Not-only-column Generation: the (Stabilized) Structured Dantzig-Wolfe Method

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

joint work with

Bernard Gendron

CIRRELT, Université de Montréal

ColGen 2012, Bromont June 11th, 2012

- A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation

- A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation

- A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation
- The Structured Dantzig-Wolfe Approach

- f 1 A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation
- The Structured Dantzig-Wolfe Approach
- Computational results for StructDW

- A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation
- The Structured Dantzig-Wolfe Approach
- Computational results for StructDW
- 5 Stabilizing the Structured Dantzig-Wolfe Algorithm

- f 1 A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation
- The Structured Dantzig-Wolfe Approach
- Computational results for StructDW
- 5 Stabilizing the Structured Dantzig-Wolfe Algorithm
- 6 Computational results for S²DW

- $oldsymbol{1}$ A (not uncommon) Tale of Modeling and Reformulations
 - Integer Formulation
 - Row Generation
 - (Stabilized) Column Generation
 - Computational results: Row vs. (Stabilized) Column Generation
- Binary formulation: Row & Column Generation
- The Structured Dantzig-Wolfe Approach
- Computational results for StructDW
- 5 Stabilizing the Structured Dantzig-Wolfe Algorithm
- 6 Computational results for S²DW
- Conclusions

Multicommodity Capacitated Network Design

- Multiple flows (commodities) (s^k, t^k, d^k) $k \in K$, facility costs f_{ij}
- Standard integer formulation I ($\bar{I} = \text{continuous relaxation}$)

$$\min \sum_{k \in K} \sum_{(i,j) \in A} d^k c^k_{ij} u^k_{ij} + \sum_{(i,j) \in A} f_{ij} y_{ij}$$

$$\sum_{(i,j) \in A} u^k_{ij} - \sum_{(j,i) \in A} u^k_{ji} = \begin{cases} 1 & \text{if } i = s^k \\ -1 & \text{if } i = t^k \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{k \in K} d^k u^k_{ij} \le \mathbf{a}_{ij} y_{ij} \qquad (i,j) \in A$$

$$0 \le x^k_{ij} \le 1 \qquad (i,j) \in A, \ k \in K$$

$$\mathbf{y}_{ij} \in \mathbb{N} \qquad (i,j) \in A$$

Multicommodity Capacitated Network Design

- Multiple flows (commodities) (s^k, t^k, d^k) $k \in K$, facility costs f_{ij}
- Standard integer formulation I ($\bar{I} = \text{continuous relaxation}$)

$$\begin{aligned} & \min & & \sum_{k \in K} \sum_{(i,j) \in A} d^k c^k_{ij} u^k_{ij} + \sum_{(i,j) \in A} f_{ij} y_{ij} \\ & & \sum_{(i,j) \in A} u^k_{ij} - \sum_{(j,i) \in A} u^k_{ji} = \begin{cases} & 1 & \text{if } i = s^k \\ & -1 & \text{if } i = t^k \end{cases} & i \in \mathbb{N} \;, \; k \in K \\ & 0 & \text{otherwise} \end{cases} \\ & & \sum_{k \in K} d^k u^k_{ij} \leq a_{ij} y_{ij} & (i,j) \in A \\ & 0 \leq x^k_{ij} \leq 1 & (i,j) \in A \;, \; k \in K \\ & y_{ij} \in \mathbb{N} \end{cases}$$

- Efficiently optimize on mutiflows + construct the graph
- \mathcal{NP} -hard, loads of applications, very difficult in practice because large-scale (= slow) relaxation but weak bound from \overline{I}

Reformulation I: Polyhedral Methods = Row Generation

• (Exponentially many) Residual capacity inequalities [Atamturk, 2002]

$$\sum_{k \in S} a_k (1 - u_{ij}^k) \ge (a(S) - \lfloor a(S) \rfloor) (\lceil a(S) \rceil - y_{ij}) \quad S \subseteq K$$
 (1)

$$(a_k = d^k/a_{ij}, a(S) = \sum_{k \in S} a_k)$$

- Separation easy (\approx 2 continuous knapsack), bound improves
- Standard B&C tools
- Re-solve \overline{I} (large already) many times per node

Reformulation II: Lagrangian Dual = Column Generation

- Relax the flow conservation constraints, (many) multipliers $x = [x_i^k]$
- Lagrangian Relaxation decomposes by arc

- Easy (≈ 2 continuous knapsack) but no integrality property
 ⇒ better bound than continuous relaxation
- Residual capacity inequalities (1) have \approx separation cost and describe $conv(U_{ij})$ [Atamturk, 2002] $\Rightarrow v(LD) = v(\overline{I}+)$
- Have to find optimal multipliers x*

