ヘロト ヘアト ヘヨト ヘ

Challenging Column Generation Models for the Design of Survivable IP-over-WDM Networks

Brigitte Jaumard* A. Hoang and M. Buy

Concordia University Computer Science and Software Engineering Department * CURC Chair (Tier I) - Optimization of Communication Networks

June 11, 2012

Cross layer optimization (1/5)

IP Restoration vs. Optical Protection?

- Multi-layer restoration is a critical point in current optical survivability research.
- Logical layer and optical (physical) layer must be resilient to network failures (physical link or node failures)
- Backup mechanisms: restoration in the logical layer, protection in the optical layer
- Joint IP/optical restoration mechanism is the trend in next generation optical network
 - Reduce the energy consumption:Energy bottleneck in IP routers is looming
 - Guarantee the Service Level Agreements (SLA) with bandwidth greedy applications (video services, IPTV...)

Optical Protection

Cross layer optimization (2/5)

Cross layer optimization (3/5)

Cross layer optimization (4/5)

Physical vs. logical topology: Connectivity Issue

oncordia ・ロ・・ (ア・モラ・モラ・モー) 9/36

Physical topology and Logical topology: Dual Failure

A survivable topology

10/36

Physical vs. logical topology: Dual Failure

A non survivable topology

Capacity concerns: Feasible IP restoration

Logical Survivable Topology Design Problem

For a given backbone network:

- Physical Topology $G_{\mathsf{P}} = (V_p, E_p)$
- Logical Topoploy $G_L = (V_L, E_L)$
- A set of single/multiple link (node) failures ${\cal F}$
 - $\mathcal{F} \{ \{ \ell_1 \}; \{ \ell_2 \}; \{ \ell_3 \}; \{ \ell_1, \ell_3 \} \}$

Finding a routing (mapping) of each logical link on the physical topology such that:

- Minimize the mapping cost
- In order that the logical topology is survivable

Cutset

Graph G = (E, V), Cut: $S \subset V, T = V \setminus S$ Example: $S = \{v_1, v_2, v_3\}; T = \{v_4, v_5, v_6\}$ Cutset $C = \langle S, T \rangle = \{(u, v) \in E | u \in S, v \in T\}$

Cutset (Cont'd)

- A logical topology is survivable if for *any* cutset, the number of failed logical links going through the cutset is smaller than the cardinality of that cutset.
 - That is, there is always at least one survivable logical link connecting two subsets *S* and *T*, for any subset *S* ⊂ *V*
- Each cutset corresponds to a constraint.
 - Exponential number of cutset constraints.
 - Difficult to solve even for small network instances.

Literature review

- Most references → ILP (Integer Linear Program) model, only scalable on particular topologies. Use heuristics to deal with meaningful sizes data instances.
- Modiano and Narula-Tam (2001) : particular topologies (e.g., rings) + relaxation for mesh topologies.
- Todimala and Ramamurthy (2007): ILP model, only scalable on particular topologies. Reason: an exponential number of cutsets in the graph underlying the logical topology.
- Kurant and Thiran (2007) : heuristic, mapping from a logical topology to a simplified one which preserves the survivability.

Literature review (Cont'd)

- Liu and Ruan (2007): a more flexible context several logical links can be added if no survivable logical topology exists. Still lacks scalability due to the exponential # of cutset constraints.
- Kan *et al.* (2009) : jointly the capacity assignment and logical survivability, derived some cutset constraints to guarantee the survivability of a logical topology.
- Lin *et al.* (2011) : weakly vs. strongly survivable routing where strongly is related to limitations imposed on the routings by physical capacity limits.
- Most proposed ILP models based on the cutset theorem: a huge number of cutset constraints.
 - Usable only with data instance of (very) small size.
 - A great effort made to reduce the number of generated cutset constraints by exploiting some special graph structures.
 - Little effort put to deal efficiently with the general case. Concordia

・ロット (雪) (モット

Generalities

- Lightpath: a connection from source to destination over the same wavelength.
- A configuration is a list of mappings of logical links → physical paths, on a single wavelength:
 - Each logical link is associated with a lightpath
 - All lightpaths belonging to the same configuration: same wavelength
- A solution is a collection of configurations, one per wavelength such that:
 - Requests are satisfied
 - Logical topology is survivable

Configuration Examples

21/36

Configurations

A configuration c:

f^c_{ℓℓ'} = 1 if virtual link ℓ' is routed over physical link ℓ in configuration *c*, 0 otherwise.

Provides information on how many logical links cannot be protected using additional variables and penalty coefficients:

- $PENAL^{NP} = 10^4$
- *a*^c_{ℓ'} = 1 if there exists one lightpath to route logical link ℓ', 0 otherwise, easily deduced from *f*^c_{ℓℓ'}.

