Not-only-column Generation:

the (Stabilized) Structured Dantzig-Wolfe Method

Antonio Frangioni

Dipartimento di Informatica, Universita di Pisa
joint work with

Bernard Gendron

CIRRELT, Université de Montréal

ColGen 2012, Bromont
June 11", 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 2 /31

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation

9 The Structured Dantzig-Wolfe Approach

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation
9 The Structured Dantzig-Wolfe Approach

@ Computational results for StructDW

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation
9 The Structured Dantzig-Wolfe Approach
@ Computational results for StructDW

© Stabilizing the Structured Dantzig-Wolfe Algorithm

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation

9 The Structured Dantzig-Wolfe Approach

@ Computational results for StructDW

© Stabilizing the Structured Dantzig-Wolfe Algorithm

@ Computational results for S?DW

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

© A (not uncommon) Tale of Modeling and Reformulations
@ Integer Formulation
@ Row Generation
@ (Stabilized) Column Generation
@ Computational results: Row vs. (Stabilized) Column Generation

© Binary formulation: Row & Column Generation

9 The Structured Dantzig-Wolfe Approach

@ Computational results for StructDW

© Stabilizing the Structured Dantzig-Wolfe Algorithm
@ Computational results for S?DW

@ Conclusions

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Multicommodity Capacitated Network Design

@ Multiple flows (commodities) (s, t*, d*) k € K, facility costs f;

o Standard integer formulation / (I = continuous relaxation)

Z Z dkc + Z fijyij

keK (i j)eA (ij)EA
1 ifi=sk

Soouf— > uf=(-1 ifi=tk ieN,keK
(iJ)eA (j,i)eA 0 otherwise

> dkuf < ayyy (i,j) € A

keK

0<x;<1 (i,j)eA, ke K
yij €N (7)) € A

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Multicommodity Capacitated Network Design

@ Multiple flows (commodities) (s, t*, d*) k € K, facility costs f;

o Standard integer formulation / (I = continuous relaxation)

Z Z dkc + Z fijyij

keK (i,j)EA (ij)EA
1 ifi=sk

STuf— > uf=q -1 ifi=tk ieN, keK
(i,j)eA (j,i)eA 0 otherwise

> dhuf < ajy; (i,j)eA

keK

0<x;<1 (i,j)eA, ke K
yj €N (i) €A

o Efficiently optimize on mutiflows + construct the graph
@ N'P-hard, loads of applications, very difficult in practice because

large-scale (= slow) relaxation but weak bound from [

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 3/31

Reformulation |: Polyhedral Methods = Row Generation

@ (Exponentially many) Residual capacity inequalities [Atamturk, 2002]

Y a(l—uf) = (a(S) — [a(S)N([a(S)] —yy) SCK (1)

keS

(ak = d*/aj, a(S) = Yyes)
@ Separation easy (= 2 continuous knapsack), bound improves

@ Standard B&C tools

@ Re-solve / (large already) many times per node

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Reformulation Il: Lagrangian Dual = Column Generation

@ Relax the flow conservation constraints, (many) multipliers x = [x¥]

@ Lagrangian Relaxation decomposes by arc
min - > ea (ZkeK(dkCéY — xf X)uj + fij}’ij)

Der dhuf < ajyy
Uj=4{ 0<ug<1 keK (i,j)eA

yj €N

@ Easy (& 2 continuous knapsack) but no integrality property
= better bound than continuous relaxation

@ Residual capacity inequalities (1) have ~ separation cost and
describe conv(Uj;) [Atamturk, 2002] = v(LD) = v(/+)

@ Have to find optimal multipliers x*

ER

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Lagrangian Dual = Column Generation = Dantzig-Wolfe

@ Compact notation: decomposable U = Xycx UX, u= [u¥]rex
(m max { cu : Au=b, u € conv(U) }

@ We can efficiently optimize upon U = generate vertices of U =

represent conv(U) by extreme points (U = ext U) instead of by faces

conv(U) = u:Zuea:Zea:Leazo nelU
oel el

= reformulate (I1) in terms of the convex multipliers ¢
max ¢ (Y gep U0z)
A(Xgep W) =b
ZEEUHE =1 6;>0 UGD

