\mathbf{0}$: values of non-degenerate basic variables $\boldsymbol{\lambda}_{\mathrm{P}}$ $\overline{\mathbf{b}}^{z}=\mathbf{0}$: values for degenerate basic variables

$$
|\mathrm{P}|=p<m
$$

Row-partition of MP

$$
\begin{aligned}
\min & \mathbf{c}^{\top} \boldsymbol{\lambda} & & \\
& & & \\
\text { st: } & \bar{A}^{\mathrm{p}} \boldsymbol{\lambda} & =\overline{\mathbf{b}}^{\mathrm{p}} & {\left[\overline{\boldsymbol{\pi}}^{\mathrm{p}}\right] } \\
& \bar{A}^{\mathrm{Z}} \boldsymbol{\lambda} & =\overline{\mathbf{b}}^{z} & {\left[\overline{\boldsymbol{\pi}}^{\mathrm{z}}\right] } \\
& \boldsymbol{\lambda} & \geq \mathbf{0} &
\end{aligned}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\left(\bar{\pi}^{\mathrm{P}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{P}}(\mathbf{x})-\left(\bar{\pi}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Row-partition of MP

$\min \quad \mathbf{c}^{\top} \boldsymbol{\lambda}$

$$
\text { st: } \begin{array}{rlrl}
\bar{A}^{\mathrm{P}} \boldsymbol{\lambda} & =\overline{\mathbf{b}}^{\mathrm{P}} & {\left[\overline{\boldsymbol{\pi}}^{\mathrm{P}}\right]} \\
\bar{A}^{\mathrm{Z}} \boldsymbol{\lambda} & =0 & {\left[\overline{\boldsymbol{\pi}}^{\mathrm{Z}}\right]} \\
\boldsymbol{\lambda} & \geq \mathbf{0}
\end{array}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\left(\bar{\pi}^{\mathrm{P}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{P}}(\mathbf{x})-\left(\bar{\pi}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Row-partition of MP

$$
\begin{aligned}
\min & \mathbf{c}^{\top} \boldsymbol{\lambda} & & \\
& & & \\
\text { st: } & A^{p} \boldsymbol{\lambda} & =\mathbf{b}^{p} & {\left[\pi^{p}\right] } \\
& \bar{A}^{z} \boldsymbol{\lambda} & =\mathbf{0} & {\left[\overline{\boldsymbol{\pi}}^{\mathrm{z}}\right] } \\
& \boldsymbol{\lambda} & \geq \mathbf{0} &
\end{aligned}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\left(\pi^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\bar{\pi}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Row-partition of MP

$$
\begin{array}{lllll}
\min & \mathbf{c}^{\top} \boldsymbol{\lambda} \\
& & \\
\text { st: } & A^{\mathrm{P}} \boldsymbol{\lambda} & = & \mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right]} \\
& \bar{A}^{\mathrm{Z}} \boldsymbol{\lambda} & = & 0 & {\left[\bar{\pi}^{\mathrm{z}}\right]} \\
& \boldsymbol{\lambda} \geq \mathbf{0} & &
\end{array}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X}\left\{c(\mathbf{x})-\left(\pi^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\bar{\pi}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Row-partition of MP

$$
\min \quad \mathbf{c}^{\top} \boldsymbol{\lambda}
$$

$$
\text { st: } \begin{aligned}
A^{\mathrm{P}} \boldsymbol{\lambda} & = & \mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right] } \\
\bar{A}^{\mathrm{Z}} \boldsymbol{\lambda} & = & \mathbf{0} & {\left[\zeta^{\mathrm{Z}}\right] } \\
\boldsymbol{\lambda} \geq \mathbf{0} & & &
\end{aligned}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X, \zeta^{\mathrm{Z}} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\pi^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\zeta^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Going back to optimality conditions

$\overline{\mathbf{c}}$ on the real axis

Let γ capture the minimal value of $\overline{\mathbf{c}}$:

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\max \left\{\gamma \mid \gamma \mathbf{1}^{\top} \leq \overline{\mathbf{c}}^{\top}:=\mathbf{c}^{\top}-\left(\pi^{\mathrm{P}}\right)^{\top} A^{\mathrm{P}}-\left(\zeta^{\mathrm{Z}}\right)^{\top} \bar{A}^{\mathrm{z}}\right\}
$$

