Large Neighborhood Search in Column Generation Algorithms

Marco Lübbecke and Christian Puchert

RWTH Aachen University Chair of Operations Research

International Workshop on Column Generation Bromont, Québec, June 10-13, 2012

Outline

- Classical LNS Heuristics
- Extreme Point Heuristics
- 4 Computational Results

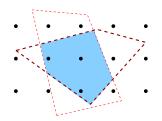
Outline

- 2 Classical LNS Heuristics
- 8 Extreme Point Heuristics
- Computational Results

We are solving MIPs of the form

min
$$c^T x$$

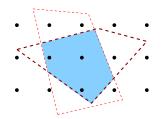
s.t. $Ax \ge b$
 $Dx \ge d$
 $x = \mathbb{Z}^q \times \mathbb{Q}^{n-q}$



We are solving MIPs of the form

min
$$c^T x$$

s.t. $Ax \ge b$
 $Dx \ge d$
 $x = \mathbb{Z}^q \times \mathbb{Q}^{n-q}$.



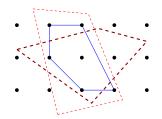
In our applications, D has a block structure, i.e.

$$Dx \ge d \quad \Longleftrightarrow \quad \begin{array}{l} D^k x^k \ge d^k \text{ for all } k \\ x = x^1 \times \cdots \times x^K. \end{array}$$

We are solving MIPs of the form

min
$$c^T x$$

s.t. $Ax \ge b$
 $Dx \ge d$
 $x = \mathbb{Z}^q \times \mathbb{Q}^{n-q}.$



Apply Dantzig-Wolfe Decomposition, i.e. convexify the blocks by

$$x^{k} = \sum_{p \in P_{k}} \lambda_{kp} x^{kp}, \ \sum_{p \in P_{k}} \lambda_{kp} = 1, \ \lambda \ge 0,$$

where $x^{kp} \in \mathbb{Z}^{q_k} \times \mathbb{Q}^{n_k - q_k}$.

 \rightsquigarrow Master problem:

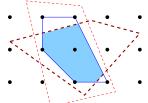
$$\min \sum_{k} \sum_{p \in P_{k}} c^{kp} \lambda_{kp}$$
s. t.
$$\sum_{k} \sum_{p \in P_{k}} a^{kp} \lambda_{kp} \ge b$$

$$\sum_{p \in P_{k}} \lambda_{kp} = 1 \quad \forall k$$

$$x^{k} = \sum_{kp \in P_{k}} \lambda_{kp} x^{kp} \quad \forall k$$

$$\lambda \ge 0$$

$$x \in \mathbb{Z}^{q} \times \mathbb{Q}^{n-q}$$



 \implies potentially stronger relaxation!

 Important aspect of MIP solving: finding good feasible solutions to get strong primal bounds

- Important aspect of MIP solving: finding good feasible solutions to get strong primal bounds
- The earlier good solutions are found, the more B&B nodes can be pruned

 Most heuristics work with an LP feasible solution x
 x, some others also with already known feasible solutions (*improvement heuristics*)

- Most heuristics work with an LP feasible solution x
 x, some others also with already known feasible solutions (*improvement heuristics*)
- Often, \tilde{x} comes from the LP relaxation

- Most heuristics work with an LP feasible solution x
 x, some others also with already known feasible solutions (*improvement heuristics*)
- Often, \tilde{x} comes from the LP relaxation
- However, an x̃ can also be obtained by translating the master LP solution into the original space

- Most heuristics work with an LP feasible solution x̃, some others also with already known feasible solutions (*improvement heuristics*)
- Often, \tilde{x} comes from the LP relaxation
- ▶ However, an \tilde{x} can also be obtained by translating the master LP solution into the original space
- ▶ In our setting, there are *two spaces* to look for feasible solutions:
 - the master variables (where the relaxation is solved)
 - the original variables

Common paradigms:

 Round an LP feasible solution while trying to avoid violation of the linear constraints

Common paradigms:

- Round an LP feasible solution while trying to avoid violation of the linear constraints
- Quickly go down the Branch-and-Bound tree (*diving*)

Common paradigms:

- Round an LP feasible solution while trying to avoid violation of the linear constraints
- Quickly go down the Branch-and-Bound tree (diving)
- Search a neighborhood of an LP feasible and/or some feasible solutions (*Large Neighborhood Search*)

- 8 Extreme Point Heuristics
- 4 Computational Results

 For general MIPs, a number of LNS heuristics have already been developed

- For general MIPs, a number of LNS heuristics have already been developed
- A neighborhood is defined by adding constraints and/or changing variable bounds and thus restricting the feasible space

- For general MIPs, a number of LNS heuristics have already been developed
- A neighborhood is defined by adding constraints and/or changing variable bounds and thus restricting the feasible space
- The neighborhood is searched by solving the resulting sub-MIP

- For general MIPs, a number of LNS heuristics have already been developed
- A neighborhood is defined by adding constraints and/or changing variable bounds and thus restricting the feasible space
- The neighborhood is searched by solving the resulting sub-MIP
- The sub-MIP is smaller and therefore hopefully easier to solve

Let \tilde{x} be LP feasible, \bar{x} be LP and integer feasible.