@ Too large to be solved directly = Column Generation

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Master Problems

e B C U (small), solve restriction of (I) with U — B, i.e.,
(NB) max { cu : Au=b, u€ conv(B) }
feed (partial) dual optimal solution x* (of Au = b) to pricing problem
(My) f(x)=max{(c—xAu : ue U} + xb

(= compute Lagrangian function f(x)) to get new o € U, & — B

@ Dual of (Mg): min{ fg(x) = max{ (c = xA)u+xb, ue B} }
fz(x) = lower approximation of “true” Lagrangian function f(x)
= cutting-plane model

@ Column Generation = Row Generation in the dual =

solve Lagrangian Dual by Cutting Plane method

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 7 /31

Better Master Problems |: Disaggregation

@ Better: disaggregated primal master problem
max { chuk : ZAkuk:b , uk e UL = conv(B¥) ke K}
keK keK

(in practice, a different multiplier 0% for each @, previously 6% = 1)

= disaggregated cutting-plane model
fa(x) =xb + Y en (FE(x) =max { (ck —xA¥)uk : vk e UL })
@ |K| times larger master problem, but better use of information

= faster convergence (e.g. [Jones et al. 1993] for multicommodity)

@ Convergence can be slow, less well-supported than Row Generation,

a few nontrivial issues (branching, ...)

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 8 /31

Instability in CG/DW

° X;:_H can be very far from x;, where fz is a "bad model” of f

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Instability in CG/DW

® Xxj,q can be very far from x;, where fz is a "bad model” of f

...as a matter of fact, infinitely far
e (MNp) empty = (Ag) unbounded = Phase 0 / Phase 1 approach

@ More in general: {x;} is unstable, has no locality properties
= convergence speed does not improve near the optimum

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Better Master Problems Il: Stabilization

o Current point X, stabilizing term D; > 0, proximal parameter(s) t,
stabilized dual problem

(Agzp,t) min { 8(x) + D¢(x — X) }

Just avoid that iterates “go too far from X"

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 10 /31

Better Master Problems Il: Stabilization

o Current point X, stabilizing term D; > 0, proximal parameter(s) t,
stabilized dual problem

(Agzp,t) min { 8(x) + D¢(x — X) }
Just avoid that iterates “go too far from X"
@ Very simple stabilized primal problem
max { cu+xz —Dj(-z) : z=b— Au, u € conv(B) }
add slacks z, penalize them (“1%-order” and “2"-order” terms)
@ Funny general form for NDO lovers: Fenchel’s dual of (Azp +)
— min{ f*(z) —zy + Di(-z) }

[F., 2002] “*" = Fenchel’s conjugate

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 10 /31

Stabilizing Terms

@ Few general properties:
i) D: > 0 convex, D(0) =0 | i) + ii) hold for D
) Ss(D:) compact and full-dimensional ¥ >0 | <= hold for D}
) D, differentiable in 0 <= Dj strictly convex in 0
iv) im0 De(x)/||IX]| = 400 <= Df < 400
v) D; (Df) de(inc)reasing in t, D; — 0 (D} — Ifgy) as t — oo

@ iv) only serve to have (Agp ;) bounded (other means possible)

iii) can be relaxed somewhat, albeit at a cost

@ Simple and robust choice: | - ||3 [Lemaréchal et al, 2006]

@ Reasonable choices: piecewise-linear functions = (A;7D7t) isalLP
o 1-piece = boxstep [Marsten et al, 1975]
o 2-pieces [Kim et al, 1995]
o 3-pieces [Du Merle et al, 1999]
@ 5-pieces [Ben Hamor et al, 2009]

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 11 /31

In practice

a penalty a trust region or both

D D

D=5l 13

Dy = 3tll - 3

A. Frangioni (UniPI) Not-only-column Generation

Computational results: RG vs. StabDW

@ Intel Xeon X735002.93GHz, 64Gb RAM, Suse Linux, CPLEX 11.1
@ Large-scale instances (|K| € {100,200, 400}), very difficult

@ C =1 = lightly capacitated, C = 16 = tightly capacitated

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 13 /31

Computational results: RG vs. StabDW

Intel Xeon X735002.93GHz, 64Gb RAM, Suse Linux, CPLEX 11.1

Large-scale instances (| K| € {100,200, 400}), very difficult
@ C =1 = lightly capacitated, C = 16 = tightly capacitated

@ DW unbearably slow, disaggregating does not help (enough)

