The integrated airline recovery problem on a minimal disruption neighbourhood

Stephen J Maher

School of Mathematics and Statistics University of New South Wales Sydney, Australia

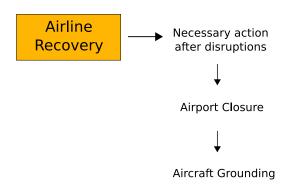
11th June 2012

Outline

2

Integrated Airline Recovery

- Integrated Airline Recovery
- Solution Methodology


3 Results

Airline Recovery

Airline Recovery

Airline Recovery

Airline Recovery

- Large problem with many stages.
- Needs to be solvable in real time.
- Interaction between each stage in the problem.

Airline Recovery

Airline Recovery Process

 Schedule

 Flight cancellation and delays

 Aircraft

 Rerouting and delay decisions

 Crew

 Pairing repair and deadhead

 Passengers

 Reallocation or lost passengers

Airline Recovery

Airline Recovery Process

Schedule		Flight cancellation and delays
Aircraft		Rerouting and delay decisions
Crew		Pairing repair and deadhead
Passengers	>	Reallocation or lost passengers

Previous Approaches

Problem Size

- Time-band network Bard et. al. (2001), Eggenberg et. al. (2007).
- Preprocessing selection of resources, both crew and aircraft Abdelghany *et. al.* (2004, 2008), Petersen *et. al.* (2010).
- Fixed flight schedules Wei *et. al.* (1997), Stojković *et. al.* (1998), Medhard and Sawhney (2007).

Previous Approaches

Complexity

- Selection of recovery policies Johnson *et. al.* (1994), Stojković and Soumis (2001 and 2005), Abdelghany *et. al.* (2004).
- Decomposition techniques Lettosvky (1997), Petersen *et. al.* (2010), Abdelghany *et. al.* (2004, 2008)

ntegrated Airline Recovery Solution Methodology

Outline

2

Integrated Airline RecoveryIntegrated Airline Recovery

Solution Methodology

3) Results

Integrated Airline Recovery Solution Methodology

Integrated Airline Recovery

Considerations

- Time allowed to return back to schedule.
- Size of the recovery network restricted by recovery window.
- Equipment included in the recovery problem using all available crew and aircraft.

Integrated Airline Recovery Solution Methodology

Integrated Airline Recovery

- Integrating crew, aircraft and passenger reallocation.
- Recovery policies of cancellation and delays.
- Crew rescheduling, reserve crew and deadhead.
- Aircraft rerouting.
- Integration through short and restricted connections, and delay consistency.

Introduction Integrated Airline Recovery Results

Integrated Airline Recovery

Crew Recovery

 $\mathsf{Min} \quad \sum \sum c_{\rho}^{k} \mathbf{x}_{\rho}^{k} + \sum g^{\mathcal{DH}} \nu_{k} + \sum \sum c_{\rho}^{r} \mathbf{y}_{\rho}^{r} + \sum \sum d_{j\rho} \mathbf{z}_{j\rho},$ $\overline{K \in K}$ $\overline{r \in R} \ \overline{p \in P^r}$ $k \in K \ p \in P^k$ $i \in N^D p \in P^j$ $\sum \sum a_{jp}^k x_p^k + \sum z_{jp} = 1 \quad \forall j \in N^D,$ $k \in K \ p \in P^k$ p∈Pj $\sum \sum a_{ip}^k x_p^k = 1 \quad \forall j \in N_{out}^K,$ $k \in K \ p \in P^k$ $\sum \mathbf{x}_{p}^{k} + \nu_{k} = \mathbf{1} \quad \forall k \in \mathbf{K},$ $n \in P^k$ $\mathbf{x}_{\mathbf{p}}^{k} \in \{0,1\} \ \forall k \in K, \forall \mathbf{p} \in \mathbf{P}^{k}, \quad \nu_{k} \in \{0,1\} \ \forall k \in K.$