Rewrite SP

$$
\begin{gathered}
\overline{\mathrm{c}}_{\mathrm{SP}}^{\star}:=\max \gamma \\
\text { st: } \quad \gamma \mathbf{1}^{\top}+\left(\zeta^{\text {z }}\right)^{\top} \bar{A}^{z} \leq \tilde{\mathbf{c}}^{\top}
\end{gathered}
$$

\square

SP

$$
\begin{array}{rlrl}
\overline{\mathrm{c}}_{\mathrm{sp}}^{\star}:=\min & & \tilde{\mathbf{c}}^{\top} \boldsymbol{\lambda} & \\
\mathrm{st}: & & \mathbf{1}^{\top} \boldsymbol{\lambda} & =1 \\
& & \bar{A}^{2} \boldsymbol{\lambda} & =\mathbf{0} \\
& & \boldsymbol{\lambda}] & {\left[\zeta^{2}\right]} \\
& & \geq \mathbf{0} .
\end{array}
$$

Solving approach
SP is now a linear program solved by column generation over $\mathrm{x} \in X$.

Optimal solution λ^{*}

An optimal solution to SP satisfies $\bar{A}^{\mathrm{Z}} \boldsymbol{\lambda}^{*}=\mathbf{0}$.

Compatibility

Definition

Given vector $\boldsymbol{\lambda}_{\mathrm{P}}>\mathbf{0}$ of non-degenerate basic variables, vector \mathbf{a} is compatible with $\boldsymbol{\lambda}_{\mathrm{P}}$ if and only if $\overline{\mathbf{a}}^{\mathrm{z}}=\mathbf{0}$.

Interpretation

Given the solution vector $\boldsymbol{\lambda}_{\mathrm{P}}>\mathbf{0}$ of non-degenerate variables, vector \mathbf{a} is compatible with $\boldsymbol{\lambda}_{P}$ if and only if \mathbf{a} is a linear combination of the columns of A_{P} :

$$
\mathbf{a}=A_{P} \mathbf{y}
$$

Observe that right-hand side vector \mathbf{b} is compatible.

$$
\begin{aligned}
\overline{\mathbf{b}}^{\mathrm{z}} & =\mathbf{0} \\
\mathbf{b} & =A_{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{P}}
\end{aligned}
$$

Interest for compatible variables

Consider a non-basic compatible variable $\lambda_{j}, j \notin B$ with a negative reduced cost that is selected to enter into the basis.

$$
\left[\begin{array}{c}
\overline{\mathbf{a}}_{j}^{\mathrm{P}} \\
0
\end{array}\right] \text { vs. }\left[\begin{array}{c}
\overline{\mathbf{b}}^{\mathrm{P}} \\
0
\end{array}\right]
$$

Ratio-test computed on the row-set P only:

$$
\min _{i \in \mathrm{P}}\left\{\left.\frac{\bar{b}_{i}}{\bar{a}_{i j}} \right\rvert\, \bar{a}_{i j}>0\right\}
$$

Since $\bar{b}_{i}>0, \forall i \in \mathrm{P}$, the step size for λ_{j} is greater than zero; the objective function strictly decreases, unless $\bar{a}_{i j} \leq 0, \forall i \in \mathrm{P}$, in which case LP is unbounded.

SP

$$
\begin{array}{rlrlc}
\overline{\mathrm{S}}_{\mathrm{SP}}^{\star}:=\min & \tilde{\mathbf{c}}^{\top} \boldsymbol{\lambda} & & \\
\mathrm{st}: & & \mathbf{1}^{\top} \boldsymbol{\lambda} & =1 & {[\gamma]} \\
& & \bar{A}^{z} \boldsymbol{\lambda} & =\mathbf{0} & {\left[\zeta^{Z}\right]} \\
& & \boldsymbol{\lambda} & \geq \mathbf{0} . &
\end{array}
$$

Solving approach

SP is now a linear program

 solved by column generation over $x \in X$.
Optimal solution λ^{*}

An optimal solution to SP satisfies $\bar{A}^{\mathrm{Z}} \boldsymbol{\lambda}^{*}=\mathbf{0}$.
Hence column vector $\left[A \lambda^{*}\right]$ is compatible and strictly improves the objective function if $\bar{c}_{\mathrm{SP}}^{\star}<0$.