Stabilized DW much better, but only if disaggreated

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 13 /31

Sample computational results (|K| = 100)

Problem
Al C imp
517 1 187.00
4 138.22
8 100.08
6 60.49
1 155.19
4 122.84
8 93.00
6
1
4
8
6

1

517

1 59.68
114.50
97.32
79.62

56.19

669

1

@ RG always better than StabCG

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 14 /31

Sample computational results (|K| = 200)

Problem 1+ StabDW
Al C imp it
229 1 205.67 154821

4 131.24 131674

8 84.61 162766

16 42.78 97952
229 1 185.17 132963

4 125.39 147879

8 85.31 146727

16 46.09 107197
287 1 198.87 120614

4 136.97 112308

8 0294 130536

16 53.45 08972

@ RG wins only for large C, basically both lose

A. Frangioni (UniPI)

Not-only-column Generation

ColGen 2012

15 / 31

Reformulation Ill: Binary formulation B

@ Redundant upper bound constraints: yj; <[>, .« d*/aj| = Tj

@ Pseudo-polinomially many segments S;; = { 1,..., Tj; } for yj;

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 16 /

Reformulation Ill: Binary formulation B

@ Redundant upper bound constraints: yj; <[>, .« d*/aj| = Tj
@ Pseudo-polinomially many segments S;; = { 1,..., Tj; } for yj;
@ Reformulation in binary variables: y;; = Zses,-j i

1 ify;j=s
S — M i
Y { 0 otherwise S €5y

k .
ks _ | U ifyj=s ke K
i { 0 otherwise S €55, ke
(s—Dayys <> d*uff <sajy; (iLj))€EA, s€S;
kEK
> yp<i (i) e A
SES,‘j

... then original variables can be removed

@ Up to now, continuous relaxation bound has not improved

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 16 / 31

Improved binary formulation B+

@ Extended linking inequalities:

uf <y; (i))EA, keK , s€S

@ Improved continuous relaxation bound: v(B+) = v(I+) = v(DW)
[F., Gendron, 2009] using [Croxton et al., 2003]

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 17 /31

Improved binary formulation B+

@ Extended linking inequalities:

uf <y; (i))EA, keK , s€S

@ Improved continuous relaxation bound: v(B+) = v(I+) = v(DW)
[F., Gendron, 2009] using [Croxton et al., 2003]

@ In particular, binary formulation describes conv(U):

continuous relaxation has integrality property

@ Optimizing over U = conv(U) easy

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 17 /31

Improved binary formulation B+

@ Extended linking inequalities:

uf <y; (i))EA, keK , s€S

Improved continuous relaxation bound: v(B+) = v(I+) = v(DW)
[F., Gendron, 2009] using [Croxton et al., 2003]

(]

(]

In particular, binary formulation describes conv(U):

continuous relaxation has integrality property

(]

Optimizing over U = conv(U) easy

(]

Pseudo-polynomial number of variables and constraints

@ How can we exploit it?

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 17 /31

The main issue

@ Substantially different from both RG and DW

@ Need to generate both rows and columns

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 18 /31

The Structured Dantzig-Wolfe ldea

@ Assumption 1: Alternative Formulation of “easy” set
conv(U)={u=Co : TH <~}

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 19 /31

The Structured Dantzig-Wolfe ldea

@ Assumption 1: Alternative Formulation of “easy” set
conv(U)={u=Co : TH <~}
@ Assumption 2: padding with zeroes

Mg <y =T[0g,0] <~

= UB = { u= CBQB : FBHB < B } - CO”V(U)

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 19 /31

The Structured Dantzig-Wolfe ldea

@ Assumption 1: Alternative Formulation of “easy” set

conv(U)={u=Co : TH <~}
@ Assumption 2: padding with zeroes

Mg <y =T[0g,0] <~
= U= { u=Cgbp : Tl <5 } C conv(U)
@ Assumption 3: easy update of rows and columns
Given B, u € conv(U), u ¢ Ug, itis “easy” to find B’ D B
(= T,) such that 3 B” O B’ such that & € Ugr.

