Column generation for the cut packing problem

Martin Bergner Marco Lübbecke

Operations Research
RWTH Aachen University

June 11, 2012
Column generation

Introduction

Column generation model

Cutting planes \& branching

Results

Conclusions

Intro

- Goal: find a cut packing of maximal size
- What is cut packing?

Intro

- Goal: find a cut packing of maximal size
- What is cut packing?

Intro

- Goal: find a cut packing of maximal size
- What is cut packing?

Intro

- Goal: find a cut packing of maximal size
- What is cut packing?

Intro

- Goal: find a cut packing of maximal size
- What is cut packing?

Hardness

- Cut packing is hard in general
- Colbourn showed that cut packing is NP-hard in general
- Caprara et.al. showed several more hardness results
- Cut packing is as approximable as independent set (losing a factor of 2)
- Easy for chordal and directed graphs
- Applications in matrix structure detection and also in bioinformatics

Column generation model

$$
\begin{array}{cl}
\max \sum_{c \in C} x_{c} & \\
\text { s.t. } \sum_{c \in C} \delta_{c}^{e} x_{c} \leq 1, & \forall e \in E \\
x_{c} \in\{0,1\}, & \forall c \in C \tag{3}
\end{array}
$$

- Variable $x_{c} \in\{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge

Column generation model

$$
\begin{array}{cl}
\max \sum_{c \in C} x_{c} & \\
\text { s.t. } \sum_{c \in C} \delta_{c}^{e} x_{c}+\bar{x}_{e}=1, & \forall e \in E \\
\bar{x}_{e}, x_{c} \in\{0,1\}, & \forall c \in C, \forall e \in E \tag{3}
\end{array}
$$

- Variable $x_{c} \in\{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge

Column generation model

$$
\begin{array}{cl}
\max \sum_{c \in C} x_{c} & \\
\text { s.t. } \sum_{c \in C} \delta_{c}^{e} x_{c}+\bar{x}_{e}=1, & \forall e \in E \\
\bar{x}_{e}, x_{c} \in\{0,1\}, & \forall c \in C, \forall e \in E \tag{3}
\end{array}
$$

- Variable $x_{c} \in\{0,1\}$ indicates whether cut chosen or not
- Constraints for every edge enforcing maximally one cut per edge
-What is the pricing problem?

Pricing problem

- Pricing is a minimal cut problem
- Combinatorial (e.g. Stoer-Wagner) or as a MIP
- Possible integration of cutting planes
- Difficult to integrate branching decisions in combinatorial algorithms
- We prefer MIP as it easy to include branching and cutting plane information

Pricing problem

- Pricing is a minimal cut problem
- Combinatorial (e.g. Stoer-Wagner) or as a MIP
- Possible integration of cutting planes
- Difficult to integrate branching decisions in combinatorial algorithms
- We prefer MIP as it easy to include branching and cutting plane information
- Potential based
- $y_{i j}=1$ iff edge (i, j) is in the cut
- $u_{1}=0$ and $u_{i}=1$ for some $i \in\{2, \ldots, n\}$
- $y_{i j}=0$ iff $u_{i}=u_{j}, \forall(i, j) \in A^{\prime}$
- $y_{i j}=1$ iff $u_{i} \neq u_{i}, \forall(i, j) \in A^{\prime}$

Pricing problem - Visualization

Pricing problem - Visualization

- Green nodes: $u_{i}=0$; red nodes: $u_{i}=1$

Pricing problem - Visualization

- Green nodes: $u_{i}=0$; red nodes: $u_{i}=1$
- For red edges it holds that $y_{i j}=1$

Pricing problem - Visualization

- Green nodes: $u_{i}=0$; red nodes: $u_{i}=1$
- For red edges it holds that $y_{i j}=1$

Pricing problem - Visualization

- Green nodes: $u_{i}=0$; red nodes: $u_{i}=1$
- For red edges it holds that $y_{i j}=1$
- Needs to work with arbitrary edge weights

Pricing problem - MIP model

$$
\begin{array}{rll}
\min & \sum c_{i j} y_{i j} & \\
& (i, j) \in=A^{\prime} & \\
& u_{i}-u_{j}+y_{i j} \geq 0 & \forall(i, j) \in A^{\prime} \\
& u_{j}-u_{i}+y_{i j} \geq 0 & \forall(i, j) \in A^{\prime} \\
& y_{i j}-u_{i}-u_{j} \leq 0 & \forall(i, j) \in A^{\prime} \\
& u_{i}+u_{j}+y_{i j} \leq 2 & \forall(i, j) \in A^{\prime} \\
& \sum_{i \in V} u_{i} \geq 1 & \\
& u_{1}=0 & \\
& y \geq 0, u \geq 0 &
\end{array}
$$