Row-partition of MP

$$
\min \quad \mathbf{c}^{\top} \boldsymbol{\lambda}
$$

$$
\text { st: } \begin{aligned}
A^{\mathrm{P}} \boldsymbol{\lambda} & = & \mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right] } \\
\bar{A}^{\mathrm{Z}} \boldsymbol{\lambda} & = & \mathbf{0} & {\left[\zeta^{\mathrm{Z}}\right] } \\
\boldsymbol{\lambda} \geq \mathbf{0} & & &
\end{aligned}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X, \zeta^{\mathrm{Z}} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\pi^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\zeta^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Transformed MP with row and column partitions

Column-partition

- C: index set of compatible variables;
- I: index set of incompatible ones.

Row\&Column-Partition of MP

$$
\begin{array}{rllll}
\min & \mathbf{c}_{\mathrm{C}}^{\top} \boldsymbol{\lambda}_{\mathrm{C}} & +\mathbf{c}_{\mathrm{I}}^{\top} \boldsymbol{\lambda}_{\mathrm{I}} & \\
\text { st: } & A_{\mathrm{C}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{C}} & +A_{\mathrm{I}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{I}} & =\mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right]} \\
& \bar{A}_{\mathrm{C}}^{\mathrm{Z}} \boldsymbol{\lambda}_{\mathrm{C}} & +{\overline{A_{\mathrm{I}}^{\mathrm{Z}}} \boldsymbol{\lambda}_{\mathrm{I}}}=\mathbf{0} & {\left[\zeta^{\mathrm{Z}}\right]} \\
& \boldsymbol{\lambda}_{\mathrm{C}}, & \boldsymbol{\lambda}_{\mathrm{I}} & \geq \mathbf{0}
\end{array}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X, \boldsymbol{\zeta}^{Z} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\boldsymbol{\pi}^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\boldsymbol{\zeta}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Transformed MP with row and column partitions

Column-partition

- C: index set of compatible variables;
- I: index set of incompatible ones.

Row\&Column-Partition of MP

$$
\begin{aligned}
\min & \mathbf{c}_{\mathrm{C}}^{\top} \boldsymbol{\lambda}_{\mathrm{C}} \\
& +\mathbf{c}_{\mathrm{I}}^{\top} \boldsymbol{\lambda}_{\mathrm{I}} \\
\mathrm{st}: & \boldsymbol{A}_{\mathrm{C}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{C}} \\
& +A_{\mathrm{I}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{I}}
\end{aligned}=\mathbf{b}^{\mathrm{P}} \quad\left[\boldsymbol{\pi}^{\mathrm{P}}\right] \quad{\overline{A_{\mathrm{I}}^{\mathrm{Z}} \boldsymbol{\lambda}_{\mathrm{I}}}}_{\mathbf{0} \boldsymbol{\lambda}_{\mathrm{C}}}=\mathbf{0} \quad\left[\zeta^{\mathrm{Z}}\right]
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X, \boldsymbol{\zeta}^{Z} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\boldsymbol{\pi}^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\boldsymbol{\zeta}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

Transformed MP with row and column partitions

Column-partition

- C: index set of compatible variables;
- I: index set of incompatible ones.

Row\&Column-Partition of MP

$$
\begin{array}{rllll}
\min & \mathbf{c}_{\mathrm{C}}^{\top} \boldsymbol{\lambda}_{\mathrm{C}} & +\mathbf{c}_{\mathrm{I}}^{\top} \boldsymbol{\lambda}_{\mathrm{I}} & \\
\mathrm{st}: & A_{\mathrm{C}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{C}}+ & A_{\mathrm{I}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{I}} & =\mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right]} \\
& \bar{A}_{\mathrm{I}}^{\mathrm{Z}} \boldsymbol{\lambda}_{\mathrm{I}} & =\mathbf{0} & {\left[\zeta^{\mathrm{Z}}\right]} \\
\boldsymbol{\lambda}_{\mathrm{C}}, & \boldsymbol{\lambda}_{\mathrm{I}} & \geq \mathbf{0}
\end{array}
$$

SP

$$
\bar{c}_{\mathrm{SP}}^{\star}:=\min _{\mathbf{x} \in X, \boldsymbol{\zeta}^{Z} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\boldsymbol{\pi}^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\boldsymbol{\zeta}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})\right\} .
$$

ow-reduced RMP (rRMP)

Column-partition

- C: index set of compatible variables;
- I: index set of incompatible ones.