Integrated Airline Recovery Solution Methodology

Aircraft and Passengers

$$\begin{split} \sum_{r \in R} \sum_{p \in P^r} a_{jp}^r y_p^r + \sum_{p \in P^j} z_{jp} &= 1 \quad \forall j \in N^D, \\ \sum_{r \in R} \sum_{p \in P^r} a_{jp}^r y_p^r &= 1 \quad \forall j \in N_{out}^R, \\ \sum_{r \in R} o_{tp}^r y_p^r &\geq M_t^D \quad \forall t \in T, \\ \sum_{r \in R} y_p^r &\leq 1 \quad \forall r \in R, \\ \sum_{p \in P^j} z_{jp} &\leq 1 \quad \forall j \in N^D, \\ y_p^r &\in \{0, 1\} \; \forall r \in R, \forall p \in P^r, \quad z_{jp} \in \{0, 1\} \; \forall j \in N^D, \forall p \in P^j. \end{split}$$

Integrated Airline Recovery Solution Methodology

Integration Constraints

$$\begin{split} \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}^{k}} b_{ijp}^{k} x_{p}^{k} - \sum_{r \in \mathcal{R}} \sum_{p \in \mathcal{P}^{r}} b_{ijp}^{r} y_{p}^{r} &\leq 0 \quad \forall (i, j) \in \mathcal{E}^{D}, \\ \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}^{k}} a_{jp}^{ku} x_{p}^{k} - \sum_{r \in \mathcal{R}} \sum_{p \in \mathcal{P}^{r}} a_{jp}^{ru} y_{p}^{r} &= 0 \quad \forall j \in \mathcal{N}^{D}, \forall u \in U_{j}, \\ \sum_{k \in \mathcal{K}} \sum_{p \in \mathcal{P}^{k}} a_{jp}^{ku} (Maxcap - Pax(j)) x_{p}^{k} - \sum_{i \in \mathcal{N}^{i}} \sum_{p \in \mathcal{P}^{i}} h_{ijp}^{u} z_{ip} \geq 0 \quad \forall j \in \mathcal{N}^{D}, \forall u \in U_{j}, \end{split}$$

Integrated Airline Recovery Solution Methodology

Column Generation - Crew and Aircraft

- Solved using a multi-label shortest path algorithm.
- Delays are incorporated in the subproblem through the use of flight copies.

$$\hat{c}_{\rho}^{k} = c_{\rho}^{k} - \sum_{j \in N^{D} \cup N_{out}^{K}} a_{j\rho}^{k} \alpha_{j}^{K} - \sum_{(i,j) \in E^{D}} b_{ij\rho}^{k} \rho_{ij} - \sum_{j \in N^{D}} \sum_{u \in U_{j}} a_{j\rho}^{ku} \gamma_{j}^{u} \\ - \sum_{j \in N^{D}} \sum_{u \in U_{j}} a_{j\rho}^{ku} (Maxcap - Pax(j))\lambda_{j}^{u} - \delta^{k}, \\ \hat{c}_{\rho}^{r} = c_{\rho}^{r} - \sum_{j \in N^{D} \cup N_{out}^{R}} a_{j\rho}^{r} \alpha_{j}^{R} - \sum_{t \in T} o_{t\rho}^{r} \epsilon_{t} + \sum_{(i,j) \in E^{D}} b_{ij\rho}^{r} \rho_{ij} + \sum_{j \in N^{D}} \sum_{u \in U_{j}} a_{j\rho}^{ru} \gamma_{j}^{u} - \delta^{r}.$$

Integrated Airline Recovery Solution Methodology

Column Generation - Cancellation variables

- Column generation subproblem formulated as a knapsack problem.
- A column is generated for each flight in the recovery window.

$$\hat{d}_{ip} = g^{CAN} \mathcal{P}\!ax(i) - lpha_i^{K} - lpha_i^{R} + \sum_{j \in N_i^{post}} \sum_{u \in U_j} h_{ijp}^u \left(\lambda_j^u - g^{CAN} + d_{ij}
ight) - \delta^i.$$