Lagrangian Dual = Column Generation = Dantzig-Wolfe

• Compact notation: decomposable $U = X_{k \in K} \ U^k$, $u = [u^k]_{k \in K}$

(
$$\Pi$$
) max { $cu : Au = b, u \in conv(U)$ }

• We can efficiently optimize upon $U \Rightarrow$ generate vertices of $U \Rightarrow$ represent conv(U) by extreme points $(\bar{U} = \text{ext } U)$ instead of by faces

$$\mathit{conv}(U) = \left\{ \begin{array}{ll} u = \displaystyle\sum_{ar{u} \in ar{U}} \ ar{u} heta_{ar{u}} \ : \ \displaystyle\sum_{ar{u} \in ar{U}} \ heta_{ar{u}} = 1 \ , \ heta_{ar{u}} \geq 0 \quad ar{u} \in ar{U} \end{array}
ight\}$$

 \Rightarrow reformulate (Π) in terms of the convex multipliers θ

$$\begin{array}{ll} \max & c \ \big(\ \sum_{\bar{u} \in \bar{U}} \ \bar{u} \theta_{\bar{u}} \ \big) \\ & A \ \big(\ \sum_{\bar{u} \in \bar{U}} \ \bar{u} \theta_{\bar{u}} \ \big) = b \\ & \sum_{\bar{u} \in \bar{U}} \ \theta_{\bar{u}} & = 1 \quad \theta_{\bar{u}} \geq 0 \quad \bar{u} \in \bar{U} \end{array}$$

Too large to be solved directly ⇒ Column Generation

Master Problems

• $\mathcal{B} \subset \bar{U}$ (small), solve restriction of (Π) with $\bar{U} \to \mathcal{B}$, i.e.,

$$(\Pi_{\mathcal{B}}) \qquad \max \{ cu : Au = b, u \in conv(\mathcal{B}) \}$$

feed (partial) dual optimal solution x^* (of Au = b) to pricing problem

$$f(x) = \max \{ (c - xA)u : u \in U \} + xb$$

 $(\equiv \text{compute Lagrangian function } f(x)) \text{ to get new } \bar{u} \in \bar{U}, \ \bar{u} \to \mathcal{B}$

- Dual of $(\Pi_{\mathcal{B}})$: min $\{f_{\mathcal{B}}(x) = \max\{(c xA)u + xb, u \in \mathcal{B}\}\}$ $f_{\mathcal{B}}(x) = \text{lower approximation of "true" Lagrangian function } f(x)$ = cutting-plane model

Better Master Problems I: Disaggregation

Better: disaggregated primal master problem

$$\max \left\{ \sum_{k \in K} c^k u^k : \sum_{k \in K} A^k u^k = b , u^k \in U_{\mathcal{B}}^k = conv(\mathcal{B}^k) \ k \in K \right\}$$

(in practice, a different multiplier $\theta_{\bar{u}}^k$ for each \bar{u}^k , previously $\theta_{\bar{u}}^k = \theta_{\bar{u}}^h$) \equiv disaggregated cutting-plane model

$$f_{\mathcal{B}}(x) = xb + \sum_{k \in K} (f_{\mathcal{B}}^k(x) = \max \{ (c^k - xA^k)u^k : u^k \in U_{\mathcal{B}}^k \})$$

- |K| times larger master problem, but better use of information
 ⇒ faster convergence (e.g. [Jones et al. 1993] for multicommodity)
- Convergence can be slow, less well-supported than Row Generation, a few nontrivial issues (branching, . . .)

Instability in CG/DW

• x_{k+1}^* can be very far from x_k^* , where f_B is a "bad model" of f

Instability in CG/DW

• x_{k+1}^* can be very far from x_k^* , where $f_{\mathcal{B}}$ is a "bad model" of f

- ...as a matter of fact, infinitely far
- $(\Pi_{\mathcal{B}})$ empty $\equiv (\Delta_{\mathcal{B}})$ unbounded \Rightarrow Phase 0 / Phase 1 approach
- More in general: $\{x_k^*\}$ is unstable, has no locality properties \Rightarrow convergence speed does not improve near the optimum

Better Master Problems II: Stabilization

• Current point \bar{x} , stabilizing term $\mathcal{D}_t \geq 0$, proximal parameter(s) t, stabilized dual problem

$$(\Delta_{\mathcal{B},\bar{x},\mathcal{D},t}) \quad \min \left\{ f_{\mathcal{B}}(x) + \mathcal{D}_t(x-\bar{x}) \right\}$$

Just avoid that iterates "go too far from \bar{x} "

Better Master Problems II: Stabilization

• Current point \bar{x} , stabilizing term $\mathcal{D}_t \geq 0$, proximal parameter(s) t, stabilized dual problem

$$(\Delta_{\mathcal{B},\bar{x},\mathcal{D},t}) \quad \min \left\{ f_{\mathcal{B}}(x) + \mathcal{D}_t(x-\bar{x}) \right\}$$

Just avoid that iterates "go too far from \bar{x} "

Very simple stabilized primal problem

$$\max \left\{ cu + \bar{x}z - \mathcal{D}_t^*(-z) : z = b - Au, u \in conv(\mathcal{B}) \right\}$$

add slacks z, penalize them ("1st-order" and "2nd-order" terms)

ullet Funny general form for NDO lovers: Fenchel's dual of $(\Delta_{\bar{x},\mathcal{D},t})$

$$-\min\left\{f^*(z)-z\bar{y}+\mathcal{D}_t^*(-z)\right\}$$

[F., 2002] "*" = Fenchel's conjugate

Stabilizing Terms

- Few general properties:

 - ii) $S_{\delta}(\mathcal{D}_t)$ compact and full-dimensional $\forall \delta > 0 \quad |\iff \mathsf{hold} \; \mathsf{for} \; \mathcal{D}_t^*$
 - iii) \mathcal{D}_t differentiable in 0 $\iff \mathcal{D}_t^*$ strictly convex in 0
 - iv) $\lim_{\|x\|\to\infty} D_t(x)/\|x\| = +\infty \iff \mathcal{D}_t^* < +\infty$
 - v) \mathcal{D}_t (\mathcal{D}_t^*) de(inc)reasing in t, $\mathcal{D}_t o 0$ $(\mathcal{D}_t^* o I_{\{0\}})$ as $t o \infty$
- iv) only serve to have $(\Delta_{\bar{x},\mathcal{D},t})$ bounded (other means possible) iii) can be relaxed somewhat, albeit at a cost
- Simple and robust choice: $\|\cdot\|_2^2$ [Lemaréchal et al, 2006]
- Reasonable choices: piecewise-linear functions $\Rightarrow (\Delta_{\bar{x},\mathcal{D},t})$ is a LP
 - 1-piece = boxstep [Marsten et al, 1975]
 - 2-pieces [Kim et al, 1995]
 - 3-pieces [Du Merle et al, 1999]
 - 5-pieces [Ben Hamor et al, 2009]

In practice

a trust region

or both

$$\mathcal{D}_t = \frac{1}{2t} \| \cdot \|_2^2$$

$$\mathcal{D}_t^* = \frac{1}{2}t\|\cdot\|_2^2$$

$$\mathcal{D}_t = I_{B_{\infty}(t)}$$

$$\mathcal{D}_t^* = t \| \cdot \|_1$$

$$\mathcal{D}_{\Gamma^{\pm},\Delta^{\pm},\varepsilon^{\pm}} = \dots$$

$$\mathcal{D}^*_{\Gamma^{\pm},\Delta^{\pm},arepsilon^{\pm}}=\dots$$

Computational results: RG vs. StabDW

- Intel Xeon X7350@2.93GHz, 64Gb RAM, Suse Linux, CPLEX 11.1
- Large-scale instances ($|K| \in \{100, 200, 400\}$), very difficult
- ullet $C=1\Rightarrow$ lightly capacitated, $C=16\Rightarrow$ tightly capacitated

Computational results: RG vs. StabDW

- Intel Xeon X7350@2.93GHz, 64Gb RAM, Suse Linux, CPLEX 11.1
- Large-scale instances ($|K| \in \{100, 200, 400\}$), very difficult
- $C=1 \Rightarrow$ lightly capacitated, $C=16 \Rightarrow$ tightly capacitated
- DW unbearably slow, disaggregating does not help (enough)
- Stabilized DW much better, but only if disaggreated

Sample computational results (|K| = 100)

Problem			1+		StabDW	
A	С	imp	cpu	it	cpu	it
517	1	187.00	348	26	4323	88144
	4	138.22	362	25	3581	79390
	8	100.08	305	21	4054	88807
	16	60.49	249	21	3015	71651
517	1	155.19	140	23	2899	69500
	4	122.84	194	26	2799	65229
	8	93.00	151	20	2824	66025
	16	59.68	116	18	2172	56184
669	1	114.50	80	26	330	11273
	4	97.32	78	22	327	10951
	8	79.62	68	19	323	11173
	16	56.19	58	19	275	9979

• RG always better than StabCG

Sample computational results (|K| = 200)

Problem			<i>I</i> +		StabDW	
A	С	imp	cpu	it	cpu	it
229	1	205.67	49081	109	11748	154821
	4	131.24	30899	91	9132	131674
	8	84.61	16502	87	12682	162766
	16	42.78	2090	54	6541	97952
229	1	185.17	18326	86	9261	132963
	4	125.39	15537	80	11791	147879
	8	85.31	9500	74	10702	146727
	16	46.09	1900	52	7268	107197
287	1	198.87	14559	66	8815	120614
	4	136.97	11934	62	8426	112308
	8	92.94	9656	64	10098	130536
	16	53.45	3579	54	6801	98972

• RG wins only for large C, basically both lose

Reformulation III: Binary formulation B

- Redundant upper bound constraints: $y_{ij} \leq \left\lceil \sum_{k \in K} d^k / a_{ij} \right\rceil = T_{ij}$
- ullet Pseudo-polinomially many segments $S_{ij} = \{\ 1, \dots, T_{ij}\ \}$ for y_{ij}

Reformulation III: Binary formulation B

- Redundant upper bound constraints: $y_{ij} \leq \left\lceil \sum_{k \in K} d^k / a_{ij} \right\rceil = T_{ij}$
- ullet Pseudo-polinomially many segments $S_{ij} = \{\ 1, \ldots, T_{ij}\ \}$ for y_{ij}
- Reformulation in binary variables: $y_{ij} = \sum_{s \in S_{ij}} y_{ij}^s$

