Column Generation: Just Say "No" ... for the Wrong Variables

A. Frangioni^{\natural} <u>E. Gorgone^{\flat}</u>

[¢]Dipartimento di Informatica, Polo Universitario della Spezia – Università di Pisa [¢]Dipartimento di Elettronica Informatica e Sistemistica – Università della Calabria

International Workshop on Column Generation 2012 Bromont, Québec, Canada June 10 to 13, 2012

Outline

1 The Problem, Formulations

- 2 Column Generation
- 3 Stabilized Column Generation
- 4 Stabilized Column Generation + "Easy" Components
- 5 Computational results

The Problem, Formulations

Fixed-Charge Multicommodity Min–Cost Flow Problem

- Graph G = (N, A), commodities $K = \{(s^k, t^k, d^k)\}$
- Weak Formulation (WF): routing costs c_{ij}^k , design costs f_{ij}

$$(\Omega) \begin{vmatrix} \min & \sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^{k} x_{ij}^{k} + \sum_{(i,j) \in A} f_{ij} y_{ij} \\ & \sum_{(i,j) \in A} x_{ij}^{k} - \sum_{(j,i) \in A} x_{ji}^{k} = b_{i}^{k} & i \in N, \ k \in K \\ & \sum_{k \in K} x_{ij}^{k} \leq u_{ij} y_{ij} & (i,j) \in A \\ & 0 \leq x_{ij}^{k} \leq u_{ij}^{k} & (i,j) \in A, \ k \in K \\ & y_{ij} \in \{0,1\} & (i,j) \in A \end{vmatrix}$$

 $b_i^k = d^k$ if $i = s^k$, $b_i^k = -d^k$ if $i = t^k$, and 0 otherwise

FC-MMCF: Strong Formulation (SF)

- WF : |K|(|A| + 1) variables, |K||N| + |A| constraints (+ bounds)
- SF = WF + |K||A| (redundant) individual capacity cuts

$$x_{ij}^k \leq u_{ij}^k y_{ij}$$
 $(i,j) \in A, k \in K$

(effective if $u_{ij}^k \ll u_{ij}$)

- Continuous relaxations $\overline{\mathrm{WF}},\ \overline{\mathrm{SF}}$
- $\overline{\mathrm{SF}}$: rather difficult to solve when $|\mathcal{K}|$ large (telecommunications) + rather weak bound
- Decent bound (to start with ...), but extremely difficult to solve (efficiently) ... even with row generation

Column Generation

Weak Formulation

- S = set of all (extreme) solutions s = [x^{1,s},..., x^{k,s}, y^s] of the pricing problem
- Dantzig–Wolfe (DW) reformulation of $\overline{\mathrm{WF}}$

$$(\Delta_{\mathcal{S}}) \left| \begin{array}{c} \min \quad \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} c_{ij}^{k} \bar{x}_{ij}^{k,s} + \sum_{(i,j) \in \mathcal{A}} f_{ij} \bar{y}_{ij}^{s} \right) \theta_{s} \\ \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}} \bar{x}_{ij}^{k,s} - u_{ij} \bar{y}_{ij}^{s} \right) \theta_{s} \leq 0 \qquad (i,j) \in \mathcal{A} \\ \sum_{s \in \mathcal{S}} \theta_{s} = 1 \,, \ \theta_{s} \geq 0 \qquad s \in \mathcal{S} \end{array} \right.$$

- Exponential number of variables, only |A| + 1 (non-bound) constraints
 ⇒ column generation
- (Small) subset ${\mathcal B}$ of ${\mathcal S}$, master problem with $heta_s=0$ for $s\in {\mathcal S}\setminus {\mathcal B}$
- In theory, $|\mathcal{B}| \leq |\mathcal{A}| + 1$ could suffice

