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Standard Knapsack

set of I items

each item with an associated weight wi and a profit ci

knapsack with an integer capacity W

Objective: determine the subset of items that maximize the total profit
without exceeding W

max
I∑

i=1

cixi

s. t.
I∑

i=1

wixi ≤W ,

xi ∈ {0, 1}, i = 1, . . . , I .
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Max-min Knapsack Problem (MNK)

The profit of items depends on the scenario

The weight of items remains independent

csi - profit of an item i under the scenario s

S - total number of scenarios

Objective: maximize the worst possible scenario

max min
s=1,...,S

{
I∑

i=1

csi xi

}
(1)

s.t.
I∑

i=1

wixi ≤W , (2)

xi ∈ {0, 1}, i = 1, . . . , I . (3)
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Literature

Yu (1996): MNK is strongly NP-Hard for unbounded S, but weakly
NP-hard for fixed S.

Sbihi (2010): cooperative local search-based algorithm for
multi-scenario MNK

Taniguchi et al. (2008): heuristic and exact algorithms for
multi-scenario MNK

Taniguchi et al. (2009): instances with strongly correlated profits
for 2-scenario MNK are difficult to solve, unless they are very small.
NUOPT (solver competitive with CPLEX) times increase
significantly with size of instance.
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Bi-objective max-min knapsack problem

I Bi-objective: number of scenarios is equal to two

A standard LP formulation:

max z (4)

s. t.
I∑

i=1

c1
i xi ≥ z, (5)

I∑
i=1

c2
i xi ≥ z, (6)

I∑
i=1

wixi ≤W , (7)

xi ∈ {0, 1}, i = 1, . . . , I . (8)
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Decomposition of MNK

Original model

max z (9)

s. t.
I∑

i=1

c1
i xi ≥ z, (10)

I∑
i=1

c2
i xi ≥ z, (11)

I∑
i=1

wixi ≤W , (12)

xi ∈ {0, 1}, i = 1, . . . , I . (13)

Reformulation of (9)-(13) through the Dantzig-Wolfe decomposition principle.

Master problem is defined from the constraints (10)-(11)

The subproblem is defined from its knapsack constraint (12).

Bromont 2012 A column generation algorithm for the bi-objective max-min knapsack problem 9 / 28



The Max-Min Knapsack Problem (MNK)
Decomposition of MNK

Computational Experiments
Conclusions and Future work

Master problem
Subproblem
Column generation

Decomposition of MNK (2)

X - polyhedron defined by the knapsack constraint of the MNK

x = (x1, x2, . . . , xI ) ∈ X can be defined as a convex combination of the extreme
points of X (Minkowski theorem for bounded polyhedra)

P - number of extreme points of X

Ep = (E1
p ,E

2
p ,E

3
p , . . . ,E

I
p) - pth extreme point, p = 1, . . . ,P

x =
P∑

p=1

αpEp = (
P∑

p=1

αpE
1
p ,

P∑
p=1

αpE
2
p , . . . ,

P∑
p=1

αpE
I
p), (14)

P∑
p=1

αp = 1, (15)

αp ≥ 0, p = 1, . . . ,P. (16)
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Master problem

αp , p = 1, . . . ,P - variables of the master

Master problem

max z (17)

s.t.
P∑

p=1

αp(
I∑

i=1

c1
i E

i
p) ≥ z, (18)

P∑
p=1

αp(
I∑

i=1

c2
i E

i
p) ≥ z, (19)

P∑
p=1

αp = 1, (20)

αp ≥ 0, p = 1, . . . ,P. (21)
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Subproblem

Standard knapsack does not have the integrality property

Bound provided by linear relaxation of the reformulated model will be at least as
strong as the linear relaxation of original model

Dual variables of Master Problem

max z (22)

s.t. Dual variables
P∑

p=1

αp(
I∑

i=1

c1
i E

i
p) ≥ z, π1 (23)

P∑
p=1

αp(
I∑

i=1

c2
i E

i
p) ≥ z, π2 (24)

P∑
p=1

αp = 1, π0 (25)

αp ≥ 0, p = 1, . . . ,P. (26)
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Subproblem

Reduced cost of αp

−π1(
I∑

i=1

c1
i E

i
p)− π2(

I∑
i=1

c2
i E

i
p)− π0.