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 19 /31

The Structured Dantzig-Wolfe ldea

@ Assumption 1: Alternative Formulation of “easy” set
conv(U)={u=Co : TH <~}
@ Assumption 2: padding with zeroes
Mg <y =T[0g,0] <~
= U= { u=Cgbp : Tl <5 } C conv(U)
@ Assumption 3: easy update of rows and columns
Given B, u € conv(U), u ¢ Ug, itis “easy” to find B’ D B
(= T,) such that 3 B” O B’ such that & € Ugr.
@ Structured master problem
(Np) max{cu s Au=b, u= Cgbp, rgeggw,»}
= structured model

fs(x) = max{ (c—xA)u+ub, u= Cglp, N <5}

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

19 / 31

The Structured Dantzig-Wolfe Algorithm

(initialize B);

repeat
(solve (Mg) for u*, x* (duals of Au= b); v* = cu*);
u=argmin { (c—x*Au:uve U}
(update B as in Assumption 3);

until v* < ct+ x*(b — Al)

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 20 / 31

The Structured Dantzig-Wolfe Algorithm

(initialize B);

repeat
(solve (Mg) for u*, x* (duals of Au= b); v* = cu*);
u=argmin { (c—x*Au:uve U}
(update B as in Assumption 3);

until v* < ct+ x*(b — Al)

@ Relatively easy [F., Gendron, 2009] to prove that:
o finitely terminates with an optimal solution of (I)

@ ...even if (proper) removal from B is allowed (when cu* increases)

@ ...even if U is non compact and B = () at start (Phase 0)

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 20 / 31

The Structured Dantzig-Wolfe Algorithm

(initialize B);

repeat
(solve (Mg) for u*, x* (duals of Au= b); v* = cu*);
u=argmin { (c—x*Au:uve U}
(update B as in Assumption 3);

until v* < ct+ x*(b — Al)

@ Relatively easy [F., Gendron, 2009] to prove that:
o finitely terminates with an optimal solution of (I)

@ ...even if (proper) removal from B is allowed (when cu* increases)

@ ...even if U is non compact and B = () at start (Phase 0)
@ The subproblem to be solved is identical to that of DW
@ Requires (= exploits) extra information on the structure

@ Master problem with any structure, possibly much larger

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

20 / 31

Computational results for StructDW

@ Same machine/instances as before

@ Solving the root relaxation, then freezing the formulation
+ CPLEX polishing for one hour

@ Unlike I+, frozen B+ formulations may not contain optimal solution
= final gap = quality of obtained formulation

@ imp = lower bound improvement (equal for all)

gap = final gap (%), cpu = time, it = iterations

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 21 /31

Sample computational results (|K| = 100)

Problem 1+ StructDW
Al C imp | cpu gap it cpu gap it
517 1 187.00 | 348 5.78 26

4 13822 | 362 6.42 25

8 100.08 6.12 21

16 60.49 6.20 21
517 1 155.19 395 23

4 12284 | 194 3.87 26

8 93.00 3.96 20

16 59.68 472 18
669 1 11450 | 80 0.50 26

4 97.32 78 0.46 22

8 79.62| 68 0.46 19

16 56.19 0.74 19 164 0.81

@ SDW worsens as C grows (tighter capacities), RG the converse

A. Frangioni (UniPI)

Not-only-column Generation

ColGen 2012

22 /31

Sample computational results (|K| = 200)

Problem

Al C imp

229 1 205.67
4 131.24

8 84.61

16 42.78

229 1 185.17
4 125.39
8 85.31
16 46.09

287 1 198.87
4 136.97
8 9294
16 53.45

StabDW

@ Same trend, but RG better only for C = 16

A. Frangioni (UniPI)

Not-only-column Generation

StructDW

ColGen 2012

23 /31

Sample computational results (|K| = 400)

Problem StabDW
Al C imp cpu it
519 1 100.83 | 87695 248746

4 0254 | 88031 247864

8 82.16 | 88918 258266

16 65.53 | 85384 238945
519 1 125.07 | 93065 258054

4 111.02 | 90573 250854

8 04.82| 93418 256884

16 71.31 | 93567 265663
668 1 126.02 | 98789 246702

4 115.29 | 99014 247620

8 102.03 | 104481 258636

16 80.96 | 103011 278905

StructDW
gap
9.96
11.25
8.47
10.26
14.90
18.22
18.18
16.50
11.89
10.97
12.07
13.95