• Pricing problem $P(\alpha)$ of (WF)

$$P(\alpha) \begin{vmatrix} \min & \sum_{k \in K} \sum_{(i,j) \in A} (c_{ij}^k + \alpha_{ij}) x_{ij}^k + \sum_{(i,j) \in A} (f_{ij} - \alpha_{ij} u_{ij}) y_{ij} \\ & \sum_{(i,j) \in A} x_{ij}^k - \sum_{(j,i) \in A} x_{ji}^k = b_i^k \quad i \in N, \ k \in K \\ & 0 \le x_{ij}^k \le u_{ij}^k \quad (i,j) \in A, \ k \in K \\ & y_{ij} \in \{0,1\} \quad (i,j) \in A \end{vmatrix}$$

• Decomposed into |K| (SPT)s/(MCF)s + one trivial problem

• DW is equivalent to $\overline{\mathrm{WF}}$ (fully)

Strong Formulation

• Same thing for $\overline{\mathrm{SF}}$ (\mathcal{S} exactly the same)

$$(\Delta_{\mathcal{S}}) \left| \begin{array}{c} \min \quad \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}} \sum_{(i,j) \in A} c_{ij}^{k} \bar{x}_{ij}^{k,s} + \sum_{(i,j) \in A} f_{ij} \bar{y}_{ij}^{s} \right) \theta_{s} \\ \sum_{s \in \mathcal{S}} \left(\sum_{k \in \mathcal{K}} \bar{x}_{ij}^{k,s} - u_{ij} \bar{y}_{ij}^{s} \right) \theta_{s} \leq 0 \quad (i,j) \in A \\ \sum_{s \in \mathcal{S}} \left(\bar{x}_{ij}^{k,s} - u_{ij}^{k} \bar{y}_{ij}^{s} \right) \theta_{s} \leq 0 \quad (i,j) \in A, \ k \in \mathcal{K} \\ \sum_{s \in \mathcal{S}} \theta_{s} = 1, \ \theta_{s} \geq 0 \quad s \in \mathcal{S} \end{array} \right.$$

• ... but |A|(|K|+1)+1 (non-bound) constraints

- Turn-based row and column generation
- Now one expects $\mathcal{B} \approx |\mathcal{K}||\mathcal{A}|$ at least (although it may be less)

Strong Formulation – Pricing Problem

• Pricing problem $P(\alpha, \beta)$ of (SF)

$$P(\alpha,\beta) \begin{vmatrix} \min & \sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} (c_{ij}^k + \alpha_{ij} + \beta_{ij}^k) x_{ij}^k + \\ & \sum_{(i,j) \in \mathcal{A}} (f_{ij} - \alpha_{ij} u_{ij} - \beta_{ij}^k u_{ij}^k) y_{ij} \\ & \sum_{(i,j) \in \mathcal{A}} x_{ij}^k - \sum_{(j,i) \in \mathcal{A}} x_{ji}^k = b_i^k \qquad i \in N, \ k \in \mathcal{K} \\ & 0 \le x_{ij}^k \le u_{ij}^k \qquad (i,j) \in \mathcal{A}, \ k \in \mathcal{K} \\ & y_{ij} \in \{0,1\} \qquad (i,j) \in \mathcal{A} \end{vmatrix}$$

- Solvable exactly as the previous one
- $\bullet~$ DW is equivalent to $\overline{\rm SF}$

Disaggregated Dantzig–Wolfe

- S^k = extreme points of commodity k (paths), S^y = extreme points of fixed charges (2^{|A|} vertices of the unary hypercube)
- Disaggregate formulation (of WF to keep it simple)