Row\&Column-Partition of MP

$\min \quad \mathbf{c}_{\mathrm{C}}^{\top} \boldsymbol{\lambda}_{\mathrm{C}}$

$$
\text { st: } A_{\mathrm{C}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{C}} \quad=\mathbf{b}^{\mathrm{P}} \quad\left[\boldsymbol{\pi}^{\mathrm{P}}\right]
$$

[ζ^{2}]
λ_{C}
≥ 0
SP

$$
\bar{c}_{\mathrm{cSP}}^{\star}:=\min _{\mathbf{x} \in X, \boldsymbol{\zeta}^{Z} \in \mathbb{R}^{m-p}}\left\{c(\mathbf{x})-\left(\boldsymbol{\pi}^{P}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x})-\left(\boldsymbol{\zeta}^{\mathrm{Z}}\right)^{\top} \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x}) \mid \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})=\mathbf{0}\right\} .
$$

A row-reduced RMP (rRMP)

Column-partition

- C: index set of compatible variables;
- I: index set of incompatible ones.

Row\&Column-Partition of MP

$$
\begin{array}{ccccc}
\min & \mathbf{c}_{\mathrm{C}}^{\top} \boldsymbol{\lambda}_{\mathrm{C}} & & \\
\text { st: } & \boldsymbol{A}_{\mathrm{C}}^{\mathrm{P}} \boldsymbol{\lambda}_{\mathrm{C}} & =\mathbf{b}^{\mathrm{P}} & {\left[\boldsymbol{\pi}^{\mathrm{P}}\right]} \\
& \boldsymbol{\lambda}_{\mathrm{C}} & \geq \mathbf{0} & {\left[\boldsymbol{\zeta}^{\mathrm{Z}}\right]}
\end{array}
$$

cSP

$$
\bar{c}_{\mathrm{cSP}}^{\star}:=\min _{\mathbf{x} \in X} \quad\left\{c(\mathbf{x})-\left(\pi^{\mathrm{P}}\right)^{\top} \mathbf{a}^{\mathrm{P}}(\mathbf{x}) \quad \mid \overline{\mathbf{a}}^{\mathrm{Z}}(\mathbf{x})=\mathbf{0}\right\} .
$$

An ICG Algorithm

Step 0. Initialize RMP, the Restricted Master Problem.
Step 1. Solve RMP.
Step 2. Identify a basis A_{B} with $p \leq m$ non-degenerate basic variables.
Step 3. If $p<m$ (degenerate solution), Goto Step 7.
Step 4. Otherwise solve SP.
Step 5. If $\bar{c}_{\mathrm{SP}}^{\star}<0$, add columns to RMP; Goto Step 1.
Step 6. Otherwise Stop: RMP and MP are optimal.

An ICG Algorithm

Step 0. Initialize RMP, the Restricted Master Problem.
Step 1. Solve RMP.
Step 2. Identify a basis A_{B} with $p \leq m$ non-degenerate basic variables.
Step 3. If $p<m$ (degenerate solution), Goto Step 7.
Step 4. Otherwise solve SP.
Step 5. If $\bar{c}_{\mathrm{SP}}^{\star}<0$, add columns to RMP; Goto Step 1.
Step 6. Otherwise Stop: RMP and MP are optimal.
Step 7. $\bar{b}:=A_{\mathrm{B}}^{-1} b$. Let $\mathrm{P}:=\left\{i \mid \bar{b}_{i}>0\right\}$ and $\mathrm{Z}:=\left\{i \mid \bar{b}_{i}=0\right\}$.
Step 8. Solve rRMP, the row-reduced RMP.
Step 9. Solve cSP.
Step 10. If $\bar{c}_{\text {cSP }}^{\star}<0$, add compatible columns to rRMP; Goto Step 8.
Step 11. Otherwise solve rSP by column generation.
Step 12. If $\bar{c}_{\mathrm{rSP}}^{\star}<0$, add incompatible columns to RMP; Goto Step 1.
Step 13. Otherwise Stop: rRMP and MP are optimal.

Implementation issues

- Choice of the reduced basis: A_{p}^{p}.
- Row-partition: when to update?
- Implicit upper bounds: use the smallest rRMP and rSP.
- Priority to cSP but threshold on $\bar{c}_{\text {cSP }}^{*}$ to switch for iSP.
- Compatibility: weaker condition $\overline{\mathbf{a}}_{j}^{z} \leq \mathbf{0}$.
- System with inequalities.