@ SWD always better, stabilizing SDW seems promising

A. Frangioni (UniPI)

Not-only-column Generation

ColGen 2012

it

140
143
242
165
131
159
176
149
176
130
156

24 /31

Stabilizing the Structured Dantzig-Wolfe Algorithm

@ Exactly the same as stabilizing DW: stabilized master problem
(ABzp.t) min { fz(x) + D¢(x — %) }

except fz is a different model of f (not the cutting plane one)

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 25 /31

Stabilizing the Structured Dantzig-Wolfe Algorithm
@ Exactly the same as stabilizing DW: stabilized master problem
(ABzp.t) min { 8(x) + D¢(x — X) }

except fz is a different model of f (not the cutting plane one)

@ Even simpler from the primal viewpoint:
max{ cu+xz—D*(—z) : z=b—Au, u= Cglp, gl < B }
@ With proper choice of Dy, still a Linear Program; e.g.
max ...— (A7 +T7)z, —A~z; — ATz — (AT +TT)z
z, +z; —z —zf =b—Au ,
Zr >0, et >z >0, e >z >0, z, >0

@ Dual optimal variables of “z = b — Au" still give x*

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 25 /31

Stabilizing the Structured Dantzig-Wolfe Algorithm

@ Exactly the same as stabilizing DW: stabilized master problem
(ABzp.t) min { fz(x) + D¢(x — %) }
except fz is a different model of f (not the cutting plane one)
@ Even simpler from the primal viewpoint:
max{ cu+xz—D*(—z) : z=b—Au, u= Cglp, gl < B }
@ With proper choice of Dy, still a Linear Program; e.g.
max ...— (A7 +T7)z, —A~z; — ATz — (AT +TT)z
z, +z; —z —zf =b—Au ,
Zr >0, et >z >0, e >z >0, z, >0
@ Dual optimal variables of “z = b — Au" still give x*
@ Convergence theory basically the same as in [F., 2002]

even somewhat simpler because B is inherently finite
@ NS/SS decision, handling of t, handling of B

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Aggregation & the Structured Dantzig-Wolfe Algorithm

o Aggregationis B=BU{ uv*} (B={u*} = "poorman” method)

@ Aggregation is contrary to the spirit of S2DW, anyway it is impossible

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 26 /31

Aggregation & the Structured Dantzig-Wolfe Algorithm

o Aggregationis B=BU{ uv*} (B={u*} = "poorman” method)

@ Aggregation is contrary to the spirit of S2DW, anyway it is impossible
...oris it? Actually, not!

o fg = max{ fg, f=(x) = cu* + x(b— Au*) } is a model of f

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 26 /31

Aggregation & the Structured Dantzig-Wolfe Algorithm

o Aggregationis B=BU{ uv*} (B={u*} = "poorman” method)

@ Aggregation is contrary to the spirit of S2DW, anyway it is impossible
...oris it? Actually, not!

o fg = max{ fg, fur(x) = cu* + x(b— Au*) } is a model of f
@ Stabilized master problem with fz
cu+ (1 —p)eu* + xz — Df(—2)
max u= Cglp, ' < pyB
z=Au+(1—-pAv*—b , pe|0,]1]

if conv(U) compact and constraints linear

@ “‘Knob": p=0 = wp=0= u=u*"p=1= uelp

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 26 /31

Aggregation & the Structured Dantzig-Wolfe Algorithm

o Aggregationis B=BU{ uv*} (B={u*} = "poorman” method)

@ Aggregation is contrary to the spirit of S2DW, anyway it is impossible
...oris it? Actually, not!

fs = max{ fz, fu+(x) = cu* + x(b — Au*) } is a model of f

Stabilized master problem with fz

(]

cu+ (1 —p)eu* + xz — Df(—2)
max u= Cglp, ' < pyB
z=Au+(1—-pAv*—b , pe|0,]1]

if conv(U) compact and constraints linear

“Knob": p=0 = v3=0 = u=u*"p=1 = ueUg

(]

Possible use: avoid Phase 0 when D; “not steep”
given u* € conv(U) (e.g. u* € U) such that Au* = b

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Computational results

@ Same machine/instances as before

@ Comparing SDW with S2DW

@ No removal/aggregation for B, fixed t (class-specific tuning)

o Different stabilizing terms: Dy = 2 || - [|3 vs Dy = Ig..(t)
(QP vs LP, Lemaréchal vs Marsten)

o Different warm-start: “standard” MCF initialization (used for all) vs
MCF + subgradient warm-start (few iterations, class-specific tuning)

o gap = final gap (%), cpu = time, it = iterations, ss = serious steps

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 27 /31

Sample computational results (|K| = 100)