$$\Delta_{\mathcal{S}}\right| \begin{array}{c|c} \min & \sum_{k \in \mathcal{K}} \sum_{(i,j) \in \mathcal{A}} c_{ij}^{k} \left(\sum_{s \in \mathcal{S}^{k}} \bar{x}_{ij}^{k,s} \theta_{s} \right) + \sum_{(i,j) \in \mathcal{A}} f_{ij} \left(\sum_{s \in \mathcal{S}} \bar{y}_{ij}^{s} \theta_{s} \right) \\ & \sum_{k \in \mathcal{K}} \left(\sum_{s \in \mathcal{S}^{k}} \bar{x}_{ij}^{k,s} \theta_{s} \right) \leq u_{ij} \left(\sum_{s \in \mathcal{S}} \bar{y}_{ij}^{s} \theta_{s} \right) \quad (i,j) \in \mathcal{A} \\ & \sum_{s \in \mathcal{S}^{k}} \theta_{s} = 1, \ \theta_{s} \geq 0 \qquad s \in \mathcal{S}^{k}, \ k \in \mathcal{K} \\ & \sum_{s \in \mathcal{S}^{y}} \theta_{s} = 1, \ \theta_{s} \geq 0 \qquad s \in \mathcal{S}^{y} \end{array}$$

• Slightly more constraints, but sparser + much sparser columns

- |K|+1 times more columns ... but $|\mathcal{B}|pprox 2|A|$ in the best case (SF)
- Usually (much) more efficient

A. Frangioni and E. Gorgone (Uni(Pi-Cal))

Even more disaggregated Dantzig-Wolfe

• The unitary hypercube is a cartesian product: why not $\mathcal{Y} = \bigotimes_{(i,j) \in A} (\mathcal{Y}^{ij} = \{0,1\})?$

•
$$y_{ij} \longrightarrow 0 \cdot \theta^{ij,0} + 1 \cdot \theta^{ij,1}$$
, $\theta^{ij,0} + \theta^{ij,1} = 1$, $\theta^{ij,0} \ge 0$, $\theta^{ij,1} \ge 0$.
 $y_{ij} \in [0, 1]$ (no, ... really?!)

• Arc-path formulation with original arc design variables

$$\begin{array}{ll} \min & \sum_{p \in \mathcal{P} = \bigcup_{k \in \mathcal{K}} \mathcal{P}^k} c_p f_p + \sum_{(i,j) \in \mathcal{A}} f_{ij} y_{ij} \\ & \sum_{p \in \mathcal{P} : \ (i,j) \in p} f_p \leq u_{ij} y_{ij} & (i,j) \in \mathcal{A} \\ & \sum_{p \in \mathcal{P}^k} f_p = d^k & k \in \mathcal{K} \\ & f_p \geq 0 & p \in \mathcal{P} = \bigcup_{k \in \mathcal{K}} \mathcal{P}^k \\ & y_{ij} \in [0,1] & (i,j) \in \mathcal{A} \end{array}$$

Even more disaggregated Dantzig–Wolfe(cont.d)

 The standard DW approaches use a blatantly "wrong" representation of *Y*: 2^{|A|} variables and one constraint of the form

$$y_{ij} \longrightarrow \sum_{s \in \mathcal{S}^{\mathcal{Y}}} ar{y}_{ij}^s heta_s \; , \; \; \sum_{s \in \mathcal{S}^{\mathcal{Y}}} \, heta_s = 1 \; , \; \; heta_s \geq \mathsf{0} \quad s \in \mathcal{S}^{\mathcal{Y}}$$

versus 2|A| variables and |A| constraints of the form

$$y_{ij} \quad \longrightarrow \quad 0 \cdot \theta^{ij,0} + 1 \cdot \theta^{ij,1} \ , \ \ \theta^{ij,0} + \theta^{ij,1} = 1 \ , \ \ \theta^{ij,0} \ge 0 \ , \ \ \theta^{ij,1} \ge 0$$

- This is a special case, in fact it corresponds to decompose the unitary hypercube \mathcal{Y} in A components. What could you do when this trick doesn't work? (e.g. adding $\sum_{(i,j)\in A} y_{ij} \leq C$) \Rightarrow "Easy" components approach
- \bullet Our approach does not "column generate" the ${\mathcal Y}$ set and uses a full decription of it