- ... then original variables can be removed
- Up to now, continuous relaxation bound has not improved

Improved binary formulation B+

Extended linking inequalities:

$$u_{ij}^{ks} \leq y_{ij}^{s}$$
 $(i,j) \in A$, $k \in K$, $s \in S_{ij}$

• Improved continuous relaxation bound: $v(\bar{B}+) = v(\bar{I}+) = v(DW)$ [F., Gendron, 2009] using [Croxton et al., 2003]

Improved binary formulation B+

Extended linking inequalities:

$$u_{ij}^{ks} \leq y_{ij}^{s}$$
 $(i,j) \in A$, $k \in K$, $s \in S_{ij}$

- Improved continuous relaxation bound: $v(\bar{B}+) = v(\bar{I}+) = v(DW)$ [F., Gendron, 2009] using [Croxton et al., 2003]
- In particular, binary formulation describes conv(U): continuous relaxation has integrality property
- Optimizing over $U \Rightarrow conv(U)$ easy

Improved binary formulation B+

Extended linking inequalities:

$$u_{ij}^{ks} \leq y_{ij}^{s}$$
 $(i,j) \in A$, $k \in K$, $s \in S_{ij}$

- Improved continuous relaxation bound: $v(\bar{B}+) = v(\bar{I}+) = v(DW)$ [F., Gendron, 2009] using [Croxton et al., 2003]
- In particular, binary formulation describes conv(U): continuous relaxation has integrality property
- Optimizing over $U \Rightarrow conv(U)$ easy
- Pseudo-polynomial number of variables and constraints
- How can we exploit it?

The main issue

Substantially different from both RG and DW

Need to generate both rows and columns

• Assumption 1: Alternative Formulation of "easy" set

$$conv(U) = \{ u = C\theta : \Gamma\theta \le \gamma \}$$

Assumption 1: Alternative Formulation of "easy" set

$$conv(U) = \{ u = C\theta : \Gamma\theta \le \gamma \}$$

Assumption 2: padding with zeroes

$$\begin{split} & \Gamma_{\mathcal{B}} \bar{\theta}_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \ \, \Rightarrow \Gamma \big[\; \bar{\theta}_{\mathcal{B}} \; , \; 0 \; \big] \leq \gamma \\ & \Rightarrow \mathit{U}_{\mathcal{B}} = \Big\{ \; \mathit{u} = \mathit{C}_{\mathcal{B}} \theta_{\mathcal{B}} \; : \; \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \; \Big\} \subseteq \mathit{conv}(\mathit{U}) \end{split}$$

Assumption 1: Alternative Formulation of "easy" set

$$conv(U) = \{ u = C\theta : \Gamma\theta \le \gamma \}$$

Assumption 2: padding with zeroes

$$\begin{split} & \Gamma_{\mathcal{B}} \bar{\theta}_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \ \, \Rightarrow \Gamma \big[\ \, \bar{\theta}_{\mathcal{B}} \ \, , \ \, 0 \ \, \big] \leq \gamma \\ & \Rightarrow U_{\mathcal{B}} = \Big\{ \ \, u = C_{\mathcal{B}} \theta_{\mathcal{B}} \ \, : \ \, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \, \Big\} \subseteq \mathit{conv}(U) \end{split}$$

Assumption 3: easy update of rows and columns

Given
$$\mathcal{B}$$
, $\bar{u} \in conv(U)$, $\bar{u} \notin U_{\mathcal{B}}$, it is "easy" to find $\mathcal{B}' \supset \mathcal{B}$ $(\Rightarrow \Gamma_{\mathcal{B}'}, \gamma_{\mathcal{B}'})$ such that $\exists \mathcal{B}'' \supseteq \mathcal{B}'$ such that $\bar{u} \in U_{\mathcal{B}''}$.

• Assumption 1: Alternative Formulation of "easy" set

$$conv(U) = \{ u = C\theta : \Gamma\theta \le \gamma \}$$

Assumption 2: padding with zeroes

$$\begin{split} & \Gamma_{\mathcal{B}} \bar{\theta}_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \ \, \Rightarrow \Gamma \big[\ \bar{\theta}_{\mathcal{B}} \ , \ 0 \ \big] \leq \gamma \\ \Rightarrow & U_{\mathcal{B}} = \Big\{ \ \, u = C_{\mathcal{B}} \theta_{\mathcal{B}} \ \, : \ \, \Gamma_{\mathcal{B}} \theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \Big\} \subseteq \mathit{conv}(U) \end{split}$$

Assumption 3: easy update of rows and columns

Given
$$\mathcal{B}$$
, $\bar{u} \in conv(U)$, $\bar{u} \notin U_{\mathcal{B}}$, it is "easy" to find $\mathcal{B}' \supset \mathcal{B}$ $(\Rightarrow \Gamma_{\mathcal{B}'}, \gamma_{\mathcal{B}'})$ such that $\exists \mathcal{B}'' \supseteq \mathcal{B}'$ such that $\bar{u} \in U_{\mathcal{B}''}$.

