

Dennis Huisman

Co-authors: Luuk Veelenturf, Daniel Potthoff, Leo Kroon, Gábor Maróti & Albert Wagelmans

Dennis Huisman

Econometric Institute & ECOPT, Erasmus Univ. Rotterdam Process quality & Innovation, Netherlands Railways

Disruptions happen every day ...

Beilen – Hoogeveen

Monday 10 September 07:10

Reason	Due to broken overhead lines no train traffic is possible between Beilen and Hoogeveen.
Expectation	Passengers should take into account an extra travel time of approximately 30 minutes. The disruption is expected to last until 10:00.
Travel advice	Shuttle buses are available at stations Beilen and Hoogeveen.

... and a lot when it snows ...

zafing ERASMUS UNIVERSITEIT ROTTERDAM

Uncertainty in duration

Beilen – Hoogeveen

Monday 10 September 07:10, update at 9:40

Reason	Due to broken overhead lines no train traffic is possible between Beilen and Hoogeveen.
Expectation	Passengers should take into account an extra travel time of approximately 30 minutes. The disruption is expected to last until 11:00 .
Travel advice	Shuttle buses are available at stations Beilen and Hoogeveen.

Possible scenarios

zafing ERASMUS UNIVERSITEIT ROTTERDAM

Rescheduling problems in general

- Schedule a set of timetabled tasks on a certain number of servers.
 - A *duty* is a sequence of tasks on the same server.
 - Rescheduling problem (RSP): Modify the duties due to a certain disruption such that:
 - As many as tasks as possible are covered by a server.
 - The modifications in the schedule are minimal.
 - Completion of a duty is the new feasible sequence of tasks from the start of the disruption to the end of the duty.

ERASMUS SCHOOL OF ECONOMICS

Notation

- Δ : set of unfinished original duties
- N: set of tasks

 $\mathsf{K}^{\delta}\!\!:$ set of all feasible completions for original duty δ

- $a_{ik}^{\delta} = 1$, if completion k for original duty δ contains task i 0, otherwise
- $c^{\delta}_{\ k}$: cost of duty k for driver δ
- f_i: cost for not covering task *i*

Decision variables:

- $x^{\delta}_{k} = 1$, if completion k for original duty δ is selected
 - 0, otherwise
- $z_i = 1$, if task i is uncovered
 - 0, otherwise

ERASMUS SCHOOL OF ECONOMICS

Mathematical Formulation Rescheduling Problem

$$\min \sum_{\delta \in \Delta} \sum_{k \in K^{\delta}} c_k^{\delta} x_k^{\delta} + \sum_{i \in N} f_i z_i$$

$$\text{s.t.} \qquad \sum_{\delta \in \Delta} \sum_{k \in K^{\delta}} a_{ik}^{\delta} x_k^{\delta} + z_i \ge 1 \qquad \forall i \in N$$

$$\sum_{k \in K^{\delta}} x_k^{\delta} = 1 \qquad \forall \delta \in \Delta$$

$$x_k^{\delta}, z_i \in \{0, 1\} \quad \forall \delta \in \Delta, \forall k \in K^{\delta}, \forall i \in N$$

$$(1)$$

$$(1)$$

RASMUS UNIVERSITEIT ROTTE

Rescheduling under uncertainty (1)

- Time t₁: disruption starts, and estimates about the duration are available (limited set of scenarios)
- h₁: optimistic estimate of the duration known at t₁
- Time t_2 : new information about the duration of the disruption available, disruption ends at t_3 ($t_3 \ge t_1 + h_1$)
- Naïve approach:
 - Stage 1: reschedule duties at time t₁ based on the optimistic scenario
 - Stage 2: reschedule duties again at time t₂ if duration takes longer

ERASMUS SCHOOL OF ECONOMICS

Rescheduling under uncertainty (2)

Disadvantage naïve approach:

- High risks that duties become infeasible when optimistic scenario is not realized -> additional tasks will be uncovered in stage 2
- To overcome this disadvantage, we suggest a quasi robust solution approach
- Main idea is that in the first stage, we prefer to choose a duty that is still feasible when all other scenarios (including the pessimistic) one occurs.

Definitions

Definition A feasible completion k of a duty δ is called **recoverable robust** if there exists a recovery alternative γ_s of duty δ for all scenarios $s \in S$.

Definition

A schedule is called **quasi robust** if q > 0 duties are recoverable robust.