Key to implementation success
Understanding the structure of the problem

Computational experiments

Improved Primal Simplex (IPS) vs. CPLEX-Primal
 Simultaneous Vehicle and Crew Scheduling Problems
 10 instances: 2000 constraints and 10000 variables
 Degeneracy around 50\%
 CPU reduced by a factor 4.1

Aircraft Fleet Assignment
14 instances: 5000 constraints and 25000 variables
Degeneracy around 65\%
CPU reduced by a factor 15.8

Computational experiments

ubIPS (IPS with upper bounded variables)

```
Aircraft Fleet Assignment
14 instances: 5000 constraints and 25000 variables
Degeneracy around 65\%
CPU reduced by a factor 32.1
```


Statistcal t-test

A t-test on the paired data shows that there is no significant difference between IPS and ubIPS on these instances.

CPLEX considerably slows down when upper bounds are explicitly imposed while ubIPS does not. This observation is at the origin of the research done on ICG with implicit upper bounded variables.

Computational Experiments

Dynamic Constraints Aggregation (DCA) within GENCOL

Set Partitioning models for routing and scheduling applications Instances with 2000 constraints and 25000 variables
Degeneracy around 50% to 60%
CPU reduced by factors 50 to 100

A combination of many factors

- smaller rRMP dynamically adjusted for the number of rows
- reduced number of degenerate pivots
- smaller cSP (task aggregation also done within networks)
- restricted versions of iSP (low-rank incompatibilities)
- smaller number of column generation iterations
- less fractional linear programming relaxations
- smaller branch-and-bound search trees

The iSeries: ICG, IPS, IPNS

Improved Column Generation

Improved Primal Simplex

Improved Primal Network Simplex

Dynamic Constraint Aggregation:
A specialized version for Set Partitioning

10 times faster than the Primal Simplex

Strongly polynomial algorithm

Conclusions

- CG exploits the modeling structure of a subproblem.
- Main drawback: tailing-off due to degenerate iterations.
- ICG exploits both the modeling structure of a problem and the algebraic structure of its solutions. (dual variables freedom)
- ICG takes advantage of degenerate solutions by reducing the row-size of the master problem. (compatible variables priority)
** Future work needed on implementation strategies for generic problems.

References

DCA

- I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers. Dynamic aggregation of set partitioning constraints in column generation. Operations Research, 53(4):632-645, 2005.
doi: 10.1287/opre.1050.0222.
- I. Elhallaoui, G. Desaulniers, A. Metrane, and F. Soumis. Bi-dynamic constraint aggregation and subproblem reduction. Computers \& Operations Research, 35(5):1713-1724, 2008. doi: 10.1016/j.cor.2006.10.007.
- I. Elhallaoui, A. Metrane, F. Soumis, and G. Desaulniers. Multi-phase dynamic constraint aggregation for set partitioning type problems. Mathematical Programming, 123(2):345-370, 2010b. doi: $10.1007 / \mathrm{s} 10107-008-0254-5$.

References

IPS

- I. Elhallaoui, A. Metrane, G. Desaulniers, and F. Soumis. An Improved Primal Simplex algorithm for degenerate linear programs. INFORMS Journal on Computing, 2010a. doi: 10.1287/ijoc.1100.0425.
- V. Raymond, F. Soumis, and A. Metrane. Improved Primal Simplex version 3: Cold start, generalization for bounded variable problems and a new implementation. Les Cahiers du GERAD G-2009-15, HEC Montréal, Canada, 2008.
- V. Raymond, F. Soumis, A. Metrane, and J. Desrosiers. Positive Edge: A pricing criterion for the identification of non-degenerate simplex pivots. Les Cahiers du GERAD G-2010-61, HEC Montréal, Canada, 2010a. In revision for Operations Research.
- V. Raymond, F. Soumis, and D. Orban. A new version of the Improved Primal Simplex for degenerate linear program. Computers \& Operations Research, 37(1):91-98, 2010b.
doi: 10.1016/j.cor.2009.03.020.

References

SDCA

- P. Benchimol, G. Desaulniers, and J. Desrosiers. Stabilized dynamic constraint aggregation for solving set partitioning problems. Les Cahiers du GERAD, G-2011-56, 26 pages, 2005.

ICG

- J. Desrosiers, J.B. Gauthier, and M.E. Lübbecke. Improved column generation for highly degenerate master problems. Les Cahiers du GERAD, G-2011-66, 26 pages, 2005. http://www.optimization-online.org/DB_HTML/2011/12/3260.html