Structured master problem

$$(\Pi_{\mathcal{B}}) \qquad \max \left\{ \ cu \ : \ Au = b \ , \ u = C_{\mathcal{B}}\theta_{\mathcal{B}} \ , \ \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \right\}$$

≡ structured model

$$f_{\mathcal{B}}(x) = \max\{ (c - xA)u + ub, u = C_{\mathcal{B}}\theta_{\mathcal{B}}, \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \}$$

The Structured Dantzig-Wolfe Algorithm

```
\label{eq:continuous_problem} \begin{array}{l} \langle \text{ initialize } \mathcal{B} \; \rangle; \\ \text{repeat} \\ & \langle \text{ solve } (\Pi_{\mathcal{B}}) \text{ for } u^*, \; x^* \; (\text{duals of } Au = b); \; v^* = cu^* \; \rangle; \\ & \bar{u} = \operatorname{argmin} \; \{ \; (c - x^*A)u : u \in U \; \}; \\ & \langle \text{ update } \mathcal{B} \text{ as in } \text{ Assumption } 3 \; \rangle; \\ & \text{until } v^* < c\bar{u} + x^*(b - A\bar{u}) \end{array}
```

The Structured Dantzig-Wolfe Algorithm

```
\label{eq:continuous} \begin{array}{l} \langle \text{ initialize } \mathcal{B} \; \rangle; \\ \text{repeat} \\ & \langle \text{ solve } (\Pi_{\mathcal{B}}) \text{ for } u^*, \, x^* \text{ (duals of } Au = b); \, v^* = cu^* \; \rangle; \\ & \bar{u} = \operatorname{argmin} \; \{ \; (c - x^*A)u : u \in U \; \}; \\ & \langle \text{ update } \mathcal{B} \text{ as in Assumption 3 } \rangle; \\ & \text{until } v^* < c\bar{u} + x^*(b - A\bar{u}) \end{array}
```

- Relatively easy [F., Gendron, 2009] to prove that:
 - finitely terminates with an optimal solution of (Π)
 - ullet ... even if (proper) removal from ${\cal B}$ is allowed (when cu^* increases)
 - ullet . . . even if U is non compact and $\mathcal{B}=\emptyset$ at start (Phase 0)

The Structured Dantzig-Wolfe Algorithm

```
\label{eq:continuous_equation} \begin{split} \langle \text{ initialize } \mathcal{B} \; \rangle; \\ \text{repeat} \\ & \langle \text{ solve } (\Pi_{\mathcal{B}}) \text{ for } u^*, \, x^* \text{ (duals of } Au = b); \, v^* = cu^* \; \rangle; \\ & \bar{u} = \text{argmin } \{ \; (c - x^*A)u : u \in U \; \}; \\ & \langle \text{ update } \mathcal{B} \text{ as in } \text{Assumption } 3 \; \rangle; \\ & \text{until } v^* < c\bar{u} + x^*(b - A\bar{u}) \end{split}
```

- Relatively easy [F., Gendron, 2009] to prove that:
 - finitely terminates with an optimal solution of (Π)
 - ullet ... even if (proper) removal from ${\cal B}$ is allowed (when cu^* increases)
 - ullet . . . even if U is non compact and $\mathcal{B}=\emptyset$ at start (Phase 0)
- The subproblem to be solved is identical to that of DW
- Requires (⇒ exploits) extra information on the structure
- Master problem with any structure, possibly much larger

Computational results for StructDW

- Same machine/instances as before
- Solving the root relaxation, then freezing the formulation
 + CPLEX polishing for one hour
- Unlike I+, frozen B+ formulations may not contain optimal solution
 ⇒ final gap ≈ quality of obtained formulation
- imp = lower bound improvement (equal for all)
 gap = final gap (%), cpu = time, it = iterations

Sample computational results (|K| = 100)

I	Prob	lem		1+		Sta	bDW	Str	tructDW		
A	С	imp	cpu	gap	it	cpu	it	cpu	gap	it	
517	1	187.00	348	5.78	26	4323	88144	296	6.94	55	
	4	138.22	362	6.42	25	3581	79390	312	7.48	44	
	8	100.08	305	6.12	21	4054	88807	633	6.11	61	
	16	60.49	249	6.20	21	3015	71651	1138	6.45	87	
517	1	155.19	140	3.95	23	2899	69500	188	4.70	60	
	4	122.84	194	3.87	26	2799	65229	147	4.15	39	
	8	93.00	151	3.96	20	2824	66025	355	4.31	67	
	16	59.68	116	4.72	18	2172	56184	551	4.94	70	
669	1	114.50	80	0.50	26	330	11273	36	0.46	32	
	4	97.32	78	0.46	22	327	10951	66	0.46	50	
	8	79.62	68	0.46	19	323	11173	55	0.46	33	
	16	56.19	58	0.74	19	275	9979	164	0.81	65	

• SDW worsens as C grows (tighter capacities), RG the converse

Sample computational results (|K| = 200)

