A Branch-and-Price Method for a Ship Routing and Scheduling Problem with Cargo Coupling and Synchronization Constraints

Magnus Stålhane
Henrik Andersson
Norwegian University of Science and
Technology

Outline

- Background and motivation
- Path-flow models
- Solution approach
- Computational study
- Conclusions

Tramp shipping

- Contracts of affreightment
 - Pickup and delivery ports
 - Specified quantity
 - Time windows
- Spot market for optional cargoes
- Heterogeneous fleet
 - Capacity
 - Initial position
 - Cost structure
 - Speed
 - Cargo compatibility
- Maximize profit

Project shipping

- A special segment of tramp shipping
- Unique cargoes transported on a one-time basis
 - Parts of a process facility, yachts, train sets
- Special stowage challenges
 - Shape, stability, sea fastening, weight and lifting
 - Engineering unit in order to calculate the possibility of transporting the cargoes

Cargo coupling and synchronization

Cargo coupling and synchronization

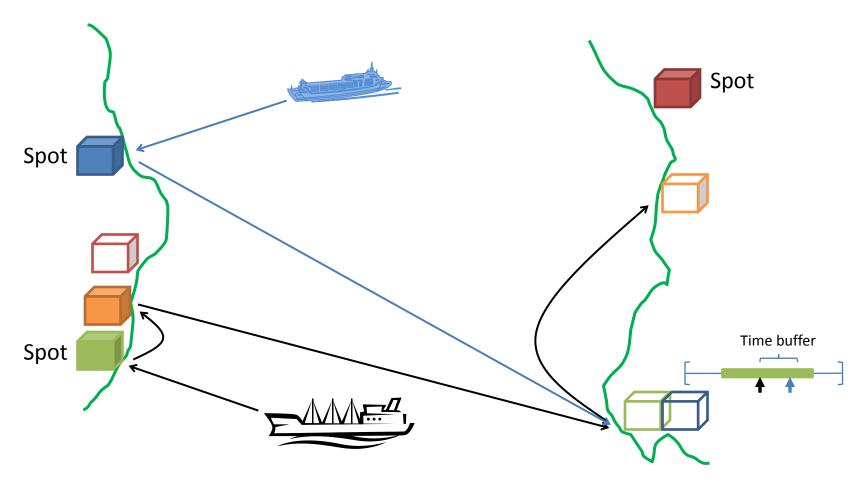
Cargo coupling

 The shipping company cannot transport a cargo unless other parts of the same order are transported as well, even though these parts may have different origins

Synchronization

- The different parts of an order require synchronized delivery within some time window
- Expensive equipment, storage problems

Project shipping - example



Project shipping

Some pictures

University of Science and Technology

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Project shipping - summary

Heterogeneous fleet

- Cargoes
 - Mandatory and optional
 - Time windows
 - Coupled
 - Synchronized deliveries

Paths

- A path is a sequence of pickups and deliveries
- Capacity never violated
- Pickup visited before the corresponding delivery
- At least one feasible schedule exists (with respect to time windows)

$$\max z = \sum_{v \in V} \sum_{r \in R_v} P_{vr} y_{vr}$$

$$\sum_{v \in V} \sum_{r \in R_v} A_{ivr} y_{vr} = 1$$

$$\sum_{i \neq j} \sum_{i \neq j} A_{ivr} y_{vr} \leq 1$$

$$v = r = R_v$$

$$\sum y_{vr} = 1$$

$$\sum_{r \in R_{v}} \sum_{r} A_{ivr} y_{vr} = w_{N_{v}}$$

$$v = r = R_v$$

$$t_{jv} \geq t_{iv} + \sum_{r \in R_{iv}} \left(T_{ijv} + T_{iv} + \overline{T}_{i}\right) y_{vr} - \overline{T} \quad i, j \in N, v \in V,$$

$$\underline{T}_{ivr}A_{ivr}y_{vr} \leq t_{iv} \leq \overline{T}_{ivr}A_{ivr}y_{vr}$$