Integrated Airline Recovery Solution Methodology

Cancellation Variables Subproblem

$$\begin{array}{ll} \max & \sum_{j \in N_i^{post}} \sum_{u \in U_j} \left(g^{CAN} - d_{ij} - \lambda_{ij}^u \right) h_{ij}^u, \\ \text{s.t.} & \sum_{j \in N_i^{post}} \sum_{u \in U_j} h_{ij}^u \leq Pax(i), \\ & \sum_{u \in U_j} h_{ij}^u \leq (Maxcap - Pax(j))a_{ij}^u \quad \forall j \in N_i^{post}, \\ & \sum_{u \in U_j} a_{ij}^u = 1 \quad \forall j \in N_i^{post}, \\ & h_{ij}^u \in \mathbb{Z}, \forall j \in N_j^{post}, \forall u \in U_j, \\ & a_{ij}^u \in \{0, 1\}, \forall j \in N_j^{post}, \forall u \in U_j. \end{array}$$

Integrated Airline Recovery Solution Methodology

Cancellation Variables Subproblem

Scale Cancellation Same Schedule constraints

$$\sum_{k \in K} \sum_{p \in P^k} a_{jp}^{ku} x_p^k - \sum_{i \in N^j} \sum_{p \in P^i} \bar{h}_{ijp}^u z_{ip} \ge 0 \quad \forall j \in N^D, \forall u \in U_j$$

Relax the knapsack subproblem

$$\begin{array}{ll} \max & \sum_{j \in N_{i}^{post}} \max_{u \in U_{j}} \left(\left(g^{CAN} - d_{ij} \right) (\textit{Maxcap} - \textit{Pax}(j)) - \lambda_{ij}^{u} \right) \bar{h}_{ij}, \\ \text{s.t.} & \sum_{j \in N_{i}^{post}} \bar{h}_{ij} (\textit{Maxcap} - \textit{Pax}(j)) \leq \textit{Pax}(i), \\ & \bar{h}_{ij}^{u} \in [0, 1], \forall j \in N_{j}^{post}. \end{array}$$

Integrated Airline Recovery Solution Methodology

Row Generation

- Shorter C-G Master problem \implies rows are added as needed.
- Restricted Connection constraints assume $\rho_{ij} = 0, \forall (i, j) \in E^D \setminus \overline{E}^D$.
- Same Schedule constraints use a row generation procedure.

Integrated Airline Recovery Solution Methodology

Row Generation - Same Schedule Constraints

Row generation occurs when no reduced cost columns exist for current set of rows.

Assume that $\hat{c}_{p}^{r} < 0$ and $\hat{d}_{ip} < 0$, so

$$\begin{aligned} -\gamma_{j}^{\mu'} &> \boldsymbol{c}_{\boldsymbol{p}}^{r} - \sum_{j \in N^{D} \cup N_{out}^{R}} \boldsymbol{a}_{j\boldsymbol{p}}^{r} \beta_{j} - \sum_{t \in \mathcal{T}} \boldsymbol{o}_{t\boldsymbol{p}}^{r} \epsilon_{t} + \sum_{(i,j) \in \bar{E}^{D}} \boldsymbol{b}_{ij\boldsymbol{p}}^{r} \rho_{ij} + \sum_{j \in N^{D}} \sum_{u \in \bar{U}_{j}} \boldsymbol{a}_{j\boldsymbol{p}}^{ru} \gamma_{j}^{u} - \delta^{r}, \\ \forall j \in N^{D}, \forall u' \in U_{j} \setminus \bar{U}_{j}, \\ -\lambda_{j}^{u'} &> \boldsymbol{g}^{CAN} \boldsymbol{P} \boldsymbol{a} \boldsymbol{x}(i) - \alpha_{i}^{K} - \alpha_{i}^{R} - \delta^{i} \\ &+ \sum_{j \in N_{j}^{post}} \sum_{u \in U_{j}} \bar{h}_{ij\boldsymbol{p}}^{u} \left(\lambda_{j}^{u} + \left(\boldsymbol{d}_{ij} - \boldsymbol{g}^{CAN} \right) \left(\boldsymbol{M} \boldsymbol{a} \boldsymbol{x} \boldsymbol{c} \boldsymbol{a} \boldsymbol{p} - \boldsymbol{P} \boldsymbol{a} \boldsymbol{x}(j) \right) \right), \\ \forall j \in N^{D}, \forall u' \in U_{j} \setminus \bar{U}_{j}. \end{aligned}$$