Branching - Visualization

- Two (different) cases:

Branching - Visualization

- Two (different) cases:

Branching - Visualization

- Two (different) cases:

Branching - Visualization

- Two (different) cases:

1. Branching on original variables

Branching - Visualization

- Two (different) cases:

1. Branching on original variables

Branching - Visualization

- Two (different) cases:

1. Branching on original variables

Branching - Visualization

- Two (different) cases:

1. Branching on original variables

Branching - Visualization

- Two (different) cases:

1. Branching on original variables
2. Ryan-Foster branching

Branching

- Ryan-Foster branching on pairs of edges
- Can be respected in the pricing problem as simple as a constraints $u_{i}+u_{j} \leq 1$ resp. $u_{i}-u_{j}=0$
- Minimal cut for the DIFF-branch is NP-hard in general
- Branching on slack variables \bar{x}_{e}
- Can be respected in the pricing problem as bound changes $y_{i j}=1-\bar{x}_{e}$ with $e=\left(v_{i}, v_{j}\right)$

Cutting planes

- LP bound is bad
- There is a feasible solution with value $\frac{n}{2}$ for K_{n}, optimal solution has value 1

Cutting planes

- LP bound is bad
- There is a feasible solution with value $\frac{n}{2}$ for K_{n}, optimal solution has value 1
- Add cutting planes
- Odd hole cuts: $\quad \sum_{c \in C} \delta_{c}^{O} x_{c} \leq|O|-1, \forall O \in \mathcal{O}$
- Clique cuts: $\sum_{c \in C} \delta_{c}^{K} x_{c} \leq 1, \forall K \in \mathcal{C}$

Cutting planes

- LP bound is bad
- There is a feasible solution with value $\frac{n}{2}$ for K_{n}, optimal solution has value 1
- Add cutting planes
- Odd hole cuts: $\quad \sum_{c \in C} \delta_{c}^{O} x_{c} \leq|O|-1, \forall O \in \mathcal{O}$
- Clique cuts: $\sum_{c \in C} \delta_{c}^{K} x_{c} \leq 1, \forall K \in \mathcal{C}$

Clique cuts

Clique cuts

- $\sum_{c \in C} \delta_{c}^{K} x_{c} \leq 1, \forall K \in \mathcal{C}$

Clique cuts

- Integration in Pricing is not difficult
- $\sum_{c \in C} \delta_{c}^{K} x_{c} \Longrightarrow y_{i j} \leq z_{K}, \quad \forall(i, j) \in K$
- add $\zeta_{K} z_{K}$ to objective function of pricing problem

Results

- What is the influence of cuts on the solution process
- Random graphs
- 10 nodes
- 25 nodes
- 50 nodes

Random graphs

- 10 nodes
- Turning cuts off is 16% slower (geom. mean)
- It needs $4 x$ more nodes
- 25 nodes
- With cuts: Solving time in geom. mean ≈ 1 min
- Without cuts: no instance solved withing 1 h time limit

Random graphs - 50 nodes

	default		no cuts	
	Nodes	Gap	Nodes	Gap
rand_50_0	3	1612.50%	162	300.00%
rand_50_1	8	360.70%	724	300.00%
rand_50_2	10	205.00%	305	300.00%
rand_50_3	1	511.10%	256	500.00%
rand_50_4	19	191.70%	225	370.00%
rand_50_5	14	775.00%	232	700.00%
rand_50_6	1	149.50%	136	300.00%
rand_50_7	3	193.80%	198	500.00%
rand_50_8	5	337.50%	157	300.00%
rand_50_9	7	120.00%	239	300.00%

Random graphs - 50 nodes

	default		no cuts	
	Nodes	Dual	Nodes	Dual
rand_50_0	3	17.1	162	24
rand_50_1	8	18.4	724	24
rand_50_2	10	18.3	305	24
rand_50_3	1	18.3	256	24
rand_50_4	19	17.5	225	23.5
rand_50_5	14	17.5	232	24
rand_50_6	1	9.9	136	24
rand_50_7	3	11.8	198	24
rand_50_8	5	17.5	157	24
rand_50_9	7	15.4	239	24

Conclusions

- We are able to solve cutpacking instances with up to 40 edges in 1 hour time limit
- The clique formulation of the problem is much stronger
- Initialization takes long

Outlook

- Use combinatorial algorithm when possible
- nonnegative edge weights
- no cuts added
- Add multiple solutions per pricing iteration
- Looking for more cuts
- Separate odd hole cuts
- Look for cuts in slack variables

The end

Thank you for your attention. Questions?