Cutset Optimization Model

Decision variables:

- $(z_c)_{c \in C}$: $z_c = 1$ if configuration c is selected, 0 otherwise.
- (x^F_{ℓ'})_{F∈F,ℓ'∈E_L}: x^F_{ℓ'} = 1 if logical link ℓ' is routed but cannot be protected in case links of failure set F fail, 0 otherwise.

Objective:

$$\min \quad \sum_{c \in C} \sum_{(\ell,\ell') \in E_{\mathsf{P}} \times E_{\mathsf{L}}} f_{\ell\ell'}^c \, z_c + \sum_{(\ell',F) \in E_{\mathsf{L}} \times \mathcal{F}} x_{\ell'}^F \mathsf{PENAL}^{\mathsf{NP}}.$$
(1)

Cutset Optimization Model (Cont'd)

Constraints:

$$\sum_{c \in C} a_{\ell'}^c z_c \ge 1 \qquad \ell' \in E_{\mathsf{L}}$$

$$\sum_{c \in C} \sum_{\ell \in F} \sum_{\ell'' \in CS(S, V_{\mathsf{L}} \setminus S)} f_{\ell\ell''}^c z_c \le |\langle S, V_{\mathsf{L}} \setminus S \rangle| - 1 + x_{\ell'}^F$$

$$S \subset V_{\mathsf{L}}, F \in \mathcal{F}, \ell' \in E_{\mathsf{L}}$$

$$z_c \in \{0, 1\} \qquad c \in C.$$
(2)
(3)

Transform Cutset Constraints into Lazy Constraints

Example

- Failed physical links: $(v_2, v_4), (v_2, v_7)$.
- Source node of l₂' (resp. l₁'): v₂. Try to reach the destination node v₇ (resp. v₄): Use, e.g., Dijkstra to compute minimum shortest tree
- Logical paths: $\ell_6' \to \ell_3' \to \ell_4'$ and $\ell_6' \to \ell_3' \to \ell_5'$

Example

- Failed physical links: $(v_2, v_4), (v_2, v_7)$.
- Source node of l₂' (resp. l₁'): v₂. Try to reach the destination node v₇ (resp. v₄): Use, e.g., Dijkstra to compute minimum shortest tree
- Deduce a cutset to be added to the set of constraints

Conclusion

Pricing Problem

Objective: Reduced Cost

$$\overline{\text{COST}} = \sum_{(\ell,\ell')\in E_{\mathsf{P}}\times E_{\mathsf{L}}} f_{\ell\ell'}^c - \sum_{\ell'\in E_{\mathsf{L}}} u_{\ell'}^{\mathsf{D}} a_{\ell'} + \sum_{S\subset V_{\mathsf{L}}} \sum_{F\in\mathcal{F}} \sum_{\ell'\in E_{\mathsf{L}}} \sum_{\ell\in F} \sum_{\ell''\in CS(S,V_{\mathsf{L}}\setminus S)} u_{S,\ell'}^{\mathsf{F}} f_{\ell\ell''}$$

Constraints, route one unit of flow on the physical network from $SRC(\ell)$ to $DST(\ell)$, for all $v \in V_L$:

$$\sum_{\ell \in \omega^+(v)} f_{\ell\ell'} - \sum_{\ell \in \omega^-(v)} f_{\ell\ell'} = \begin{cases} a_{\ell'} & \text{if } v_s(\ell') = v \\ -a_{\ell'} & \text{if } v_d(\ell') = v \\ 0 & \text{otherwise} \end{cases}$$

Data sets

Four different physical topologies:

Topologies	# nodes	# spans =	Average nodal	
ropologies	# 110063	(# links)/2	degree	
NJLATA	11	23	4.2	
NSF	14	21	3.0	
EURO	19	37	3.9	
24-NET	24	43	3.4	

Data sets

NSF

24-NET

http://www.optical-network.com/topology.php

30/36

Existence of a survivable logical topology

Instances Topo		#sı top	urvivable pologies	# unprotected log. links
		Cutset	Todimala <i>et al.</i> (2007)	Cutset
NJLATA	degree 3	100		0
	20-edge	100		0
NSF	21-edge	99	76	1
	25-edge	100	100	0
	degree-3	99	87	2
EURO	30-edge	98	83	4
	35-edge	100	100	2
24-NET	40-edge	97	93	1
	45-edge	100	87	