I attractive variable: reduced cost is positive

Subproblem

min
I∑

i=1

(π1c
1
i + π2c

2
i )yi

s.t.
I∑

i=1

wiyi ≤W ,

yi ∈ {0, 1}, i = 1, . . . , I .
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Subproblem

Each solution of subproblem is feasible for MNK

its value can be checked against the upper bound to prove the
optimality or to evaluate the tightness

solution comes a single column (one convexity constraint)
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Column generation

Bounds

I If the lower bound is equal to the upper bound (or the largest
integer value smaller than this upper bound), then an optimal
solution for the MNK has been found.

Attractive 

columns

RESTRICTED MASTER PROBLEM

PRICING SUBPROBLEM

Dual 

variables

Lower 

bound for 

the MNK

Upper 

bound for 

the MNK
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Instances

weight wi of item i is uniformly distributed over the integer interval
[1, 1000].

values of items are generated according to:

UNCOR (uncorrelated): csi (s = 1, 2) are distributed
independently and uniformly over [1, 1000]

WEAK (correlated): csi (s = 1, 2) are distributed independently
and uniformly over [wi ,wi + 200]

STRONG (strongly correlated): c1
i := wi + 100 and c2

i is
distributed uniformly over [wi ,wi + 200]

knapsack capacity W := 500Iρ, (ρ = {0.25, 0.50, 0.75}; ρ = 0.5
means that approximately half of the items fit in the knapsack )
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Computational Experiments

Comparison between the proposed approach, CPLEX and the
heuristic described in Taniguchi et al. (2009)

Experiments conducted on a PC with 2.4GHz and 4 GB of RAM

Two types of instances: correlated instances (20 sets) and strongly
correlated instance (20 sets)

Generation of 5 instances for each value of
I = {250, 500, 1000, 2500} with different ρ = {0.25, 0.50, 0.75}.
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Terminology

• torig : average computing time in seconds needed by CPLEX to find
an optimal solution for the original model (1)-(3) (and to prove its
optimality);

• it: number of iterations of column generation algorithm;

• δorig cg : average percentage difference between the upper bound
given by the linear relaxation of (1)-(3) and the upper bound given
by the linear relaxation of (22)-(26);

• δopt cg : average percentage difference between the optimal solution
of the problem and the lower bound given by our column generation
algorithm;

• tcg : average computing time needed by our column generation
algorithm to solve the linear relaxation of (22)-(26) (in seconds);

• opt: number of times the column generation algorithm found an
integer optimal solution to RMP.
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Computational results: correlated instances (WEAK)

Model Column Generation

(1)-(3)

I torig it δorig cg δopt cg tCG opt

250 0,0 2,4 0,3 0,4 0,0 4

500 0,0 7,6 0,2 0,0 0,2 2

1000 0,0 6,8 0,0 0,0 0,2 3

2500 0,0 6,6 0,0 0,0 0,6 4
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Correlated instances

Column generation upper bound improves slightly the LP upper
bound for the first two sets of instances

Column generation algorithm found and proved the optimality of
the solutions for 13 instances at the root node.

The lower bound obtained with the column generation algorithm is
very close to the optimum

both bounds from heuristic proposed by Taniguchi et al. (2009) are
much worse than column generation bounds.

CPLEX solves all the correlated instances very efficiently.
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Computational results: strongly correlated instances
(STRONG)

Model Column Generation

(1)-(3)

I torig it δorig cg δopt cg tCG opt

250 61,6 4,4 2,1 0,0 0,2 2

500 261,8 5,4 2,0 0,0 0,2 2

1000 138,4 6,4 0,4 2,4 1,8 0

2500 182,2 7,8 0,1 4,8 5,2 1
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Strongly Correlated Instances

Computing time required by CPLEX to solve the original model
increases significantly

The average number of column generation iterations remains small

both bounds from heuristic proposed by Taniguchi et al. (2009) are
much worse than column generation bounds.
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Conclusions

Column generation approach for the bi-objective max-min knapsack
problem

Column generation algorithm clearly outperforms the
state-of-the-art heuristic proposed by Taniguchi et al., (2009),
which takes approximately the same time as column generation.

Both upper and lower bounds given by this heuristic are worse than
those achieved with the original model
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Future work

Outline of a branch-and-price algorithm

fractional solution of RMP corresponds to fractional knapsack
solution (convex combination of knapsack solutions)
branch on the original knapsack variables.
subproblem remains a knapsack problem.

with narrow gaps, reduction of size of knapsack problems to core
problem may allow solving exactly large instances of bi-objective
MNK, in times competitive with CPLEX.

heading to multi-scenario MNK.
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