	Problem			<i>I</i> +		Sta	bDW	St	StructDW		
A	С	imp	cpu	gap	it	cpu	it	cpu	gap	it	
229	1	205.67	49081	28.16	109	11748	154821	525	10.50	44	
	4	131.24	30899	25.40	91	9132	131674	807	13.58	45	
	8	84.61	16502	21.80	87	12682	162766	1593	10.17	44	
	16	42.78	2090	5.59	54	6541	97952	2630	9.20	73	
229	1	185.17	18326	20.53	86	9261	132963	380	7.44	39	
	4	125.39	15537	18.81	80	11791	147879	612	9.36	49	
	8	85.31	9500	13.08	74	10702	146727	1647	8.87	68	
	16	46.09	1900	7.19	52	7268	107197	3167	7.99	108	
287	1	198.87	14559	27.86	66	8815	120614	598	12.54	53	
	4	136.97	11934	22.52	62	8426	112308	603	15.07	37	
	8	92.94	9656	15.28	64	10098	130536	1221	10.38	41	
	16	53.45	3579	11.60	54	6801	98972	3515	9.06	99	

ullet Same trend, but RG better only for C=16

Sample computational results (|K| = 400)

	Prob	lem	Stab	DW	StructDW				
A	С	imp	cpu	it	cpu	gap	it		
519	1	100.83	87695	248746	9839	9.96	157		
	4	92.54	88031	247864	9087	11.25	140		
	8	82.16	88918	258266	11613	8.47	143		
	16	65.53	85384	238945	38617	10.26	242		
519	1	125.07	93065	258054	22246	14.90	165		
	4	111.02	90573	250854	17976	18.22	131		
	8	94.82	93418	256884	30460	18.18	159		
	16	71.31	93567	265663	74447	16.50	176		
668	1	126.02	98789	246702	23771	11.89	149		
	4	115.29	99014	247620	28567	10.97	176		
	8	102.03	104481	258636	27871	12.07	130		
	16	80.96	103011	278905	58363	13.95	156		

• SWD always better, stabilizing SDW seems promising

Stabilizing the Structured Dantzig-Wolfe Algorithm

• Exactly the same as stabilizing DW: stabilized master problem

$$(\Delta_{\mathcal{B},\bar{x},\mathcal{D},t}) \qquad \min \left\{ f_{\mathcal{B}}(x) + \mathcal{D}_t(x-\bar{x}) \right\}$$

except $f_{\mathcal{B}}$ is a different model of f (not the cutting plane one)

Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

$$(\Delta_{\mathcal{B},\bar{x},\mathcal{D},t}) \qquad \min \left\{ f_{\mathcal{B}}(x) + \mathcal{D}_t(x-\bar{x}) \right\}$$
 except $f_{\mathcal{B}}$ is a different model of f (not the cutting plane one)

• Even simpler from the primal viewpoint:

$$\max \left\{ \ cu + \bar{x}z - \mathcal{D}^*(-z) \ : \ z = b - Au \ , \ u = C_{\mathcal{B}}\theta_{\mathcal{B}} \ , \ \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \right\}$$

• With proper choice of \mathcal{D}_t , still a Linear Program; e.g.

$$\begin{array}{ll} \text{max} & \ldots - (\Delta^- + \Gamma^-) z_2^- - \Delta^- z_1^- - \Delta^+ z_1^+ - (\Delta^+ + \Gamma^+) z_2^+ \\ & z_2^- + z_1^- - z_1^+ - z_2^+ = b - Au \ , \ \ldots \\ & z_2^+ \geq 0 \ , \ \varepsilon^+ \geq z_1^+ \geq 0 \ , \ \varepsilon^- \geq z_1^- \geq 0 \ , \ z_2^- \geq 0 \end{array}$$

• Dual optimal variables of "z = b - Au" still give x^*

Stabilizing the Structured Dantzig-Wolfe Algorithm

Exactly the same as stabilizing DW: stabilized master problem

$$(\Delta_{\mathcal{B},\bar{x},\mathcal{D},t}) \qquad \min \left\{ \ f_{\mathcal{B}}(x) + \mathcal{D}_t(x-\bar{x}) \ \right\}$$
 except $f_{\mathcal{B}}$ is a different model of f (not the cutting plane one)

• Even simpler from the primal viewpoint:

$$\max \left\{ \ cu + \bar{x}z - \mathcal{D}^*(-z) \ : \ z = b - Au \ , \ u = C_{\mathcal{B}}\theta_{\mathcal{B}} \ , \ \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \gamma_{\mathcal{B}} \ \right\}$$

• With proper choice of \mathcal{D}_t , still a Linear Program; e.g.

$$\max \quad \dots - (\Delta^{-} + \Gamma^{-}) z_{2}^{-} - \Delta^{-} z_{1}^{-} - \Delta^{+} z_{1}^{+} - (\Delta^{+} + \Gamma^{+}) z_{2}^{+}$$

$$z_{2}^{-} + z_{1}^{-} - z_{1}^{+} - z_{2}^{+} = b - Au \quad , \quad \dots$$

$$z_{2}^{+} \geq 0 \quad , \quad \varepsilon^{+} \geq z_{1}^{+} \geq 0 \quad , \quad \varepsilon^{-} \geq z_{1}^{-} \geq 0 \quad , \quad z_{2}^{-} \geq 0$$

