Column generation for the cut packing problem

Martin Bergner Marco Lübbecke

Operations Research RWTH Aachen University

June 11, 2012 Column generation

Introduction

Column generation model

Cutting planes & branching

Results

Conclusions

- Goal: find a cut packing of maximal size
- What is cut packing?

- Goal: find a cut packing of maximal size
- What is cut packing?

- Goal: find a cut packing of maximal size
- What is cut packing?

- Goal: find a cut packing of maximal size
- What is cut packing?

- Goal: find a cut packing of maximal size
- What is cut packing?

Hardness

- Cut packing is hard in general
 - Colbourn showed that cut packing is NP-hard in general
 - Caprara et.al. showed several more hardness results
 - Cut packing is as approximable as independent set (losing a factor of 2)
- Easy for chordal and directed graphs
- Applications in matrix structure detection and also in bioinformatics

Column generation model

$$\max \sum_{c \in C} x_c \tag{1}$$

$$s.t. \sum_{c \in C} \delta_c^e x_c \leq 1, \quad \forall e \in E \tag{2}$$

$$x_c \in \{0,1\}, \quad \forall c \in C \tag{3}$$

- Variable $x_c \in \{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge

Column generation model

$$\max \sum_{c \in C} x_c \tag{1}$$

$$s.t. \sum_{c \in C} \delta_c^e x_c + \bar{x}_e = 1, \quad \forall e \in E \tag{2}$$

$$\bar{x}_e, x_c \in \{0, 1\}, \quad \forall c \in C, \forall e \in E \tag{3}$$

- Variable $x_c \in \{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge

Column generation model

$$\max \sum_{c \in C} x_c \tag{1}$$

$$s.t. \sum_{c \in C} \delta_c^e x_c + \bar{x}_e = 1, \quad \forall e \in E \tag{2}$$

$$\bar{x}_e, x_c \in \{0, 1\}, \quad \forall c \in C, \forall e \in E \tag{3}$$

- Variable $x_c \in \{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge
- What is the pricing problem?

Pricing problem

Pricing is a minimal cut problem

- Combinatorial (e.g. Stoer-Wagner) or as a MIP
- Possible integration of cutting planes
- Difficult to integrate branching decisions in combinatorial algorithms
- We prefer MIP as it easy to include branching and cutting plane information

Pricing problem

Pricing is a minimal cut problem

- Combinatorial (e.g. Stoer-Wagner) or as a MIP
- Possible integration of cutting planes
- Difficult to integrate branching decisions in combinatorial algorithms
- We prefer MIP as it easy to include branching and cutting plane information

Potential based

• $y_{ij} = 1$ iff edge (i, j) is in the cut

- $u_1 = 0$ and $u_i = 1$ for some $i \in \{2, \ldots, n\}$
- $y_{ij} = 0$ iff $u_i = u_j, \forall (i,j) \in A'$
- $y_{ij} = 1$ iff $u_i \neq u_i, \, \forall (i,j) \in A'$

• Green nodes: $u_i = 0$; red nodes: $u_i = 1$

- Green nodes: $u_i = 0$; red nodes: $u_i = 1$
- For red edges it holds that $y_{ij} = 1$

- Green nodes: $u_i = 0$; red nodes: $u_i = 1$
- For red edges it holds that $y_{ij} = 1$

- Green nodes: $u_i = 0$; red nodes: $u_i = 1$
- For red edges it holds that $y_{ij} = 1$
- Needs to work with arbitrary edge weights

Pricing problem - MIP model

$$\begin{array}{ll} \min & \sum_{(i,j)\in =A'} c_{ij}y_{ij} \\ subject \ to & u_i - u_j + y_{ij} \geq 0 & \quad \forall (i,j) \in A' \\ & u_j - u_i + y_{ij} \geq 0 & \quad \forall (i,j) \in A' \\ & y_{ij} - u_i - u_j \leq 0 & \quad \forall (i,j) \in A' \\ & u_i + u_j + y_{ij} \leq 2 & \quad \forall (i,j) \in A' \end{array}$$

$$\sum_{i \in V} u_i \ge 1$$

$$u_1 = 0$$

$$y \ge 0, u \ge 0$$

Two (different) cases:

Two (different) cases:

Two (different) cases:

- ► Two (different) cases:
 - 1. Branching on original variables

- ► Two (different) cases:
 - 1. Branching on original variables

- ► Two (different) cases:
 - 1. Branching on original variables

- ► Two (different) cases:
 - 1. Branching on original variables

- ► Two (different) cases:
 - 1. Branching on original variables
 - 2. Ryan-Foster branching

- Ryan-Foster branching on pairs of edges
 - ▶ Can be respected in the pricing problem as simple as a constraints $u_i + u_j \le 1$ resp. $u_i u_j = 0$
- Minimal cut for the DIFF-branch is NP-hard in general
- Branching on slack variables \bar{x}_e
 - Can be respected in the pricing problem as bound changes $y_{ij} = 1 \bar{x}_e$ with $e = (v_i, v_j)$

- LP bound is bad
- ► There is a feasible solution with value ⁿ/₂ for K_n, optimal solution has value 1

- LP bound is bad
- ► There is a feasible solution with value ⁿ/₂ for K_n, optimal solution has value 1
- Add cutting planes

- LP bound is bad
- ► There is a feasible solution with value ⁿ/₂ for K_n, optimal solution has value 1
- Add cutting planes

▶ Odd hole cuts:
$$\sum_{c \in C} \delta_c^O x_c \le |O| - 1, \forall O \in \mathcal{O}$$
 ▶ Clique cuts:
$$\sum_{c \in C} \delta_c^K x_c \le 1, \forall K \in \mathcal{C}$$

Clique cuts

Clique cuts

$$\qquad \sum_{c \in C} \delta_c^K x_c \leq 1, \ \forall K \in \mathcal{C}$$

Clique cuts

- Integration in Pricing is not difficult
 - $\bullet \sum_{c \in C} \delta_c^K x_c \implies y_{ij} \le z_K, \quad \forall (i,j) \in K$
 - add $\zeta_K z_K$ to objective function of pricing problem

- What is the influence of cuts on the solution process
- Random graphs
 - 10 nodes
 - 25 nodes
 - ► 50 nodes

Random graphs

- 10 nodes
 - ▶ Turning cuts off is 16% slower (geom. mean)
 - It needs 4x more nodes
- 25 nodes
 - \blacktriangleright With cuts: Solving time in geom. mean $\approx 1 min$
 - Without cuts: no instance solved withing 1h time limit

	default			no cuts	
	Nodes	Gap	Nodes	Gap	
rand_50_0	3	1612.50%	162	300.00%	
$rand_50_1$	8	360.70%	724	300.00%	
rand_50_2	10	205.00%	305	300.00%	
rand_50_3	1	511.10%	256	500.00%	
rand_50_4	19	191.70%	225	370.00%	
rand_50_5	14	775.00%	232	700.00%	
rand_50_6	1	149.50%	136	300.00%	
rand_50_7	3	193.80%	198	500.00%	
rand_50_8	5	337.50%	157	300.00%	
rand_50_9	7	120.00%	239	300.00%	

	default			no cuts	
	Nodes	Dual	Nodes	Dual	
rand_50_0	3	17.1	162	24	
rand_50_1	8	18.4	724	24	
rand_50_2	10	18.3	305	24	
rand_50_3	1	18.3	256	24	
rand_50_4	19	17.5	225	23.5	
rand_50_5	14	17.5	232	24	
rand_50_6	1	9.9	136	24	
rand_50_7	3	11.8	198	24	
rand_50_8	5	17.5	157	24	
rand_50_9	7	15.4	239	24	

- We are able to solve cutpacking instances with up to 40 edges in 1 hour time limit
- The clique formulation of the problem is much stronger
- Initialization takes long

- Use combinatorial algorithm when possible
 - nonnegative edge weights
 - no cuts added
- Add multiple solutions per pricing iteration
- Looking for more cuts
 - Separate odd hole cuts
 - Look for cuts in slack variables

Thank you for your attention. Questions?