Mathematical Formulation Quasi-robust Rescheduling Problem

Add constraint:

$$\sum_{\delta \in \Delta} \sum_{k \in R^{\delta}} x_k^{\delta} \ge q$$

where R^{δ} is the subset of all feasible (recoverable) robust completions for original duty δ

 Note that if q = 0, we have the naïve approach and if q = |Δ|, then all duties must have a robust feasible completion.

Solution Approach

- We extend the approach from Potthoff et al. (2010) that was developed to solve the Operational Crew Rescheduling Problem
- Potthoff et al. (2010) uses a column generation algorithm combined with a Lagrangian heuristic
- Modifications in:
 - Restricted master problem (trivial)
 - Pricing problem (modify the graph in a preprocessing step)

D. Potthoff, D. Huisman and G. Desaulniers, "Column Generation with Dynamic Duty Selection for Railway Crew Rescheduling", *Transportation Science* (2010).

ERASMUS SCHOOL OF ECONOMICS

Return to the application ...

Feasible completions of a duty

zam RASMUS UNIVERSITEIT ROTTERDAM ERASMUS SCHOOL OF ECONOMICS

Computational results (1)

- Test instances are based on disruptions in the past on the Dutch railway network
 - For most of these practical instances, the naïve approach works fine (no cancellations). However, sometimes tasks need to be cancelled in stage 2.
 - However, when rules are tightened (no standby duties, no overtime allowed) the naïve approach performs worse.
 - We illustrate the benefits on two instances with tightened rules.

Computational results (2)

Disruption Beilen-Hoogeveen (42 original duties)

٩	Uncovered tasks stage 1	Uncovered tasks stage 2	Uncovered tasks total	Cpu (sec.)
0-36	1	2	3	17
37	1	2	3	16
38	1	0	1	18
39	2	1	3	18
40	3	0	3	19
41	3	0	3	16
42	5	0	5	17

IS UNIVERSITEIT RO ERASMUS SCHOOL OF ECONOMICS

Computational results (3)

ECONOMICS

ш.

0

SCHOOL

ERASMUS

Disruption Beilen-Hoogeveen (42 original duties)

Computational results (4)

Disruption round 's Hertogenbosch (98 original duties)

q	Uncovered tasks stage 1	Uncovered tasks stage 2	Uncovered tasks total	Cpu (sec.)
0-85	5	2	7	142
86-87	5	3	8	149
88-89	5	1	6	153
90-91	5	3	8	154
92	6	3	9	190
93-94	5	4	9	162
95	5	3	8	185
96	5	5	10	160
97	6	0	6	192
98	7	0	7	191
			ERASMUS SCHOOL O	F ECONOMICS

Computational results (5)

Disruption round 's Hertogenbosch (98 original duties)

Conclusions

- Results demonstrate that quasi robust solution approach performs better than naïve approach.
- When a conservative choice of q is made, many additional tasks are uncovered in the first stage.
- From a practical point of view (railway problem): currently no need for a quasi robust solution approach since naïve approach works good enough given current rules and standby duties.

Implementation at NS

Re-scheduling duties for a disruption tomorrow:

- Algorithm implemented in planning system CREWS in 2010
- Has been used a few times since then, e.g. February 5, 6 and 7, 2012 (when an adjusted timetable was operated)

Real-time re-scheduling duties

- Algorithm of Potthoff et al. (2010) implemented in new dispatching system CREWS-RTD, which NS purchased in 2010.
- Experiments in Operations Control Center in Spring 2011.
- New staff was hired and trained in August/September 2011
- Since end of Oct 2011: shadow experiments 7*16 with up to now 3 or 4 solutions implemented in practice

ERASMUS SCHOOL OF ECONOMICS

ERASMUS SCHOOL OF FCONOMICS

Dutch Society of Operations Research

Welcome to the International Conference on Operations Research in Rotterdam 2013

Impact on People, Business and Society

Operations Research has a major impact on public and society, now more than ever before. Erasmus University Rotterdam is honored to be the host of this international conference in 2013, the year when it celebrates its centennial.

Rotterdam, recently voted to be the world's best festival city, is a young, dynamic international city, known for its culture and internationally-renowned architecture. As the economic heart of the Netherlands and the largest port in Europe, Rotterdam is the ideal location to host this conference.

website: www.or2013.org · e-mail: OR2013@ese.eur.nl

CENTRE R 2018 IMPACT