Stabilized Column Generation

- Drawbacks of DW approach: possible unboundedness, instability and slow in pratice (see [Frangioni, 2002])
- Using a compact notation rewrite the problem as

$$(\Omega) \quad \max_{u} \{ c(u) : Au = b, u \in U \},$$

with c concave and U convex

• To overcome these convergence problems \Rightarrow Stabilized Dantzig–Wolfe (see [Frangioni, 2009]) = Generalized Augmented Lagrangian of Ω

$$(\Delta_{\mathcal{B},\bar{x},t}) \quad \max_{u} \{ c(u) + \bar{x}(b - Au) - D_t^*(Au - b) : u \in \mathrm{co}\mathcal{B} \}$$

Consider the following decomposable problem:

$$(\Omega) \quad \max\left\{\sum_{k\in \mathcal{K}} c^k(u^k): \sum_{k\in \mathcal{K}} A^k u^k = b, \ u^k \in U^k, \ k\in \mathcal{K}\right\}$$

Then, the corresponding disaggregated master problem is

$$\begin{aligned} (\Delta_{\mathcal{B},\bar{x},t}) \quad \max \left\{ \sum_{k \in \mathcal{K}} c^k(u^k) + \bar{x}(b - \sum_{k \in \mathcal{K}} A^k u^k) - D_t^*(\sum_{k \in \mathcal{K}} A^k u^k - b) : \ u \in \operatorname{co}\mathcal{B}, \ k \in \mathcal{K} \right\} \end{aligned}$$

Stabilized Column Generation + "Easy" Components

What's special here?

Consider the following structured optimization problem:

(\Omega)
$$\max_{u_1,u_2} \{ c_1 u_1 + c_2(u_2) : u_1 \in U^1, G(u_2) \le g, A_1 u_1 + A_2 u_2 = b \}$$

where

$$\max_{u_1}\{(c_1-\bar{x}A_1)u_1: u_1\in U^1\}$$

is "difficult for some reason" (efficient but "totally obscure" black box), while

$$\max_{u_2} \{ c_2(u_2) - (\bar{x}A_2)u_2 : G(u_2) \le g \}$$

"easy" because a compact convex formulation is known

- Usual approach: disregard differences. Our approach: treat "easy" components specially
- Easy: insert explicit "full" description of second component in the master problem
- Master problem larger (at start), but with "perfect" information

The master problem: abstract form

$$(\Omega_{\mathcal{B},\bar{x},t}) \begin{vmatrix} \max_{z,u_1,u_2} & c_1u_1 + c_2(u_2) + \bar{x}z - D_t^*(-z) \\ & z = b - A_1u_1 - A_2u_2 \\ & u_1 \in \mathbf{co}\mathcal{B}, \ u_2 \in \mathcal{U}^2 \end{vmatrix}$$

and implementable form

$$(\Delta_{\mathcal{B},\bar{x},t}) \begin{vmatrix} \max_{z,\theta,u_2} & c_1\left(\sum_{\bar{u}_1\in\mathcal{B}}\bar{u}_1\theta_{\bar{u}_1}\right) + c_2(u_2) + \bar{x}z - D_t^*(-z) \\ & z = b - A_1\left(\sum_{\bar{u}_1\in\mathcal{B}}\bar{u}_1\theta_{\bar{u}_1}\right) - A_2u_2 \\ & \theta\in\Theta, \ G(u_2) \le g \end{vmatrix}$$

Extensions

- Multiple easy/hard components: trivial
- Constrained case: $x \in X = \{x : Hx \le h\}$

$$(\Delta_{\mathcal{B},\bar{x},t}) = \begin{cases} \max_{\substack{z,\theta\\u_2,w}} c_1\left(\sum_{\bar{u}_1\in\mathcal{B}}\bar{u}_1\theta_{\bar{u}_1}\right) + c_2(u_2) + wh + \bar{x}z - D_t^*(-z) \\ z = b + wH - A_1\left(\sum_{\bar{u}_1\in\mathcal{B}}\bar{u}_1\theta_{\bar{u}_1}\right) - A_2u_2 \\ \theta \in \Theta, \ G(u_2) \le g, \ w \ge 0 \end{cases}$$

