Optimizing Location, Routing and Scheduling Decisions Under Capacity Restrictions

Zeliha Akça¹ Ted K. Ralphs¹ & Rosemary T. Berger

International Workshop on Column Generation, Aussois, France, June 2008

¹ Industrial and Systems Engineering Dept.,

COR@L Lab, Lehigh University

Akça, Ralphs, Berger

LRS PROBLEM

A D b 4 A b

Outline

Introduction

Problem Definition and Formulation

- Problem Definition
- Set Partitioning Formulation

Solution Methodology

- Pricing Problem
- Branching
- Improving Branch and Price Algorithm
- Computational Results

Conclusion

< □ > < 同

∃ ≻

Location Routing & Scheduling (LRS) Problem

LRS problem integrates the decisions of determining

- the optimal number and locations of facilities,
- an optimal set of vehicle routes from facilities to customers
- an optimal assignment of routes to vehicles subject to scheduling constraints.

The objective is to minimize the total *fixed* costs and *operating* costs of facilities and vehicles.

Motivation

- For multiple customer routes, location and routing are interdependent.
- One-to-one relationship between vehicles and routes overestimates the number of vehicles used and costs.
 - Large fixed costs for vehicles and drivers.
 - Constant fleet size.
 - Working hour limit for drivers.
 - Time sensitive items.

Introduction

Problem Definition and Formulation Solution Methodology Conclusion References

LRSP in Literature

Lin et al. [2002]:

- Introduce the problem for a phone company.
- Divide the problem into 3 phases: facility location, vehicle routing and loading.
- Construct a heuristic algorithm which includes some metaheuristics.
- Solve a real instance with 27 customers and 4 candidate facilities.

Lin and Kwok [2005]:

- Extend the study to a multi-objective LRS problem.
- They develop a similar heuristic algorithm.
- Real instances with 27 customers and 85 customers,
- Random instances up to 200 customers.

Problem Definition Set Partitioning Formulation

Problem Definition

Objective

to select a subset of the facilities, construct a set of delivery routes and to assign routes to vehicles with minimum total cost.

Constraints

- Capacitated facilities.
- Capacitated vehicles.
- Time limit for the vehicles.
- Each customer must be visited exactly once.
- Each route and vehicle must start at a facility and return to the same facility.

Problem Definition Set Partitioning Formulation

Pairing Concept

Pairing:

A set of routes that can be served sequentially by one vehicle within the vehicle's working hour limit.

A pairing is feasible if

LRS PROBLEM

- each customer included in the pairing is visited once,
- each route included starts and ends at the same facility,
- total demand of each route ≤ vehicle capacity,

< □ > < 同 > < 回 > < 回

● total travel time of the pairing ≤ vehicle working hour limit

Akça, Ralphs, Berger

Problem Definition Set Partitioning Formulation

Set Partitioning-based model: Notation

Sets

- I = set of demand nodes
- J = set of candidate facility locations
- $P_j =$ set of all feasible pairings for facility $j, \forall j \in J$

Parameters

- $a_{ip} = \begin{cases} 1 & \text{if demand node } i \text{ is in pairing } p \text{ of facility } j, \forall i \in I, j \in J, p \in P_j \\ 0 & \text{otherwise} \end{cases}$
- C_p = cost of pairing p associated with facility $j, \forall p \in P_j, j \in J$
- $F_j = fixed cost of opening facility <math>j, \forall j \in J$
- C_j^F = capacity of facility $j, \forall j \in J$

Decision Variables

 $z_p = \begin{cases} 1 & \text{if pairing p is selected for facility j, } \forall p \in P_j \text{ and } j \in J \\ 0 & \text{otherwise} \end{cases}$ $t_j = \begin{cases} 1 & \text{if facility j is selected, } \forall j \in J \\ 0 & \text{otherwise} \end{cases}$

Problem Definition Set Partitioning Formulation

Set Partitioning Formulation

(SPP-LRS)

Minimize	$\sum_{j\in J} F_j t_j + \sum_{j\in J} \sum_{p\in P_j} C_p z_p$			(1)
subject to	$\sum_{j \in J} \sum_{p \in P_j} a_{ip} z_p = 1$	$\forall i \in I$	$(\pi_{\mathbf{i}}),$	(2)
	$\sum_{p \in P_j} \sum_{i \in I} a_{ip} D_i z_p \leq C_j^F t_j$	$\forall j \in J$	$(\mu_{\mathbf{j}}),$	(3)
	$z_p \in \{0,1\}$	$\forall p \in P_j, \forall j \in J,$		(4)
	$t_j \in \{0,1\}$	$\forall j \in J.$		(5)