ヘロト ヘロト ヘビト ヘビト

Performance of the enhanced column generation cutset model

		Single Link Failures					
Instances	Торо.	# Config	urations	gap	$\#\lambda$	CPU	# cutset
		gener.	selec.				constraints
NJLATA	degree 3	45.8	34.1	0.01	3.3 ± 0.6	8.2	4.5
	20-edge	48.1	40.0	$< 10^{-3}$	4.4 ± 0.8	8.7	3.1
NSF	21-edge	53.6	42.0	0.03	5.0 ± 1.2	11.5	5.7
	25-edge	57.8	50.0	0.01	5.8 ± 1.1	11.3	3.4
EURO	degree-3	83.7	58.0	0.03	4.9 ± 0.9	43.8	10.2
	30-edge	84.1	60.0	0.03	5.6 ± 1.4	44.5	10.5
	35-edge	93.8	70.0	0.02	6.4 ± 1.2	54.2	9.0
24-NET	40-edge	106.2	80.0	0.02	7.9 ± 2.2	103.1	11.9
	45-edge	113.4	90.0	0.01	8.6 ± 1.8	116.1	9.4

		Single Node Failures					
Instances	Topo.	# Config	urations	gap	$\#\lambda$	CPU	# cutset
		gener.	selec.	-			constraints
NJLATA	degree 3	34.6	34.1	$< 10^{-3}$	3.6 ± 0.6	4.6	0.3
	20-edge	40.3	40.0	$< 10^{-3}$	4.4 ± 0.8	5.7	0.2
NSF	21-edge	42.0	42.0	$< 10^{-3}$	5.4 ± 0.9	6.3	0
	25-edge	50.0	50.0	$< 10^{-3}$	5.9 ± 1.1	7.9	0
	degree-3	59.5	58.0	$< 10^{-3}$	5.3 ± 1.0	17.8	0.8
EURO	30-edge	61.9	60.0	$< 10^{-3}$	5.9 ± 1.2	19.3	0.9
	35-edge	71.1	70.0	$< 10^{-3}$	6.7 ± 1.2	25.3	0.5
24-NET	40-edge	88.6	80.0	$< 10^{-3}$	8.2 ± 1.5	51 .5	< [™] > 5:0 = >
	45-edge	97.2	90.0	$< 10^{-3}$	8.9 ± 1.4	65.0	3.6

Concordia

32/36

24-NET Topology

Failure sets

Sets Set elements

F^4	$F_1^4 = \{F_{57}\}$	$F_2^4 = \{F_{61}\}$	Concordia
F^3	$F_1^3 = \{F_{46}\}$	$F_2^3 = F_1^3 \cup \{F_{56}\}$	
F^2	$\begin{array}{l} F_1^2 = \{F_{44}, F_{45}, F_{47}, F_{48}, F_{49}, F_{50}, F\\ F_2^2 = F_1^2 \cup \{F_{53}, F_{54}, F_{55}\}\\ F_3^2 = F_2^2 \cup \{F_{58}, F_{59}, F_{60}\} \end{array}$	(51, F ₅₂)	
F46 F48 F50 F52 F54 F56 F57 F58 F60 F61	$ = \{\{2, 0\}, \{5, 1\}\} $ $ = \{\{2, 0\}, \{8, 1\}\} $ $ = \{\{10\}, \{8, 11\}\} $ $ = \{\{10, 18\}, \{10, 14\}\} $ $ = \{\{15, 16\}, \{16, 21\}\} $ $ = \{\{15, 20\}, \{21, 20\}\} $ $ = \{\{10, 11\}, \{8, 11\}, \{12, 11\}\} $ $ = \{\{8, 10\}, \{8, 5\}, \{8, 6\}, \{8, 9\}\} $ $ = \{\{12, 13\}, \{12, 16\}\} $ $ = \{\{7, 6\}, \{7, 9\}\} $ $ = \{\{0, 5\}, \{1, 5\}, \{6, 5\}, \{5, 8\}\} $	$F_{49} = \{\{3, 10\}, \{3, 6\}\}$ $F_{49} = \{\{9, 12\}, \{9, 13\}\}$ $F_{51} = \{\{15, 20\}, \{15, 21\}\}$ $F_{53} = \{\{2, 3\}, \{3, 4\}\}$ $F_{55} = \{\{14, 15\}, \{14, 19\}\}$ $F_{59} = \{\{21, 22\}, \{16, 22\}\}$	
F_e F_{44}	$= \{e\}, e \in E \\= \{\{2, 6\}, \{2, 3\}\}$	$F_{45} = \{\{0,5\},\{1,5\}\}$	

Conclusion

- With the recourse of Column Generation, an enhanced scalable cutset model has been designed
- Future work
 - Embed capacity constraints
 - Future work: how to improve the solution of the models in order to solve even larger data instances

Any question?