• Global lower bound $l \leq \min f : (c_2 \text{ and } G \text{ linear})$

$$(\Delta_{\mathcal{B},\bar{x},t}) = \begin{cases} \max_{\substack{z,\theta'\\u'_{2},\rho}} c_{1}\left(\sum_{\bar{u}_{1}\in\mathcal{B}} \bar{u}_{1}\theta'_{\bar{u}_{1}}\right) + c_{2}u'_{2} - l(1-\rho) + \bar{x}z - D_{t}^{*}(-z) \\\\ z = \rho b - A_{1}\left(\sum_{\bar{u}_{1}\in\mathcal{B}} \bar{u}_{1}\theta'_{\bar{u}_{1}}\right) - A_{2}u'_{2} \\\\ \sum_{\bar{u}_{1}\in\mathcal{B}} \theta'_{\bar{u}_{1}} = \rho \\\\ \theta \ge 0, \ Gu'_{2} \le \rho g, \ \rho \in [0,1] \end{cases}$$
$$(\theta = \theta'/\rho, \ u_{2} = u'_{2}/\rho)$$

Computational results

Computational results – FC–MMCF

- Which type of master problems do we solve?
 - a fully aggregated (FA) version
 - a partly disaggregated with easy y (PDE) version
 - a disaggregated (DD) version
 - a disaggregated with easy y (DE) version
- 48 randomly generated instances:

group	1	2	3	4	5	6	7	8	9	10	11	12
<i>N</i>	20	20	20	20	30	30	30	30	50	50	50	50
A	300	300	300	300	600	600	600	600	1200	1200	1200	1200
K	100	200	400	800	100	200	400	800	100	200	400	800

Description of the instances

• Stopping criterion: $c(u^*) + \bar{x}(b - Au^*) - D^*_{\bar{t}}(Au^* - b) \le \varepsilon f(\bar{x})$

	DE			PDE			D	D			FA	-1		FA-2				
time	fi	ter	time	f	iter gap	time	f	iter	gap	time	f	iter	' gap	ti	me	f	iter	gap
0.04	00.0	5	0.03	0.01	6	557	2.54	6200	1e-7	979	3.97	9105	1e-3	7	.64	0.75	2383	1e-7
0.08	0.01	6	0.08	0.01	12	772	2.94	3153	6e-3	1000	4.43	4772	3e-2	14	.24	1.37	1931	6e-9
0.25	0.01	7	0.57	0.12	521e-7	739	2.79	1365	2e-7	862	10.57	5579	3e-3	12	.66	1.99	1117	5e-7
0.64	0.03	7	1.06	0.23	50 3e-7	1000	2.27	482	9e-3	1000	14.49	3201	8e-3	42	.38	7.74	1714	7e-7
0.10	0.01	7	0.30	0.03	39	665	4.92	5799	4e-3	945	6.15	7538	8e-3	4	.12	0.50	834	3e-7
0.25	0.02	10	1.81	0.21	122	498	3.37	1899	7e-8	808	9.76	5599	3e-3	6	.36	1.06	664	1e-6
0.45	0.04	8	20.56	1.93	4832e-7	1000	1.81	415	2e-2	1000	2.58	638	5e-2	134	.49	15.00	3795	6e-7
1.10	0.08	9	5.17	1.09	120 1e-7	1000	3.48	378	2e-2	1000	10.08	1134	4e-2	126	.29	26.19	2905	8e-7
0.34	0.02	11	34.80	0.78	449 5e-9	1000	1.39	746	5e-3	1000	2.23	1205	4e-2	28	.92	2.77	1630	1e-6
0.42	0.05	9	2.39	0.26	89	1000	6.23	1647	3e-2	1000	8.51	2343	5e-2	32	.77	5.26	1414	8e-7
0.99	0.10	11	16.03	2.34	2711e-7	1000	6.18	717	2e-2	1000	11.31	1321	4e-2	80	.05	16.48	1848	8e-7
2.19	0.18	10	124.38	13.95	8116e-7	1000	5.05	278	2e-2	1000	14.63	838	6e-2	233	.40	50.47	2851	8e-7