- Dual optimal variables of "z = b Au" still give x^*
- Convergence theory basically the same as in [F., 2002] even somewhat simpler because \mathcal{B} is inherently finite
- NS/SS decision, handling of t, handling of \mathcal{B}

- ullet Aggregation is $\mathcal{B} = \mathcal{B} \cup \{ \ u^* \ \} \ (\mathcal{B} = \{ \ u^* \ \} \equiv \text{"poorman" method})$
- Aggregation is contrary to the spirit of S²DW, anyway it is impossible

- ullet Aggregation is $\mathcal{B}=\mathcal{B}\cup\{\ u^*\ \}\ (\mathcal{B}=\{\ u^*\ \}\equiv \text{``poorman''}\ \mathsf{method})$
- Aggregation is contrary to the spirit of S²DW, anyway it is impossible
 ... or is it? Actually, not!
- $\bar{f}_{\mathcal{B}} = \max\{ f_{\mathcal{B}}, f_{u^*}(x) = cu^* + x(b Au^*) \}$ is a model of f

- ullet Aggregation is $\mathcal{B}=\mathcal{B}\cup\{\ u^*\ \}\ (\mathcal{B}=\{\ u^*\ \}\equiv \text{``poorman''}\ \mathsf{method})$
- Aggregation is contrary to the spirit of S²DW, anyway it is impossible
 ... or is it? Actually, not!
- $\bar{f}_{\mathcal{B}} = \max\{ f_{\mathcal{B}}, f_{u^*}(x) = cu^* + x(b Au^*) \}$ is a model of f
- ullet Stabilized master problem with $ar{f}_{\mathcal{B}}$

$$\max \left\{ \begin{array}{l} cu + (1-\rho)cu^* + \bar{x}z - \mathcal{D}_t^*(-z) \\ u = C_{\mathcal{B}}\theta_{\mathcal{B}} \;,\; \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \rho\gamma_{\mathcal{B}} \\ z = Au + (1-\rho)Au^* - b \;\;,\;\; \rho \in [0,1] \end{array} \right.$$

if conv(U) compact and constraints linear

• "Knob": $\rho = 0 \Rightarrow \gamma_{\mathcal{B}} = 0 \Rightarrow u = u^*, \ \rho = 1 \Rightarrow u \in U_{\mathcal{B}}$

- Aggregation is $\mathcal{B} = \mathcal{B} \cup \{ u^* \}$ ($\mathcal{B} = \{ u^* \} \equiv$ "poorman" method)
- Aggregation is contrary to the spirit of S²DW, anyway it is impossible
 ... or is it? Actually, not!
- $\bar{f}_{\mathcal{B}} = \max\{ f_{\mathcal{B}}, f_{u^*}(x) = cu^* + x(b Au^*) \}$ is a model of f
- ullet Stabilized master problem with $ar{f}_{\mathcal{B}}$

$$\max \left\{ \begin{array}{l} cu + (1-\rho)cu^* + \bar{x}z - \mathcal{D}_t^*(-z) \\ u = C_{\mathcal{B}}\theta_{\mathcal{B}} \;,\; \Gamma_{\mathcal{B}}\theta_{\mathcal{B}} \leq \rho\gamma_{\mathcal{B}} \\ z = Au + (1-\rho)Au^* - b \;\;,\;\; \rho \in [0,1] \end{array} \right.$$

if conv(U) compact and constraints linear

- ullet "Knob": $ho=0 \ \Rightarrow \ \gamma_{\mathcal{B}}=0 \ \Rightarrow \ u=u^*$, $ho=1 \ \Rightarrow \ u\in U_{\mathcal{B}}$
- Possible use: avoid Phase 0 when \mathcal{D}_t "not steep" given $u^* \in conv(U)$ (e.g. $u^* \in U$) such that $Au^* = b$

Computational results

- Same machine/instances as before
- Comparing SDW with S²DW
- No removal/aggregation for \mathcal{B} , fixed t (class-specific tuning)
- Different stabilizing terms: $\mathcal{D}_t = \frac{1}{2t} \|\cdot\|_2^2$ vs $\mathcal{D}_t = I_{\mathcal{B}_{\infty}(t)}$ (QP vs LP, Lemaréchal vs Marsten)
- Different warm-start: "standard" MCF initialization (used for all) vs
 MCF + subgradient warm-start (few iterations, class-specific tuning)
- gap = final gap (%), cpu = time, it = iterations, ss = serious steps

Sample computational results (|K| = 100)

