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Our Setting

We are solving MIPs of the form

min cTx

s. t. Ax ≥ b

Dx ≥ d

x = Zq ×Qn−q.
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Our Setting

We are solving MIPs of the form

min cTx

s. t. Ax ≥ b

Dx ≥ d

x = Zq ×Qn−q.

In our applications, D has a block structure, i.e.

Dx ≥ d ⇐⇒
Dkxk ≥ dk for all k

x = x1 × · · · × xK .
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Our Setting

We are solving MIPs of the form

min cTx

s. t. Ax ≥ b

Dx ≥ d

x = Zq ×Qn−q.

Apply Dantzig-Wolfe Decomposition, i.e. convexify the blocks by

xk =
∑
p∈Pk

λkpx
kp,

∑
p∈Pk

λkp = 1, λ ≥ 0,

where xkp ∈ Zqk ×Qnk−qk .
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Our Setting

; Master problem:

min
∑
k

∑
p∈Pk

ckpλkp

s. t.
∑
k

∑
p∈Pk

akpλkp ≥ b

∑
p∈Pk

λkp = 1 ∀k

xk =
∑
kp∈Pk

λkpx
kp ∀k

λ ≥ 0

x ∈ Zq ×Qn−q

=⇒ potentially stronger relaxation!
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Primal Heuristics

I Important aspect of MIP solving: finding good feasible solutions to
get strong primal bounds

I The earlier good solutions are found, the more B&B nodes can be
pruned
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Primal Heuristics

I Most heuristics work with an LP feasible solution x̃, some others also
with already known feasible solutions (improvement heuristics)

I Often, x̃ comes from the LP relaxation

I However, an x̃ can also be obtained by translating the master LP
solution into the original space

I In our setting, there are two spaces to look for feasible solutions:
I the master variables (where the relaxation is solved)
I the original variables
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Primal Heuristics

Common paradigms:

I Round an LP feasible solution while trying to avoid violation of the
linear constraints

I Quickly go down the Branch-and-Bound tree (diving)

I Search a neighborhood of an LP feasible and/or some feasible
solutions (Large Neighborhood Search)
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Lübbecke, Puchert (RWTH Aachen) LNS in Column Generation Column Generation 2012



Outline

1 Introduction

2 Classical LNS Heuristics

3 Extreme Point Heuristics

4 Computational Results
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Large Neighborhood Search

I For general MIPs, a number of LNS heuristics have already been
developed

I A neighborhood is defined by adding constraints and/or changing
variable bounds and thus restricting the feasible space

I The neighborhood is searched by solving the resulting sub-MIP

I The sub-MIP is smaller and therefore hopefully easier to solve
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Lübbecke, Puchert (RWTH Aachen) LNS in Column Generation Column Generation 2012



Classical LNS heuristics

Let x̃ be LP feasible, x̄ be LP and integer feasible.

I RENS (Relaxation Enforced Neighborhood Search):
For each variable, set its bounds to

bx̃ic ≤ x̃i ≤ dx̃ie;

I RINS (Relaxation Induced Neighborhood Search):
Fix each variable which satisfies x̃i = x̄i.
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Classical LNS heuristics

Let x̄, x̄1, . . . , x̄κ be LP and integer feasible.

I Crossover:
Fix each variable for which x̄1 = · · · = x̄κ;

I OneOpt:
For each integer variable, try to shift x̄i in a direction that improves
the objective and preserves LP feasibility.
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Extreme Point Heuristics

I In B&P, each x̃ is a convex combination of points xp

I The points are integer feasible and may only violate the Ax ≥ b
constraints

Subproblem

Master problem

x̃

xp1

xp2
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Extreme Point Heuristics

In Column Generation: Define neighborhoods in terms of extreme points
xp:

I Extreme Point Crossover:
Choose κ extreme points xp1 , . . . , xpκ ; fix each variable xi that
satisfies xp1i = · · · = xpκi ;

I Extreme Point RINS:
Choose again κ extreme points and let them “vote”: Fix a variable xi
if for at least α · 100 percent of the extreme points xp, we have
xpi = x̃i.
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Which extreme points are chosen?

There are a number of possible choices for xp:

I all xp generated so far;

I all xp that contribute to the current x̃, i.e. for which λp > 0;

I a random choice.
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Remarks

I The extreme point heuristics are inspired by Crossover and RINS; in
contrast to them, however, they do not need to know any feasible
solution

I They work on the original variables; however, they use information
yielded by the master problem

I For Binary Programs and Mixed Binary Programs, their
neighborhoods are related to the neighborhood of the RENS heuristic
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Extreme Points vs. Feasible Solutions

Is it justified to use extreme points instead of feasible solutions? (They
may be, after all, infeasible.)

; See next slide for an answer...
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Extreme Points vs. Feasible Solutions
Experiment: Compare extreme points with known feasible solutions.
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Figure: Coincidence of extreme points with feasible solutions
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Results

I The heuristics have been implemented in GCG (see talk by
M. Lübbecke tomorrow)

I We tested on several structured problem classes from the literature:
I Bin Packing (BP)
I Capacitated p-median (CPMP)
I Cutting Stock (CS)
I Generalized Assignment (GAP)
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Performance: RENS, RINS, OneOpt

RENS RINS OneOpt
Test set found time found time found time
BP-bison1 164/714 1.1 0/714 1.0 74/714 1.0
CPMP-optlab 1/188 1.0 1/188 1.0 0/188 1.0
CPMP-orlib 0/5 1.0 0/5 1.0 0/5 1.0
CS-schwerin 0/188 1.0 0/188 1.0 0/188 1.0
CS-waescher 0/21 1.0 0/21 1.0 0/21 1.0
GAP-orlib-min 48/84 1.0 0/84 1.0 0/84 1.0
GAP-yagiura-min 12/57 1.0 0/57 1.0 0/57 1.0

Table: Found solutions and execution times
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Performance: Extreme Point Heuristics

XP Crossover XP RINS
Test set found time found time
BP-bison1 123/714 1.1 134/714 1.1
CPMP-optlab 1/88 1.0 6/88 1.0
CPMP-orlib 0/5 1.0 1/5 1.0
CS-schwerin 139/188 1.0 126/188 1.0
CS-waescher 21/21 1.0 14/21 1.0
GAP-orlib-min 9/36 1.0 27/36 1.0
GAP-yagiura-min 11/57 1.0 19/57 1.0

Table: Found solutions and execution times
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Solution quality: Bin Packing
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Figure: Gaps for Bin Packing problems
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Solution quality: Capacitated p-median
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Figure: Gaps for Capacitated p-median problems
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Solution quality: Cutting Stock
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Solution quality: Generalized Assignment
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Results

I XP Crossover and XP RINS particularly successful on CS, but also on
BP and GAP; only a few solutions on CPMP

I Solutions on GAP and CPMP of good quality (< 6%, < 1.2%)

I RENS fails on CS (neighborhood too large), but its solutions are
better than those found by XP heuristics (to be expected)

I XP RINS outperforms XP Crossover on GAP

I OneOpt only suitable for BP

I The similarity of extreme points to integer feasible points does not
tell us how good the heuristics work
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Conclusion

I We tested LNS heuristics in the context of Column Generation

I In particular, we introduced two new heuristics (XP Crossover and XP
RINS)

I The new heuristics produce good solutions on a number of different
structured problems

I In the future: Tests on more structured problems
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