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Intro

I Goal: find a cut packing of maximal size

I What is cut packing?
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Hardness

I Cut packing is hard in general
I Colbourn showed that cut packing is NP-hard in general
I Caprara et.al. showed several more hardness results
I Cut packing is as approximable as independent set (losing a

factor of 2)

I Easy for chordal and directed graphs

I Applications in matrix structure detection and also in
bioinformatics



Column generation model

max
∑
c∈C

xc (1)

s.t.
∑
c∈C

δecxc

+ x̄e

≤ 1, ∀e ∈ E (2)

x̄e,

xc ∈ {0, 1}, ∀c ∈ C

,∀e ∈ E

(3)

I Variable xc ∈ {0, 1} indicates whether cut chosen or not

I Constraints for every edge enforcing maximally one cut per
edge

I What is the pricing problem?
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Pricing problem

I Pricing is a minimal cut problem
I Combinatorial (e.g. Stoer-Wagner) or as a MIP
I Possible integration of cutting planes
I Difficult to integrate branching decisions in combinatorial

algorithms

I We prefer MIP as it easy to include branching and cutting
plane information

I Potential based
I yij = 1 iff edge (i, j) is in the cut
I u1 = 0 and ui = 1 for some i ∈ {2, . . . , n}
I yij = 0 iff ui = uj , ∀(i, j) ∈ A′

I yij = 1 iff ui 6= ui, ∀(i, j) ∈ A′
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I For red edges it holds that yij = 1

I Needs to work with arbitrary edge weights
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Pricing problem – MIP model

min
∑

(i,j)∈=A′

cijyij

subject to ui − uj + yij ≥ 0 ∀(i, j) ∈ A′

uj − ui + yij ≥ 0 ∀(i, j) ∈ A′

yij − ui − uj ≤ 0 ∀(i, j) ∈ A′

ui + uj + yij ≤ 2 ∀(i, j) ∈ A′

∑
i∈V

ui ≥ 1

u1 = 0
y ≥ 0, u ≥ 0
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Branching – Visualization

1.0

1.01.0 I Two (different) cases:

1. Branching on original variables
2. Ryan-Foster branching



Branching

I Ryan-Foster branching on pairs of edges
I Can be respected in the pricing problem as simple as a

constraints ui + uj ≤ 1 resp. ui − uj = 0

I Minimal cut for the DIFF-branch is NP-hard in general

I Branching on slack variables x̄e
I Can be respected in the pricing problem as bound changes
yij = 1− x̄e with e = (vi, vj)



Cutting planes

I LP bound is bad

I There is a feasible solution with value n
2 for Kn, optimal

solution has value 1

I Add cutting planes

I Odd hole cuts:
∑
c∈C

δOc xc ≤ |O| − 1, ∀O ∈ O

I Clique cuts:
∑
c∈C

δKc xc ≤ 1, ∀K ∈ C
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Clique cuts

I
∑
c∈C

δKc xc ≤ 1, ∀K ∈ C



Clique cuts

I Integration in Pricing is not difficult

I
∑
c∈C

δKc xc =⇒ yij ≤ zK , ∀(i, j) ∈ K

I add ζKzK to objective function of pricing problem



Results

I What is the influence of cuts on the solution process
I Random graphs

I 10 nodes
I 25 nodes
I 50 nodes



Random graphs

I 10 nodes
I Turning cuts off is 16% slower (geom. mean)
I It needs 4x more nodes

I 25 nodes
I With cuts: Solving time in geom. mean ≈ 1min
I Without cuts: no instance solved withing 1h time limit



Random graphs – 50 nodes

default no cuts
Nodes Gap Nodes Gap

rand 50 0 3 1612.50% 162 300.00%
rand 50 1 8 360.70% 724 300.00%
rand 50 2 10 205.00% 305 300.00%
rand 50 3 1 511.10% 256 500.00%
rand 50 4 19 191.70% 225 370.00%
rand 50 5 14 775.00% 232 700.00%
rand 50 6 1 149.50% 136 300.00%
rand 50 7 3 193.80% 198 500.00%
rand 50 8 5 337.50% 157 300.00%
rand 50 9 7 120.00% 239 300.00%



Random graphs – 50 nodes

default no cuts
Nodes Dual Nodes Dual

rand 50 0 3 17.1 162 24
rand 50 1 8 18.4 724 24
rand 50 2 10 18.3 305 24
rand 50 3 1 18.3 256 24
rand 50 4 19 17.5 225 23.5
rand 50 5 14 17.5 232 24
rand 50 6 1 9.9 136 24
rand 50 7 3 11.8 198 24
rand 50 8 5 17.5 157 24
rand 50 9 7 15.4 239 24



Conclusions

I We are able to solve cutpacking instances with up to 40 edges
in 1 hour time limit

I The clique formulation of the problem is much stronger

I Initialization takes long



Outlook

I Use combinatorial algorithm when possible
I nonnegative edge weights
I no cuts added

I Add multiple solutions per pricing iteration
I Looking for more cuts

I Separate odd hole cuts
I Look for cuts in slack variables



The end

Thank you for your attention.
Questions?
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