 RENS (Relaxation Enforced Neighborhood Search): For each variable, set its bounds to

$$\lfloor \tilde{x}_i \rfloor \le \tilde{x}_i \le \lceil \tilde{x}_i \rceil;$$

Let \tilde{x} be LP feasible, \bar{x} be LP and integer feasible.

 RENS (Relaxation Enforced Neighborhood Search): For each variable, set its bounds to

 $\lfloor \tilde{x}_i \rfloor \leq \tilde{x}_i \leq \lceil \tilde{x}_i \rceil;$

► RINS (Relaxation Induced Neighborhood Search): Fix each variable which satisfies $\tilde{x}_i = \bar{x}_i$.

Let $\bar{x}, \bar{x}_1, \ldots, \bar{x}_{\kappa}$ be LP and integer feasible.

Crossover:

Fix each variable for which $\bar{x}_1 = \cdots = \bar{x}_{\kappa}$;

Let $\bar{x}, \bar{x}_1, \ldots, \bar{x}_{\kappa}$ be LP and integer feasible.

- Crossover:
 Fix each variable for which x
 ₁ = ··· = x
 _κ;
- OneOpt:

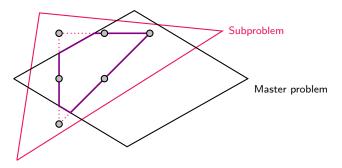
For each integer variable, try to shift \bar{x}_i in a direction that improves the objective and preserves LP feasibility.

Outline

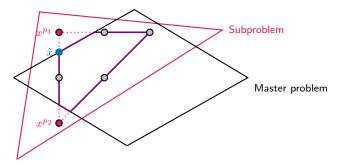
- 3 Extreme Point Heuristics
- 4 Computational Results

- ▶ In B&P, each \tilde{x} is a convex combination of points x^p
- \blacktriangleright The points are integer feasible and may only violate the $Ax \geq b$ constraints

- ▶ In B&P, each \tilde{x} is a convex combination of points x^p
- \blacktriangleright The points are integer feasible and may only violate the $Ax \geq b$ constraints



- ▶ In B&P, each \tilde{x} is a convex combination of points x^p
- \blacktriangleright The points are integer feasible and may only violate the $Ax \geq b$ constraints



In Column Generation: Define neighborhoods in terms of extreme points x^p :

 Extreme Point Crossover: Choose κ extreme points x^{p₁},..., x^{p_κ}; fix each variable x_i that satisfies x^{p₁}_i = ··· = x^{p_κ}_i;

In Column Generation: Define neighborhoods in terms of extreme points x^p :

- Extreme Point Crossover: Choose κ extreme points $x^{p_1}, \ldots, x^{p_{\kappa}}$; fix each variable x_i that satisfies $x_i^{p_1} = \cdots = x_i^{p_{\kappa}}$;
- Extreme Point RINS: Choose again κ extreme points and let them "vote": Fix a variable x_i if for at least α ⋅ 100 percent of the extreme points x^p, we have x_i^p = x̃_i.

Which extreme points are chosen?

There are a number of possible choices for x^p :

• all x^p generated so far;

Which extreme points are chosen?

There are a number of possible choices for x^p :

- all x^p generated so far;
- ▶ all x^p that contribute to the current \tilde{x} , i.e. for which $\lambda_p > 0$;

Which extreme points are chosen?

There are a number of possible choices for x^p :

- all x^p generated so far;
- ▶ all x^p that contribute to the current \tilde{x} , i.e. for which $\lambda_p > 0$;
- a random choice.

Remarks

The extreme point heuristics are inspired by Crossover and RINS; in contrast to them, however, they do not need to know any feasible solution

Remarks

- The extreme point heuristics are inspired by Crossover and RINS; in contrast to them, however, they do not need to know any feasible solution
- They work on the original variables; however, they use information yielded by the master problem

Remarks

- The extreme point heuristics are inspired by Crossover and RINS; in contrast to them, however, they do not need to know any feasible solution
- They work on the original variables; however, they use information yielded by the master problem
- For Binary Programs and Mixed Binary Programs, their neighborhoods are related to the neighborhood of the RENS heuristic

Extreme Points vs. Feasible Solutions

Is it justified to use extreme points instead of feasible solutions? (They may be, after all, infeasible.)

 \rightsquigarrow See next slide for an answer...

