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Cross layer optimization (1/5)
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IP Restoration vs. Optical Protection?
Multi-layer restoration is a critical point in current optical
survivability research.
Logical layer and optical (physical) layer must be resilient
to network failures (physical link or node failures)
Backup mechanisms: restoration in the logical layer,
protection in the optical layer
Joint IP/optical restoration mechanism is the trend in next
generation optical network

Reduce the energy consumption:Energy bottleneck in IP
routers is looming
Guarantee the Service Level Agreements (SLA) with
bandwidth greedy applications (video services, IPTV...)
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Optical Protection
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Cross layer optimization (2/5)

5 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Cross layer optimization (3/5)
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Cross layer optimization (4/5)
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IP Restoration
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Physical vs. logical topology: Connectivity Issue
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Physical topology and Logical topology: Dual Failure
A survivable topology

10 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Physical vs. logical topology: Dual Failure
A non survivable topology
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Capacity concerns: Feasible logical← physical
mapping

12 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Capacity concerns: Feasible logical← physical
mapping
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Capacity concerns: Feasible IP restoration
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Logical Survivable Topology Design Problem
For a given backbone network:

Physical Topology GP = (Vp,Ep)

Logical Topoploy GL = (VL,EL)

A set of single/multiple link (node) failures F
F {{ℓ1}; {ℓ2}; {ℓ3}; {ℓ1, ℓ3}}

Finding a routing (mapping) of each logical link on the physical
topology such that:

Minimize the mapping cost
In order that the logical topology is survivable
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Cutset
Graph G = (E,V), Cut: S ⊂ V,T = V \ S
Example: S = {v1, v2, v3};T = {v4, v5, v6}
Cutset C = ⟨S,T⟩ = {(u, v) ∈ E|u ∈ S, v ∈ T}
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Cutset (Cont’d)
A logical topology is survivable if for any cutset, the
number of failed logical links going through the cutset is
smaller than the cardinality of that cutset.

That is, there is always at least one survivable logical link
connecting two subsets S and T, for any subset S ⊂ V

Each cutset corresponds to a constraint.
Exponential number of cutset constraints.
Difficult to solve even for small network instances.
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Literature review
Most references 7−→ ILP (Integer Linear Program) model,
only scalable on particular topologies. Use heuristics to
deal with meaningful sizes data instances.
Modiano and Narula-Tam (2001) : particular topologies
(e.g., rings) + relaxation for mesh topologies.
Todimala and Ramamurthy (2007): ILP model, only
scalable on particular topologies. Reason: an exponential
number of cutsets in the graph underlying the logical
topology.
Kurant and Thiran (2007) : heuristic, mapping from a
logical topology to a simplified one which preserves the
survivability.
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Literature review (Cont’d)
Liu and Ruan (2007): a more flexible context - several logical
links can be added if no survivable logical topology exists. Still
lacks scalability due to the exponential # of cutset constraints.

Kan et al. (2009) : jointly the capacity assignment and logical
survivability, derived some cutset constraints to guarantee the
survivability of a logical topology.

Lin et al. (2011) : weakly vs. strongly survivable routing where
strongly is related to limitations imposed on the routings by
physical capacity limits.

Most proposed ILP models based on the cutset theorem: a huge
number of cutset constraints.

Usable only with data instance of (very) small size.
A great effort made to reduce the number of generated
cutset constraints by exploiting some special graph
structures.
Little effort put to deal efficiently with the general case.
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Generalities
Lightpath: a connection from source to destination over the
same wavelength.
A configuration is a list of mappings of logical links ↪→
physical paths, on a single wavelength:

Each logical link is associated with a lightpath
All lightpaths belonging to the same configuration: same
wavelength

A solution is a collection of configurations, one per
wavelength such that:

Requests are satisfied
Logical topology is survivable
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Configuration Examples
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Configurations
A configuration c:

f c
ℓℓ′ = 1 if virtual link ℓ′ is routed over physical link ℓ in

configuration c, 0 otherwise.

Provides information on how many logical links cannot be
protected using additional variables and penalty coefficients:

PENALNP = 104

ac
ℓ′ = 1 if there exists one lightpath to route logical link ℓ′, 0

otherwise, easily deduced from f c
ℓℓ′ .
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Cutset Optimization Model
Decision variables:

(zc)c∈C: zc = 1 if configuration c is selected, 0 otherwise.
(xF

ℓ′)F∈F ,ℓ′∈EL : xF
ℓ′ = 1 if logical link ℓ′ is routed but cannot be

protected in case links of failure set F fail, 0 otherwise.

Objective:

min
∑
c∈C

∑
(ℓ,ℓ′)∈EP×EL

f c
ℓℓ′ zc +

∑
(ℓ′,F)∈EL×F

xF
ℓ′PENALNP. (1)

23 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Cutset Optimization Model (Cont’d)
Constraints:

∑
c∈C

ac
ℓ′ zc ≥ 1 ℓ′ ∈ EL (2)∑

c∈C

∑
ℓ∈F

∑
ℓ′′∈CS(S,VL\S)

f c
ℓℓ′′ zc ≤ |⟨S,VL \ S⟩| − 1 + xF

ℓ′

S ⊂ VL, F ∈ F , ℓ′ ∈ EL (3)
zc ∈ {0, 1} c ∈ C. (4)
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Transform Cutset Constraints into Lazy Constraints
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Example
Failed physical links: (v2, v4), (v2, v7).
Source node of ℓ′2 (resp. ℓ′1): v2. Try to reach the
destination node v7 (resp. v4): Use, e.g., Dijkstra to
compute minimum shortest tree
Logical paths: ℓ′6 → ℓ′3 → ℓ′4 and ℓ′6 → ℓ′3 → ℓ′5
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Example
Failed physical links: (v2, v4), (v2, v7).
Source node of ℓ′2 (resp. ℓ′1): v2. Try to reach the
destination node v7 (resp. v4): Use, e.g., Dijkstra to
compute minimum shortest tree
Deduce a cutset to be added to the set of constraints
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Pricing Problem
Objective: Reduced Cost