$$T_{N_s}^s \leq \sum (t_{iv} - t_{jv}) \leq T_{N_s}^s$$

$$y_{vr} \in \{0,1\}$$

$$W_{N_{\kappa}} = \{0,1\}$$

$$i \subseteq N_c$$

$$i \subseteq N_0$$

$$v \subseteq V$$

$$i \in N_{\kappa}, N_{\kappa} \in K$$

$$i,j \in N, v \in V$$

$$i \subseteq N, v \subseteq V$$

$$N_s = S, i, j = N_s$$

$$v \in V, r \in R_v$$

$$N^{\kappa} \subseteq K$$

$$i \subseteq N_K$$
, $N_K \subseteq K$ Coupled cargoes

 $i \subseteq N, v \subseteq V$, Time windows

 $N_s \subseteq S, i, j \subseteq N_s$ Synchronization

$$\max z = \sum_{v \in V} \sum_{r \in R_v} P_{vr} y_{vr}$$

$$\sum_{v \in V} \sum_{r \in R_{v}} A_{ivr} y_{vr} = 1$$

$$\sum_{v \in V} \sum_{r \in R_{v}} A_{ivr} y_{vr} \leq 1$$

$$\sum_{r=1}^{\infty} y_{rr} = 1$$

$$\sum_{v \in V} \sum_{r \in \mathbb{R}_{ijv}} Y_{vr} = W_{N_K} \qquad \qquad i \in \mathbb{N}_K, N_K \in K$$

$$t_{jv} \geq t_{iv} + \sum_{r \in \mathbb{R}_{ijv}} \left(T_{ijv} + T_{iv} + \overline{T}_i \right) y_{vr} - \overline{T} \qquad i, j \in \mathbb{N}, v \in V,$$

$$\underline{T}_{ivr} A_{ivr} y_{vr} \leq t_{iv} \leq \overline{T}_{ivr} A_{ivr} y_{vr}
T_{N_s}^s \leq \sum_{iv} t_{iv} - t_{jv} \leq T_{N_s}^s
y_{vr} \in \{0,1\}$$

$$w_{N_{\kappa}} \in \{0,1\}$$

$$i \subseteq N_c$$

$$i \in N_o$$

$$v \subseteq V$$

$$i \subseteq N_K, N_K \subseteq K$$

$$i,j \in N, v \in V$$

$$i \subseteq N, v \subseteq V$$
,

$$N_s = S, i, j = N_s$$

$$v \subseteq V, r \subseteq R_v$$

$$N^{\kappa} \subseteq K$$

$$i \subseteq N_K$$
, $N_K \subseteq K$ Coupled cargoes

Time

 $i \subseteq N, v \subseteq V$, Time windows

 $N_s \subseteq S, i, j \subseteq N_s$ Synchronization

$$\max z = \sum_{v \in V} \sum_{r \in R_v} y_{vr}$$

$$\sum_{i \neq j} \sum_{i \neq j} A_{ivr} y_{vr} = 1$$

$$i \subseteq N_c$$

$$\sum_{r} \sum_{r} A_{irr} y_{rr} \leq 1$$

$$i \subseteq N_o$$

$$\sum_{v=v}^{v=v} r = r_v$$

$$v \subseteq V$$

$$\sum_{v \in \mathcal{X}_r} \sum_{r \in \mathcal{R}_r} A_{ivr} y_{vr} = w_{N_K}$$

$$i \in N_K, N_K \in K$$

$$i \subseteq N_{\kappa}$$
, $N_{\kappa} \subseteq K$ Coupled cargoes

$$t_{jv} \ge t_{iv} + \sum_{r \in R_{iv}} \left(T_{ijv} + T_{iv} + \overline{T}_{i}\right) y_{vr} - \overline{T} \quad i, j \in N, v \in V, \quad \text{Time}$$

$$i,j \subseteq N, v \subseteq V$$
,

$$\underline{T}_{ivr}A_{ivr}y_{vr} \leq \underline{t}_{iv} \leq \overline{T}_{ivr}A_{ivr}y_{vr}$$