StructDW S°DW, S°DWo
C| cpu gap it ss| cpu gap it ss
1| 296 6.94 55 2.97 66 58
4| 312 7.48 44 2.72 70 54
8| 633 6.11 61 2.70 64 34
61138 6.45 87 18| 190 2.78 60 21
1 13| 205 2.56 71 57
4 15| 215 2.43 79 40
8 12| 167 2.38 62 25
6 14| 163 2.76 61 20
1 0.46 15| 84 0.41 76 48
4 0.46 50 14| 67 0.41 74 24
8| 55 0.46 33 15| 50 0.41 57 18
6| 164 0.81 65 17| 47 0.61 52 16

@ S?DW, converges faster but slow, ws? best in gap and often time

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 28 /

Sample computational results (|K| = 200)

StructDW S?DW, S?°DW S2DW oo —ws?
cpu gap it ss| cpu gap it ss| cpu it ss
10.50 44 17| 860 4.16 76 73| 907 129 119

0

12.11

1

4 13.58 45 10.20 1091 2.79 89 87|1460 126 118
8|1593 10.17 44 10.12 3.03 78 61|1237 99 77
1612630 9.20 73 9.21 2.12 65 31| 804 114 73
1 7.44 39 koK 557 2.61 80 71| 592 101 95
4 9.36 49 10.33 755 2.87 80 68| 930 98 95
8|1647 8.87 68 10.61 2.75 50 43| 761 83 66
16|3167 7.99 108 8.32 2.22 67 30| 357 53 39
1 12.54 53 16.31 1019 3.92 98 93|1327 149 143
4 15.07 37 13.78 1001 3.72 90 79| 891 98 94
8(1221 10.38 41 11.81 3.68 73 50{1040 102 96
16|3515 9.06 99 10.11 2.93 59 25| 555 62 45

@ S?DW, exceedingly slow, ws? best in gap, not always time

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 29 /31

Sample computational results (|K| = 400)

StructDW

S2DW,,

S?DW oo—ws?

Aa

cpu

gap

it

SS

2473 2.23

2 - 5

2338 2.45
3403 2.66

76
68
66
77

55
54
45
39

4811 3.31

2 2 57

5224 3.14
55632 3.14

87
77
85
67

76
64
60
46

DO PO P~ HO 0P~

9215
6766
7560
8626

2.96
2.99
2.67
3.14

97
79
87
83

78
63
56
45

@ SDW always slower, ws

A. Frangioni (UniPI)

2

Not-only-column Generation

most often faster, S’DW gaps much better

ColGen 2012 30/

Conclusions

@ Column Generation very useful, too often too slow

@ Stabilized CG helpful, too often not enough

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 31 /31

Conclusions

@ Column Generation very useful, too often too slow
@ Stabilized CG helpful, too often not enough

@ Structured Dantzig-Wolfe another item in our bag-of-tricks:

generate structures at a finer granularity than columns

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Conclusions

Column Generation very useful, too often too slow

Stabilized CG helpful, too often not enough

Structured Dantzig-Wolfe another item in our bag-of-tricks:

generate structures at a finer granularity than columns

(]

Stabilizing SDW possible, little theoretical issues
@ Implementation non straightforward but possible

o Computational results quite promising

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012

Conclusions

Column Generation very useful, too often too slow
Stabilized CG helpful, too often not enough

Structured Dantzig-Wolfe another item in our bag-of-tricks:

generate structures at a finer granularity than columns
Stabilizing SDW possible, little theoretical issues
Implementation non straightforward but possible
Computational results quite promising

To do: implement generic version (FiOracle class)
To do: application to other interesting problems

To do: something better than CPLEX to solve the quadratic version

A. Frangioni (UniPI) Not-only-column Generation ColGen 2012 31 /31

	A (not uncommon) Tale of Modeling and Reformulations
	Integer Formulation
	Row Generation
	(Stabilized) Column Generation
	Computational results: Row vs. (Stabilized) Column Generation

	Binary formulation: Row & Column Generation
	The Structured Dantzig-Wolfe Approach
	Computational results for StructDW
	Stabilizing the Structured Dantzig-Wolfe Algorithm
	Computational results for S2DW
	Conclusions