COST =
∑

(ℓ,ℓ′)∈EP×EL

f c
ℓℓ′ −

∑
ℓ′∈EL

uD
ℓ′aℓ′

+
∑
S⊂VL

∑
F∈F

∑
ℓ′∈EL

∑
ℓ∈F

∑
ℓ′′∈CS(S,VL\S)

uF
S,ℓ′ fℓℓ′′

Constraints, route one unit of flow on the physical network from
SRC(ℓ) to DST(ℓ), for all v ∈ VL:

∑
ℓ∈ω+(v)

fℓℓ′ −
∑

ℓ∈ω−(v)

fℓℓ′ =


aℓ′ if vs(ℓ

′) = v
−aℓ′ if vd(ℓ

′) = v
0 otherwise
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Data sets
Four different physical topologies:

Topologies # nodes
# spans = Average nodal
(# links)/2 degree

NJLATA 11 23 4.2
NSF 14 21 3.0

EURO 19 37 3.9
24-NET 24 43 3.4
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Data sets
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Existence of a survivable logical topology

Instances Topo
#survivable # unprotected
topologies log. links

Cutset Todimala Cutset
et al. (2007)

NJLATA
degree 3 100 0
20-edge 100 0

NSF
21-edge 99 76 1
25-edge 100 100 0

EURO
degree-3 99 87 2
30-edge 98 83 4
35-edge 100 100 2

24-NET
40-edge 97 93 1
45-edge 100 87 2

31 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Performance of the enhanced column generation
cutset model

Single Link Failures
Instances Topo. # Configurations gap #λ CPU # cutset

gener. selec. constraints

NJLATA degree 3 45.8 34.1 0.01 3.3 ± 0.6 8.2 4.5
20-edge 48.1 40.0 < 10−3 4.4 ± 0.8 8.7 3.1

NSF 21-edge 53.6 42.0 0.03 5.0 ± 1.2 11.5 5.7
25-edge 57.8 50.0 0.01 5.8 ± 1.1 11.3 3.4

EURO
degree-3 83.7 58.0 0.03 4.9 ± 0.9 43.8 10.2
30-edge 84.1 60.0 0.03 5.6 ± 1.4 44.5 10.5
35-edge 93.8 70.0 0.02 6.4 ± 1.2 54.2 9.0

24-NET 40-edge 106.2 80.0 0.02 7.9 ± 2.2 103.1 11.9
45-edge 113.4 90.0 0.01 8.6 ± 1.8 116.1 9.4

Single Node Failures
Instances Topo. # Configurations gap #λ CPU # cutset

gener. selec. constraints

NJLATA degree 3 34.6 34.1 < 10−3 3.6 ± 0.6 4.6 0.3
20-edge 40.3 40.0 < 10−3 4.4 ± 0.8 5.7 0.2

NSF 21-edge 42.0 42.0 < 10−3 5.4 ± 0.9 6.3 0
25-edge 50.0 50.0 < 10−3 5.9 ± 1.1 7.9 0

EURO
degree-3 59.5 58.0 < 10−3 5.3 ± 1.0 17.8 0.8
30-edge 61.9 60.0 < 10−3 5.9 ± 1.2 19.3 0.9
35-edge 71.1 70.0 < 10−3 6.7 ± 1.2 25.3 0.5

24-NET 40-edge 88.6 80.0 < 10−3 8.2 ± 1.5 51.5 5.0
45-edge 97.2 90.0 < 10−3 8.9 ± 1.4 65.0 3.6 32 / 36
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24-NET Topology
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Failure sets

Sets Set elements

Fe = {e}, e ∈ E
F44 = {{2, 6}, {2, 3}} F45 = {{0, 5}, {1, 5}}
F46 = {{2, 6}, {3, 6}, {6, 7}} F47 = {{5, 10}, {5, 8}}
F48 = {{8, 10}, {8, 11}} F49 = {{9, 12}, {9, 13}}
F50 = {{10, 18}, {10, 14}} F51 = {{15, 20}, {15, 21}}
F52 = {{15, 16}, {16, 21}} F53 = {{2, 3}, {3, 4}}
F54 = {{15, 20}, {21, 20}} F55 = {{14, 15}, {14, 19}}
F56 = {{10, 11}, {8, 11}, {12, 11}}
F57 = {{8, 10}, {8, 5}, {8, 6}, {8, 9}}
F58 = {{12, 13}, {12, 16}} F59 = {{21, 22}, {16, 22}}
F60 = {{7, 6}, {7, 9}}
F61 = {{0, 5}, {1, 5}, {6, 5}, {5, 8}}

F2
F2

1 = {F44, F45, F47, F48, F49, F50, F51, F52}
F2

2 = F2
1 ∪ {F53, F54, F55}

F2
3 = F2

2 ∪ {F58, F59, F60}

F3 F3
1 = {F46} F3

2 = F3
1 ∪ {F56}

F4 F4
1 = {F57} F4

2 = {F61}
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Conclusion
With the recourse of Column Generation, an enhanced
scalable cutset model has been designed
Future work

Embed capacity constraints
Future work: how to improve the solution of the models in
order to solve even larger data instances

35 / 36



. . . . . .

Multi-Layer Resilience Optimization Model Solution of the Optimization Model Numerical Results Conclusion

Any question?
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