-2

イロト イヨト イヨト イヨト

Problem Definition Set Partitioning Formulation

Simple Valid Inequalities

$\sum_{p \in P_j} a_{ip} z_p \leq t_j$	$\forall i \in I, \forall j \in J$	$(\sigma_{\mathbf{j}\mathbf{i}}),$	(6)
$\sum_{j\in J} t_j \geq N^F,$			(7)
$\sum_{p \in P_j} z_p = v_j$	$\forall j \in J$	$(\nu_{\mathbf{j}}),$	(8)
$v_j \geq t_j$	$\forall j\in J,$		(9)
$v_j \in \mathbb{Z}^+$	$\forall j \in J.$		(10)

 N^F is the minimum number of facilities required to be open:

$$N^F = \operatorname{argmin}_{\{l=1..|J|\}} \left(\sum_{t=1}^l C_{j_t}^F \ge \sum_{i \in I} D_i \right) \text{ s.t. } C_{j_1}^F \ge C_{j_2}^F \ge ... \ge C_{j_n}^F$$

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Branch and Price Algorithm

-2

Akça, Ralphs, Berger

LRS PROBLEM

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Describing Pricing Problem

Objective

To find a pairing (**a set of routes**) associated with a variable with minimum reduced cost:

$$\hat{C}_p = C_p - \sum_{i \in N} a_{ip} \cdot \pi_i + \sum_{i \in N} a_{ip} \cdot d_i \cdot \mu_j + \sum_{i \in N} a_{ip} \cdot \sigma_{ji} - \nu_j \quad \forall p \in P_j, j \in J$$
(11)

Subject to

- All of the routes must start & end at the same facility.
- Each customer node can be visited at most once.
- Total demand of each route \leq vehicle capacity.
- Total travel time of the pairing \leq time limit.

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Pricing Problem as a Network Problem: Cont.

• For each facility, construct a network with source and sink.

• Cost of arc (*i*, *k*) in network for facility *j*:

$$\hat{c}_{ik} = \begin{cases} c_{ik} - \pi_k + d_k \mu_j + \sigma_{jk} & \text{if } k \text{ is a customer node} \\ c_{ik} & \text{otherwise} \end{cases}$$

- Elementary (wrt. customer nodes), resource constraint shortest path problem (ESPPRC).
- Not elementary wrt sink \rightarrow multiple vehicle routes.
- Sink is the end of a route and possibly beginning of another one.

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Solving Pricing Problem

- Label setting algorithm by Feillet et al. [2004] to solve ESPPRC.
- All possible paths from source to sink are assigned a label.
- To reduce the number of labels, only the labels that are not dominated by any other label are considered.

2-phase ESPPRC Algorithm to Find Pairings

Phase 1: Network includes a source, a sink and customer nodes.

- Run ESPPRC algorithm with vehicle capacity and time limit resources.
- Run domination algorithm for the labels of sink.

Phase 2: Network includes a source, a sink and sink labels from phase 1.

- Each node starts with the label from Phase 1.
- Run ESPPRC algorithm with time limit resource.

A D > A A P >

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Branching Rules

- $\label{eq:relation} \begin{array}{l} \mbox{Rule 1} & \mbox{Facility location variables} \rightarrow \mbox{OPEN} \setminus \mbox{CLOSED}. \\ & \mbox{Simple, no need to update the pricing problems.} \end{array}$
- Rule 2Total # of vehicles at each facility \rightarrow INTEGERJust a fixed cost change in the total reduced cost of a column.
- **Rule 3** A customer can only be assigned to 1 facility \rightarrow **FORCE** customer *i* must be served by facility *j*:

$$\sum_{p \in P_j} a_{ip} Z_p \ge 1 \quad (\gamma_{ji}) \tag{12}$$

 \rightarrow **FORBID** customer *i* cannot be served by facility *j*:

$$\sum_{p \in P_j} a_{ip} Z_p \le 0 \tag{13}$$

< □ > < □ > < □ > < □ >

Easy to incorporate into pricing problem.

Rule 4 Branching on flow on single arcs.

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Heuristic Solutions For Pricing Problem

ESPPRC with Label Limit (ESPPRC - LL(n))

- Set a label limit, n.
- Sort the labels of node on reduced cost.
- Keep at most *n* of the non processed labels with smallest reduced cost.
- For small values of n, it is very quick.
- Label limit can be gradually increased.

ESPPRC for a Subset of Customers (ESPPRC - CS(n))

- Choose *n* based on the average demand and vehicle capacity.
- Choose a subset of customers *C_s* with size *n* based on reduced costs of arcs in the network.
- Apply ESPPRC algorithm to customer set C_S.

Akca, Ralphs, Berger

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

2-Step Branch & Price Algorithm

STEP 1: Heuristic Branch and Price Tree

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Implementation and Test Problems

- MINTO 3.1 and CPLEX 9.1.
- Customer and candidate facility locations, customer demands are generated using MDVRP benchmark problems developed by Cordeau et al. [1995].
- Instances with 25 and 40 customers and 5 facilities.
- For each set of locations, 2 possible vehicle capacity, 2 possible time limit values are used.
- For 25 customer instances, 1 step branch & price (8 CPU hours).
- For 40 customer instances, 2 step branch & price: Step 1 (Heuristic BP) is run for 2 CPU hours.
- Step 2 of the algorithm (Exact BP) is run for 6 CPU hours.