$$i \subseteq N, v \subseteq V$$

$$i \subseteq N, v \subseteq V$$
, Time windows

$$T_{N_s}^s \leq \sum (t_{iv} - t_{jv}) \leq T_{N_s}^s$$

$$N_s \in S, i, j \in N_s$$

$$N_s \subseteq S, i, j \subseteq N_s$$
 Synchronization

$$y_{vr} \in \{0,1\}$$

$$v \subseteq V, r \subseteq R_v$$

$$W_{N_{\kappa}} = \{0,1\}$$

$$N_{\kappa} \subseteq \kappa$$

Schedule

 A schedule for a given path gives the exact time for start of service at each node on the path

$$\max z = \sum_{v \in V} \sum_{r \in R_v} y_{vrw}$$

$$\sum_{v \in V} \sum_{r \in R_v} \sum_{w \in W_r} A_{ivr} y_{vrw} = 1$$

$$\sum \sum \sum A_{ivr} y_{vrw} \leq 1$$

$$V = V r = R_v W = W_r$$

$$\sum \sum y_{vrw} = 1$$

 $r = R_v w = W_r$

$$\sum \sum A_{ivr} y_{vrw} = w_{N_{\kappa}}$$

 $v = V r = R_v$

$$T_{N_s}^s \leq \sum_{v \in V} \sum_{r \in R_v} \sum_{w \in W_s} T_{ivrw} - T_{jvrw} v_{vrw} \leq T_{N_s}^s$$

$$\sum y_{vrw} \in \{0,1\}$$

 $w = W_r$

$$y_{vrw} \ge 0$$

$$W_{N_{\kappa}} = \{0,1\}$$

$$i \subseteq N_c$$

$$i \subseteq N_0$$

$$v \subseteq V$$

$$i \in N_{K}, N_{K} \subseteq K$$

$$N_s = S, i, j = N_s$$

$$v \subseteq V, r \subseteq R_v$$

$$v \in V, r \in R_v, w \in W_r$$

$$N_{\kappa} \subseteq \kappa$$

$$\max z = \sum_{v \in V} \sum_{r \in R_v} y_{vrw}$$

$$\sum_{v \in V} \sum_{r \in R_{v}} \sum_{w \in W_{r}} A_{ivr} y_{vrw} = 1$$

$$\sum_{v \in V} \sum_{r \in R_{v}} \sum_{w \in W_{r}} A_{ivr} y_{vrw} \leq 1$$

$$\sum_{v \in V} \sum_{r \in R_{v}} \sum_{w \in W_{r}} A_{ivr} y_{vrw} = 1$$

$$\sum_{r \in R_{v}} \sum_{w \in W_{r}} A_{ivr} y_{vrw} = w_{N_{K}}$$

$$T_{N_s}^s \leq \sum \sum T_{ivrw} - T_{jvrw} v_{vrw} \leq T_{N_s}^s$$

 $v = V r = R_{..} w = W_{..}$

$$\sum y_{vrw} \in \{0,1\}$$

$$w = W_r$$

 $v \triangleleft r \triangleleft R_{v}$

$$y_{vrw} \ge 0$$

$$W_{N_{\kappa}} = \{0,1\}$$

$$i \subseteq N_c$$

$$i \subseteq N_o$$

$$v \subseteq V$$

$$i \in N_K, N_K \subseteq K$$

$$N_s = S, i, j = N_s$$

$$v \subseteq V, r \subseteq R_v$$

$$v \in V, r \in R_v, w \in W_r$$

$$N_{\kappa} \subseteq \kappa$$

Optional cargoes

Convexity

Coupled cargoes

Synchronization

$$\max z = \sum_{v \in V} \sum_{r \in R_v} y_{vrw}$$

$$\sum_{v \in V} \sum_{r \in R_v} \sum_{w \in W_r} A_{ivr} y_{vrw} = 1$$

$$\sum_{v \in V} \sum_{r \in R_v} \sum_{w \in W_r} A_{ivr} y_{vrw} \le 1$$

$$\sum_{r \in R_v} \sum_{w \in W_r} y_{vrw} = 1$$

$$\sum \sum A_{ivr} y_{vrw} = w_{N_K}$$

$$T_{N_s}^s \leq \sum \sum \sum T_{ivrw} T_{ivrw} - T_{jvrw} V_{vrw} \leq T_{N_s}^s \quad N_s \in S, i, j \in N_s$$