Results for the weak formulation

- $\varepsilon = 1e 6$ [relative accuracy], maximum running time = 1000 seconds
- FA-1, PDE, DD and DE are solved with a general-purpose LP solver by Cplex, while in FA-2 the specialized quadratic solver by [Frangioni, 1996] is used

Computational results - weak formulation (cont.d)

		Cpl	ex			Γ	DE	FA-2		
primal	dual	barrier	p.net.	d.net.	auto	1e-6	1e-12	1e-6	1e-12	
0.30	0.13	8.73	0.18	0.23	0.36	0.04	0.04	7.64	7.74	
0.89	0.90	21.25	0.58	1.95	2.40	0.08	0.08	14.24	14.37	
3.04	10.22	76.24	2.24	16.32	25.44	0.25	0.26	12.66	13.13	
8.21	16.56	151.14	4.62	27.58	44.79	0.64	0.64	42.38	49.18	
1.09	4.98	42.57	0.74	6.88	10.62	0.10	0.10	4.12	4.19	
3.28	24.68	135.57	2.77	29.46	69.86	0.25	0.26	6.36	7.94	
53.25	22.58	417.10	8.96	51.45	55.86	0.45	0.45	134.49	137.41	
18.74	67.24	1115.22	10.56	99.96	177.40	1.10	1.10	126.29	163.88	
19.98	84.33	303.29	3.92	112.71	187.37	0.34	0.35	28.92	42.71	
7.89	82.64	583.52	18.60	259.65	309.74	0.42	0.42	32.77	40.60	
38.09	230.79	1952.75	15.85	325.33	690.30	0.99	0.99	80.05	108.94	
586.07	459.49	3586.63	51.71	738.23	1266.87	2.19	2.19	233.40	1789.08	

Comparison with Cplex for the weak formulation

- Cplex accuracy is 1e 12, except for barrier which is 1e 10
- ullet For Lagrangian approaches the relative accuracy is set to both 1e-

		1e-6			1	.e-8		1	e-10)	1e-12				
time	f	add	iter	gap	time	iter	gap	time	iter	gap	time	f	add	iter	
31.69	0.05	0.96	77	1e-7	57.73	143	4e-9	62.07	170	3e-11	63.78	0.11	1.10	181	
47.53	0.04	2.04	30	3e-7	51.22	33	2e-9	51.37	33		51.38	0.05	2.06	33	
28.98	0.07	2.70	24	2e-7	29.15	25		29.15	25		29.16	0.07	2.74	25	
65.31	0.14	6.58	20	3e-8	65.67	21		65.68	21		65.69	0.15	6.61	21	
25.93	0.04	0.89	47	8e-8	28.28	51	3e-9	32.00	57		32.00	0.06	0.93	57	
27.97	0.09	1.48	36	4e-7	55.43	51	4e-10	56.01	52	1e-11	56.28	0.12	1.60	52	
20.80	0.09	1.80	21	2e-8	20.84	21	2e-9	25.69	24		25.69	0.11	1.84	24	
132.60	0.24	10.03	23	8e-8	132.74	23		132.76	23		132.78	0.24	10.09	23	
2.47	0.06	0.48	26	2e-10	2.47	26	2e-10	2.57	27	3e-12	2.66	0.06	0.49	27	
245.91	0.26	4.18	59	1e-7	295.56	72	4e-9	333.22	84	2e-11	337.38	0.39	4.54	86	
283.71	0.43	7.24	39	7e-8	442.56	55	2e-9	506.83	63	5e-12	507.52	0.71	7.78	63	
241.84	0.52	11.85	24	2e-11	241.88	24	2e-11	241.92	24	2e-11	253.59	0.55	11.98	25	