C2DV4

	Str	uctDV	V	,	5 ² DW	2			S ² DW	l_{∞}		S ²	DW_{∞}			
C	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS	cpu	gap	it	SS	
1	296	6.94	55	16380	6.57	51	15	223	2.97	66	58	357	1.52	91	84	
4	312	7.48	44	17091	5.87	47	12	298	2.72	70	54	270	1.48	69	60	
8	633	6.11	61	22176	7.16	37	14	280	2.70	64	34	277	1.44	65	47	
16	1138	6.45	87	27033	6.08	43	18	190	2.78	60	21	119	1.52	40	18	
1	188	4.70	60	5802	4.01	42	13	205	2.56	71	57	222	1.43	85	71	
4	147	4.15	39	6453	4.32	39	15	215	2.43	79	40	91	1.39	41	36	
8	354	4.31	67	5752	4.40	31	12	167	2.38	62	25	124	1.42	50	21	
16	551	4.94	70	10154	5.07	40	14	163	2.76	61	20	113	1.53	50	19	
1	36	0.46	32	2405	0.46	47	15	84	0.41	76	48	78	0.33	72	66	
4	66	0.46	50	1964	0.46	45	14	67	0.41	74	24	81	0.33	73	56	
8	55	0.46	33	1974	0.46	44	15	50	0.41	57	18	40	0.33	49	20	
16	164	0.81	65	1408	0.80	38	17	47	0.61	52	16	44	0.40	52	22	

C2DV4

 $\bullet~\mbox{S}^2\mbox{DW}_2$ converges faster but slow, \mbox{ws}^2 best in gap and often time

C2DV4

Sample computational results (|K| = 200)

	St	ructD $\$	N		S ² DW ₂	2		S	² DW	∞		S^2DW_{∞} –ws			s ²
C	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS	cpu	gap	it	SS
1	525	10.50	44	1.8e4	12.11	32	17	860	4.16	76	73	907	1.32	129	119
4	807	13.58	45	2.7e4	10.20	29	15	1091	2.79	89	87	1460	1.23	126	118
8	1593	10.17	44	8.3e4	10.12	40	17	1027	3.03	78	61	1237	1.20	99	77
16	2630	9.20	73	1.1e5	9.21	54	16	399	2.12	65	31	804	1.02	114	73
1	380	7.44	39	1.0e4	****	29	14	557	2.61	80	71	592	1.30	101	95
4	612	9.36	49	1.3e4	10.33	25	15	755	2.87	80	68	930	1.22	98	95
8	1647	8.87	68	3.3e4	10.61	30	14	468	2.75	50	43	761	1.33	83	66
16	3167	7.99	108	7.0e4	8.32	47	17	476	2.22	67	30	357	1.10	53	39
1	598	12.54	53	2.1e4	16.31	39	15	1019	3.92	98	93	1327	1.65	149	143
4	603	15.07	37	1.8e4	13.78	27	15	1001	3.72	90	79	891	1.60	98	94
8	1221	10.38	41	5.2e4	11.81	29	14	909	3.68	73	50	1040	1.63	102	96
16	3515	9.06	99	1.3e5	10.11	54	17	513	2.93	59	25	555	1.26	62	45

• S²DW₂ exceedingly slow, ws² best in gap, not always time

Sample computational results (|K| = 400)

	St	ructDW	1		S ² DW	∞		S^2DW_{∞} –ws ²				
С	cpu	gap	it	cpu	gap	it	SS	cpu	gap	it	SS	
1	9839	9.96	157	2473	2.23	76	55	1857	2.31	53	38	
4	9087	11.25	140	2140	2.33	68	54	2487	2.36	66	44	
8	11613	8.47	143	2338	2.45	66	45	1813	2.30	52	30	
16	38617	10.26	242	3403	2.66	77	39	2570	2.26	58	23	
1	22246	14.90	165	4811	3.31	87	76	4668	3.06	66	55	
4	17976	18.22	131	4324	2.57	77	64	4373	3.19	66	45	
8	30460	18.18	159	5224	3.14	85	60	4209	2.86	57	36	
16	74447	16.50	176	5532	3.14	67	46	5191	3.02	64	23	
1	23771	11.89	149	9215	2.96	97	78	6815	3.01	69	56	
4	28567	10.97	176	6766	2.99	79	63	6506	3.07	69	45	
8	27871	12.07	130	7560	2.67	87	56	5765	2.78	61	37	
16	58363	13.95	156	8626	3.14	83	45	3764	2.95	41	18	

• SDW always slower, ws² most often faster, S²DW gaps much better

- Column Generation very useful, too often too slow
- Stabilized CG helpful, too often not enough

- Column Generation very useful, too often too slow
- Stabilized CG helpful, too often not enough
- Structured Dantzig-Wolfe another item in our bag-of-tricks: generate structures at a finer granularity than columns

- Column Generation very useful, too often too slow
- Stabilized CG helpful, too often not enough
- Structured Dantzig-Wolfe another item in our bag-of-tricks: generate structures at a finer granularity than columns
- Stabilizing SDW possible, little theoretical issues
- Implementation non straightforward but possible
- Computational results quite promising

- Column Generation very useful, too often too slow
- Stabilized CG helpful, too often not enough
- Structured Dantzig-Wolfe another item in our bag-of-tricks: generate structures at a finer granularity than columns
- Stabilizing SDW possible, little theoretical issues
- Implementation non straightforward but possible
- Computational results quite promising
- To do: implement generic version (FiOracle class)
- To do: application to other interesting problems
- To do: something better than CPLEX to solve the quadratic version