Integrated Airline Recovery Solution Methodology

Solving the Row Generation Problem

- Solve shortest path problem for each aircraft enforcing the use of (*j*, *u'*), ∀*j* ∈ *N*^D, ∀*u'* ∈ *U_j**Ū_j*, to find γ^{*u'*}_{*i*},
- Solve knapsack problem for each flight enforcing the reallocation to $(j, u'), \forall j \in N^D, \forall u' \in U_j \setminus \overline{U}_j$, to find $\lambda_j^{u'}$,
- Solve the shortest path problem for each crew k ∈ K, using the estimated duals for γ_i^{u'} and λ_i^{u'}, ∀j ∈ N^D, ∀u' ∈ U_j \ Ū_j.
- If any copies, $(j, u'), \forall j \in N^D, \forall u' \in U_j \setminus \overline{U}_j$, are used in a negative reduced cost path, add the row to the master problem.

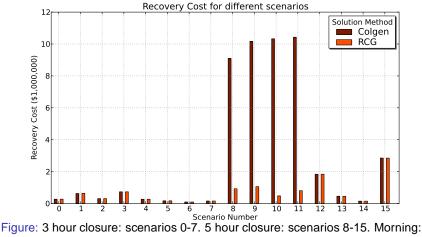
Outline

Integrated Airline Recovery
 Integrated Airline Recovery
 Solution Mathematica

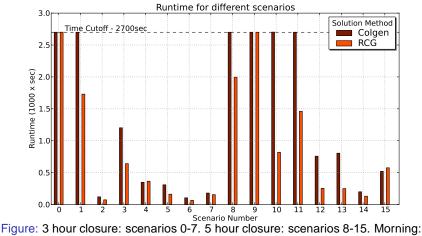
Solution Methodology

3 Results

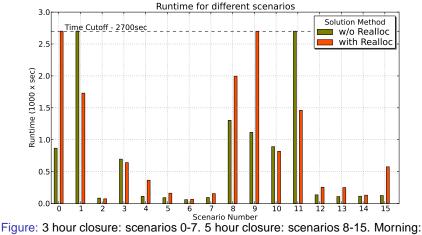
Data and Scenarios

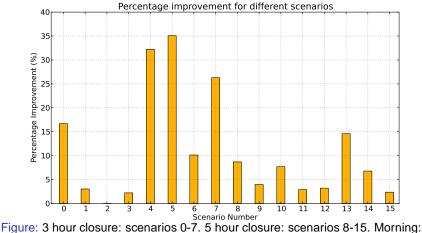

Data

- Planning stage consists of 262 flights, serviced by 79 crew groups and 48 aircraft.
- Flight network has 11 overnight bases for aircraft and 4 crew bases.


Scenarios

- 16 scenarios based on airport closures at different times and different lengths.
- 4 major airports in the network.
- Each major airport closed for 3 or 5 hours at either 6am or 1pm.
- Recovery window = 4 hours.


Recovery Cost


Runtime

Analysis of Reallocation Model - Runtime

Analysis of Reallocation Model - Improvement

Conclusions

- Row-and-column generation is quite efficient in solving the integrated airline recovery problem.
- Row-and-column generation finds a solution with a smaller optimality gap when terminated early.
- Significant cost reductions by reallocation of passengers to flights through cancellation variables.