Results for DE with varying precision

• Four accuracy settings: 1e - 6, 1e - 8, 1e - 10 and 1e - 12 for DE approach

	opt	20	• <i>K</i>	(Rn	ιv = 2	20	Sep = 10			
time	add it gap	time a	add	it gap	time	add	it gap	time	add	it	gap
31.69	0.96 77 1e-7	289.41 2.	.27	841 7e-7	104.60	1.20	218 2e-7	72.96	1.35	194	1e-6
47.53	2.04 30 3e-7	3000.76 7.	.67	1585 3e-4	1564.82	4.99	803 4e-5	363.67	4.12	159	3e-7
28.98	2.70 24 2e-7	1125.93 6.	.73	726 4e-7	2585.05	7.82	796 1e-6	141.61	5.51	65	1e-6
65.31	6.58 20 3e-8	81.33 6.	.68	20 3e-8	17415.68	28.00	2121 8e-5	669.34	18.82	78	5e-7

Effect of different algorithmic parameters settings on DE

 Opt: maximum size of bundle is set to 50 K|, constraints violation is checked at every iteration (Sep = 1) and constraints whose Lagrangian multiplier is zero are never removed (Rmv = 0)

	Cp	lex		D	ЭE			FA-2	2						
primal	dual	net.	barr.	1e-6	1e-12	time	f	add	it	gap	time	f	add	it	gap
12	10	11	15	31.69	63.78	410	12	7	14880	9e-7	2.50	0.47	0.45	875	9e-3
64	53	61	71	47.53	51.38	1855	19	16	11141	3e-6	5.83	1.15	1.15	842	2e-2
139	114	132	157	28.98	29.16	1254	32	20	9035	1e-6	11.91	2.28	2.24	796	3e-2
559	456	531	587	65.31	65.69	1732	100	67	12940	1e-6	25.76	5.07	4.96	760	4e-2
46	39	43	60	25.93	32.00	322	12	10	10320	1e-6	5.53	0.88	1.13	871	8e-3
147	132	144	209	27.97	56.28	294	15	9	5300	1e-6	11.88	2.13	2.38	831	9e-3
509	301	478	648	20.80	25.69	5033	169	155	27231	1e-6	25.91	4.50	5.37	794	3e-3
2329	1930	2302	2590	132.60	132.78	3122	192	169	14547	1e-6	51.35	8.58	10.63	760	4e-2
196	131	156	304	2.47	2.66	344	20	12	7169	1e-6	11.61	1.99	2.30	827	3e-3
926	708	862	1174	245.91	337.38	2256	111	118	17034	2e-5	28.50	4.95	6.08	869	1e-2
2706	2167	2542	3272	283.71	507.52	5475	192	249	15061	3e-6	57.86	9.23	13.00	817	2e-2
11156	8908	11675	11683	241.84	253.59	11863	349	413	13953	1e-6	108.75	16.78	24.07	765	2e-2

Comparison with Cplex and Volume for the strong formulation

- Fa-V: a fully disaggregated model solved with the volume algorithm
- Sep is set to 100 and 10, respectively, for FA-2 and FA-V

Conclusions

- The new approach is based on decomposable structure of some NDO problems, in particular the combinatorial ones solved via Lagrangian relaxation
- The structure of the "easy" components is highly beneficial, as the comparison between FA-2, PDE, DD and DE shows. The "easy" versions far outperform the "difficult" ones
- The DE approach significantly outperforms Cplex in most cases
- The exploitation of the "easy" structure can be beneficial in other applications (e.g. Unit Commitment)

- [Frangioni, 1996] A. Frangioni. Solving Semidefinite Quadratic problems Within Nonsmooth Optimization Algorithms. *Computer & Operations Research*, 21:1099–1118, 1996
- [Frangioni, 2002] A. Frangioni. Generalized Bundle Methods *SIAM Journal on Optimization*, 13(1):117–156, 2002
- [Frangioni, 2009] H. Ben Amor, J. Desrosiers and A. Frangioni *On the Choice of Explicit Stabilizing Terms in Column Generation* Discrete Applied Mathematics 157(6):1167–1184, 2009
- [Frangioni, 2011] A. Frangioni, E. Gorgone. Generalized Bundle Methods for Sum–Functions with "Easy" Components: Applications to Multicomodity Network Design *submitted to Math. Prog.*