$$\sum_{v \in V} r \in \mathbb{R}_v w \in \mathbb{W}_r$$

$$w = W_r$$

$$y_{vrw} \ge 0$$

$$W_{N_{\kappa}} \subseteq \{0,1\}$$

$$i \subseteq N_c$$

$$i \subseteq N_o$$

$$v \subseteq V$$

$$i \in N_K, N_K \subseteq K$$

$$N_s = S, i, j = N_s$$

$$v \subseteq V, r \subseteq R_v$$

$$v \in V, r \in R_v, w \in W_r$$

$$N_{\kappa} \subseteq \kappa$$

Mandatory cargoes

Optional cargoes

Coupled cargoes

Synchronization

Convexity

Model comparison

Path flow formulation 1

- One column per path
- Weaker LP-bound
- Duals related to nodes and arcs in the subproblems

Path flow formulation 2

- Many columns per path
- Stronger LP-Bound
- Duals related to nodes and visiting times in the subproblems

Solution Approach

Solution Approach

- A priori column generation (PF1)
 - Andersson et. al, 2011 Ship routing and scheduling with cargo coupling and synchronization constraints. Computers & Industrial Engineering 61(4) p. 1107 1116.
- Branch-and-price (PF1 and PF2)
 - Dynamic generation of columns
 - Elementary shortest path problems with resource constraints
 - Solved by Dynamic Programming

Subproblem

- Defined on a graph $G_v = (N_v, A_v)$
 - $-N_v$ consists of all pickup and delivery nodes that ship v may visit
 - $-A_v$ consists of all arcs that ship v can traverse
- Assumptions
 - Triangle inequality holds for both costs and travel times

Pricing problem PF1

$$max_{r \in R_v} = \sum_{(i,j) \in r} d_{ijv}$$

$$d_{ijv} = -C_{ijv} + (T_{ijv} + \overline{T}_i)\eta_{ijv} + \begin{cases} R_i - \alpha_i - \sum_{k=1}^{|\mathcal{K}|} \gamma_{ik} - \underline{T}_i \underline{\sigma}_{iv} + \overline{T}_i \overline{\sigma}_{iv} \\ -\underline{T}_{(i+n)} \underline{\sigma}_{(i+n)v} + \overline{T}_{(i+n)} \overline{\sigma}_{(i+n)v} & \text{if } i \in \mathcal{N}^P \\ -\beta_v & \text{if } i = o(v), \end{cases}$$

Pricing problem PF2

$$max_{r \in R_v} = \sum_{(i,j) \in r} d_{ijv} + \tau(r)$$

$$d_{ijv} = -C_{ijv} + \begin{cases} R_i - \alpha_i - \sum_{k=1}^{|\mathcal{K}|} \gamma_{ik} & \text{if } i \in \mathcal{N}^P, \\ -\beta_v & \text{if } i = o(v). \end{cases}$$

Calculating optimal schedule

$$\tau(r) = \max \sum_{(i,j) \in r} \delta_i t_{iv}$$

subject to

$$t_{iv} + T_{ijv} - t_{jv} \le 0, \qquad \forall (i,j) \in r$$

 $\underline{T}_i \le t_{iv} \le \overline{T}_i \qquad \forall (i,j) \in r$

Cannot be calculated exactly until path is completed

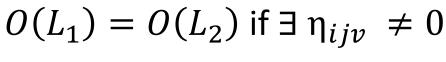
Dominance for PDPTW

- Røpke and Cordeau (2009)
- Label L_1 dominates L_2 if:

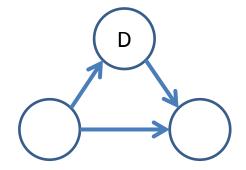
$$\eta(L_1) = \eta(L_2)$$
 Same node $t(L_1) \leq t(L_2)$ Less time $c(L_1) \leq c(L_2)$ Less cost $V(L_1) \subseteq V(L_2)$ Subset of cargoes picked up $O(L_1) \subseteq O(L_2)$ Subset of cargoes onboard

$$\eta(L_1) = \eta(L_2)$$
 $t(L_1) \le t(L_2)$
 $c(L_1) \ge c(L_2)$
 $V(L_1) \subseteq V(L_2)$
 $O(L_1) = O(L_2) \text{ if } \exists \eta_{ijv} \neq 0$
 $O(L_1) \subseteq O(L_2) \text{ otherwise}$

$$\eta(L_1) = \eta(L_2)
t(L_1) \le t(L_2)
c(L_1) \ge c(L_2)
V(L_1) \subseteq V(L_2)$$



$$O(L_1) \subseteq O(L_2)$$
 otherwise



$$\eta(L_1) = \eta(L_2)$$

$$t(L_1) \le t(L_2)$$

$$c(L_1) + \underline{\tau}(L_1) \ge c(L_2) + \overline{\tau}(L_2)$$

$$V(L_1) \subseteq V(L_2)$$

$$O(L_1) \subseteq O(L_2)$$

$$\eta(L_1) = \eta(L_2)
t(L_1) \le t(L_2)
c(L_1) + \underline{\tau}(L_1) \ge c(L_2) + \overline{\tau}(L_2)
V(L_1) \subseteq V(L_2)
O(L_1) \subseteq O(L_2)$$

Branching

- Hierarchical branching strategies
 - 1. Whether a cargo is picked up or not
 - 2. A given cargo is transported by a given ship
 - 3. Branching on arc flow

Computational Study

Test instances

- Instances extracted from real life data
 - − 20 − 32 cargoes
 - 4 ships
 - 4 8 pairs of coupled and synchronized cargoes
- Three test cases
 - A: Original case from real shipping company
 - B: More coupled and synchronized cargoes
 - C: Time buffer = 0

Computational results 1:3

PF1 - PreGen			PF1		PF2	PF2	
Instance	gen. time master time total time		time di	time lifference		time Jifference	
20.A	5696	343	6039	464	-92 %	11	-100 %
20.B	6520	395	6915	275	-96 %	10	-100 %
20.C	112	35	147	66	-55 %	10	-93 %
22.A	19261	607	19868	1856	-91 %	128	-99 %
22.B	23091	720	23811	1417	-94 %	323	-99 %
22.C	345	79	424	96	-77 %	10	-98 %
24.A	38338	1348	39686	142	-100 %	16	-100 %
24.B	49107	1719	50826	134	-100 %	19	-100 %
24.C	1467	247	1714	238	-86 %	19	-99 %
26.A	81942	1199	83141	200	-100 %	26	-100 %
26.B	95600	1961	97561	236	-100 %	51	-100 %
26.C	9049	540	9589	569	-94 %	29	-100 %
Average	27544	766	28310	474	-98 %	54	-100 %

Computational results 2:3

	PF2	
instance	time	time lifference
28.A	670	88 -87 %
28.B	1013	87 -91 %
28.C	344	75 -78 %
30.A	7327	8370 14 %
30.B	8494	1057 -88 %
30.C	34304	405 -99 %
32.A	7581	927 -88 %
32.B	8302	1407 -83 %
32.C	>36000	433 -INF
Avg	11559	1428

Computational results 3:3

		PF1			PF2	
instance	% in sub	nodes	columns	% in sub	nodes	columns
28.A	33 %	27	2843	100 %	7	721
28.B	32 %	37	3572	99 %	7	806
28.C	32 %	31	2068	99 %	21	942
30.A	68 %	1441	8281	100 %	35	1335
30.B	69 %	1481	8693	100 %	43	1430
30.C	22 %	35919	21129	99 %	103	1755
32.A	74 %	463	6091	100 %	23	1168
32.B	73 %	483	6632	100 %	55	1266
32.C	N/A	N/A	N/A	97 %	267	2357
Average	51 %	4985	7414	99 %	62	1309

Summary

- A priori generation of paths is time consuming and not possible for larger instances
- Calculating service times in the subproblems works better than calculating them in the master problem