Extreme Points vs. Feasible Solutions

Experiment: Compare extreme points with known feasible solutions.

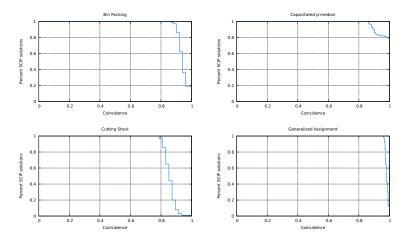


Figure: Coincidence of extreme points with feasible solutions

Outline

Introduction

- 2 Classical LNS Heuristics
- Extreme Point Heuristics
- 4 Computational Results

Lübbecke, Puchert (RWTH Aachen)

Results

- The heuristics have been implemented in GCG (see talk by M. Lübbecke tomorrow)
- ▶ We tested on several structured problem classes from the literature:
 - Bin Packing (BP)
 - Capacitated *p*-median (CPMP)
 - Cutting Stock (CS)
 - Generalized Assignment (GAP)

Performance: RENS, RINS, OneOpt

	RENS		RINS		OneOpt	
Test set	found	time	found	time	found	time
BP-bison1	164/714	1.1	0/714	1.0	74/714	1.0
CPMP-optlab	1/188	1.0	1/188	1.0	0/188	1.0
CPMP-orlib	0/5	1.0	0/5	1.0	0/5	1.0
CS-schwerin	0/188	1.0	0/188	1.0	0/188	1.0
CS-waescher	0/21	1.0	0/21	1.0	0/21	1.0
GAP-orlib-min	48/84	1.0	0/84	1.0	0/84	1.0
GAP-yagiura-min	12/57	1.0	0/57	1.0	0/57	1.0

Table: Found solutions and execution times

Performance: Extreme Point Heuristics

	XP Cros	sover	XP RINS		
Test set	found	time	found	time	
BP-bison1	123/714	1.1	134/714	1.1	
CPMP-optlab	1/88	1.0	6/88	1.0	
CPMP-orlib	0/5	1.0	1/5	1.0	
CS-schwerin	139/188	1.0	126/188	1.0	
CS-waescher	21/21	1.0	14/21	1.0	
GAP-orlib-min	9/36	1.0	27/36	1.0	
GAP-yagiura-min	11/57	1.0	19/57	1.0	

Table: Found solutions and execution times

Solution quality: Bin Packing

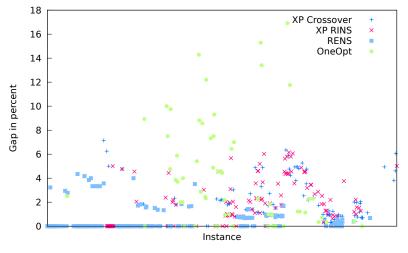
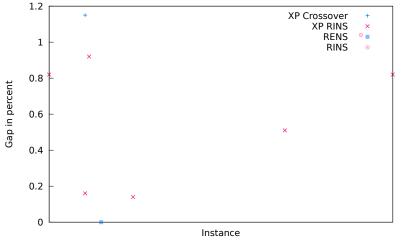
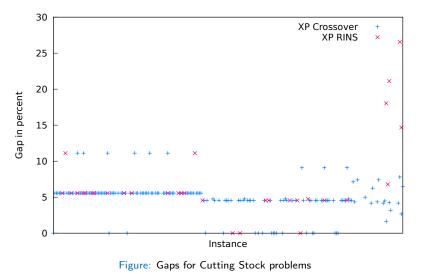


Figure: Gaps for Bin Packing problems

Solution quality: Capacitated *p*-median



Solution quality: Cutting Stock



Solution quality: Generalized Assignment

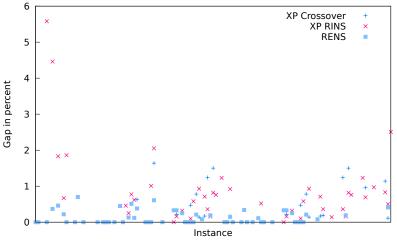


Figure: Gaps for Generalized Assignment problems

Results

- XP Crossover and XP RINS particularly successful on CS, but also on BP and GAP; only a few solutions on CPMP
- Solutions on GAP and CPMP of good quality (< 6%, < 1.2%)
- RENS fails on CS (neighborhood too large), but its solutions are better than those found by XP heuristics (to be expected)
- XP RINS outperforms XP Crossover on GAP
- OneOpt only suitable for BP
- The similarity of extreme points to integer feasible points does not tell us how good the heuristics work

Conclusion

- We tested LNS heuristics in the context of Column Generation
- In particular, we introduced two new heuristics (XP Crossover and XP RINS)
- The new heuristics produce good solutions on a number of different structured problems
- In the future: Tests on more structured problems