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Effect of ESPPRC - CS(n)

Data	With	out SS	Wit	h SS	Data	With	out SS	Wit	h SS
	UB-S1	Gap-S2	UB-S1	Gap-S2		UB-S1	Gap-S2	UB-S1	Gap-S2
a40-v1t1	7131	0.01%	7131	0	e40-v1t1	7167	0	7167	0
a40-v1t2	6986	0.14%	7170	0.32%	e40-v1t2	6950	0.07%	6950	0.05%
a40-v2t1	7017	0	6866	0	e40-v2t1	6857	0	6849	0
a40-v2t2	6821	1.99%	6821	1.26%	e40-v2t2	6846	3.19%	6846	0
b40-v1t1	7252	4.14%	7183	3.22%	f40-v1t1	7167	0	7167	0
b40-v1t2	6934	0	6934	0	f40-v1t2	7001	0	7001	0
b40-v2t1	6823	0	6823	0	f40-v2t1	6925	0.01%	6881	0
b40-v2t2	6634	0	6633	0	f40-v2t2	6851	2.55%	6845	2.34%
c40-v1t1	8780	0	8780	0	g40-v1t1	7343	0	7343	0
c40-v1t2	8756	0	8753	0	g40-v1t2	7117	0	7124	0
c40-v2t1	8663	0	8663	0	g40-v2t1	7000	0	7005	0
c40-v2t2	8456	0	8438	0	g40-v2t2	6944	0	6944	0
d40-v1t1	7793	0.23%	7740	0	h40-v1t1	7012	0.01%	7013	0
d40-v1t2	7544	6.32%	7236	2.95%	h40-v1t2	6972	1.22%	6972	0.35%
d40-v2t1	7140	2.29%	7132	2.79%	h40-v2t1	6869	3.01%	6857	0.04%
d40-v2t2	7430	8.52%	6947	4.18%	h40-v2t2	6667	1.78%	6658	1.64%

Step 1 time \rightarrow 3.4, step 2 time \rightarrow 1.57, and total time \rightarrow 1.61.

-2

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

1 Step Branch & Price Algorithm for 25 Customer Instances

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

2 Step Branch & Price Algorithm for 40 Customer Instances

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Comparison with Literature: Lin et. al (2002) Instances

Instances	Branch	& Bound	Best Heuristic		
	Obj.	CPU (s)	Obj.	CPU (s)	
1: 4 depots, 10 custs.	309,817	1155	309,817	0.44	
2: 4 depots, 10 custs.	309,808	982	309,808	0.49	
3: 4 depots, 12 custs.	312,036*	> 10,000	312,036	0.82	
4: 4 depots, 27 custs.	-	-	625,752.5	6	

* Best solution in 10000 CPU seconds in a Pentium III machine.

a. Lin et. al (2002)

Instances	Obj.	CPU (s)
1: 4 depots, 10 custs.	309,817	0.70
2: 4 depots, 10 custs.	309,808	0.26
3: 4 depots, 12 custs.	312,036	0.13
4: 4 depots, 27 custs.	625,750.167	135.20

b. 1 Step Branch and Price Algorithm

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Effect of Scheduling Constraint: LRSP vs LRP-DC

One of the open facilities is different in 3 of the instances.

Pricing Problem Branching Improving Branch and Price Algorithm Computational Results

Effect of Scheduling Constraint: LRSP vs LRP-DC

Conclusions

- Formulated and designed a branch and price algorithm to solve the LRSP to optimally.
- Enhanced the algorithm by a heuristic pricing problems and by a heuristic step.
- Solved instances up to 40 customers and 5 facilities.
- Solved LRP-DC and ompare the costs with LRSP.

J.F. Cordeau, M. Gendreau, and G. Laporte. A Tabu Search Heuristic for Periodic and Multi-Depot Vehicle Routing Problems, 1995. Technical Report 95-75, Center for Research on Transportation, Montréal. Available at neo.lcc.uma.es/radi-

aeb/WebVRP/Problem_Instances/CordeauFilesDesc.html.

- D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints: Application to Some Vehicle Routing Problems. *Networks*, 44(3):216–229, 2004.
- C.K. Lin, C.K. Chew, and A. Chen. A Location-Routing-Loading Problem for Bill Delivery Services. *Computers and Industrial Engineering*, 43:5–25, 2002.
- C.K. Lin and R.C.W. Kwok. Multi-Objective Metaheuristics for a Location-Routing Problem withMultiple Use of Vehicles on Real Data and Simulated Date. *European Journal of Operational Research*, In Press, 2005.

< □ > < □ > < □ > < □ >