A Framework for Decomposition in Integer Programming

Matthew Galati¹ Ted Ralphs²

¹SAS Institute, Advanced Analytics, Operations Research R & D

²COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

Column Generation Workshop 2008 Aussois, France

Outline

Traditional Decomposition Methods

Integrated Decomposition Methods

DECOMP Framework

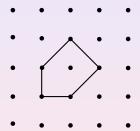
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

 $z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$

 $z_D = \min_{x \in \mathcal{T}'} \{ c^\top x \mid A'' x \ge b'' \}$

$$z_{IP} \ge z_D \ge z_{LP}$$



$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

Assumptions

ullet $OPT(c, \mathcal{P})$ and $SEP(x, \mathcal{P})$ are "hard".

 \bullet $OPT(c, \mathcal{P}')$ and $SEP(x, \mathcal{P}')$ are "easy"

 \bullet \mathcal{Q}'' can be represented explicitly (description has polynomial size

 \mathcal{P}' must be represented implicitly (description has exponential size)

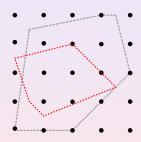
Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \ge b', A'' x \ge b'' \}$$

 $z_D = \min_{z \in \mathcal{D}'} \{c^\top x \mid A'' x \ge b''\}$

$$z_{IP} > z_D > z_{IP}$$



Assumptions

$$\circ$$
 OPT(c \mathcal{D}') and SEP(c \mathcal{D}') are "easy

$$\mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \ge b'\}$$

$$\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x > b''\}$$

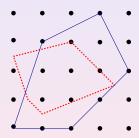
ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size)

a \mathcal{D}' must be represented implicitly (description has exponen

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{IP} &= & \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\ z_{LP} &= & \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\ z_D &= & \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \geq b'' \} \end{split}$$

 $z_{IP} \ge z_D \ge z_{LP}$



 $\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x > b'\}$

ullet $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard"

$$ullet$$
 $OPT(c, \mathcal{P}')$ and $SEP(x, \mathcal{P}')$ are "eas

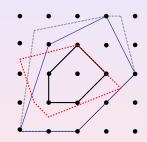
$$Q'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size)

 \bullet \mathcal{P}' must be represented implicitly (description has exponent

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{IP} &= & \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \geq b', A'' x \geq b'' \} \\ z_{LP} &= & \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \geq b', A'' x \geq b'' \} \\ z_D &= & \min_{x \in \mathcal{P}'} \{ c^\top x \mid A'' x \geq b'' \} \\ &= & z_{IP} \geq z_D \geq z_{LP} \end{split}$$



Assumptions

ullet $OPT(c,\mathcal{P})$ and $SEP(x,\mathcal{P})$ are "hard".

$$\bullet$$
 $OPT(c, \mathcal{P}')$ and $SEP(x, \mathcal{P}')$ are "easy

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\dots \qquad \mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x > b'\}$$

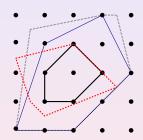
$$Q'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

ullet \mathcal{Q}'' can be represented explicitly (description has polynomial size

ullet \mathcal{P}' must be represented implicitly (description has exponential size).

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

$$\begin{split} z_{IP} &= & \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A' x \geq b', A'' x \geq b'' \} \\ z_{LP} &= & \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A' x \geq b', A'' x \geq b'' \} \\ z_D &= & \min_{x \in \mathcal{P}'} \{ c^\top x \mid A'' x \geq b'' \} \\ &= & z_{IP} \geq z_D \geq z_{LP} \end{split}$$



Assumptions:

•
$$OPT(c, \mathcal{P})$$
 and $SEP(x, \mathcal{P})$ are "hard".

$$\bullet$$
 $OPT(c, \mathcal{P}')$ and $SEP(x, \mathcal{P}')$ are "easy".

$$\mathcal{P} = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b', A''x \ge b''\}$$

$$\mathcal{P}' = \operatorname{conv}\{x \in \mathbb{Z}^n \mid A'x \ge b'\}$$

$$\cdots\cdots \qquad \mathcal{Q}' = \{x \in \mathbb{R}^n \mid A'x \geq b'\}$$

$$Q'' = \{x \in \mathbb{R}^n \mid A''x \ge b''\}$$

- Q" can be represented explicitly (description has polynomial size).
- \bullet \mathcal{P}' must be represented implicitly (description has exponential size).

Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lcl} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Two Relaxations

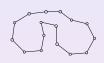
1-Tree

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V \setminus \{0\})) & = & |V|-2 \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

Example - Traveling Salesman Problem

Classical Formulation

$$\begin{array}{lll} x(\delta(\{u\})) & = & 2 & \forall u \in V \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V, \ 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$



Two Relaxations

1-Tree

$$\begin{array}{lcl} x(\delta(\{0\})) & = & 2 \\ x(E(V \setminus \{0\})) & = & |V|-2 \\ x(E(S)) & \leq & |S|-1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V|-1 \\ x_e \in \{0,1\} & \forall e \in E \end{array}$$

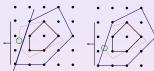
2-Matching

$$x(\delta(u)) = 2 \quad \forall u \in V$$

 $x_e \in \{0, 1\} \quad \forall e \in E$

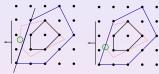
Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an *outer* approximation of \mathcal{P}' by solving a cutting plane generation subproblem.



Traditional Decomposition Methods

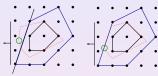
The Cutting Plane Method (CP) iteratively builds an *outer* approximation of \mathcal{P}' by solving a cutting plane generation subproblem.



The Dantzig-Wolfe Method (DW) iteratively builds an *inner* approximation of \mathcal{P}' by solving a column generation subproblem.

Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an *outer* approximation of \mathcal{P}' by solving a cutting plane generation subproblem.



The Dantzig-Wolfe Method (DW) iteratively builds an *inner* approximation of \mathcal{P}' by solving a column generation subproblem.

The Lagrangian Method (LD) iteratively solves a Lagrangian relaxation subproblem.

Common Threads

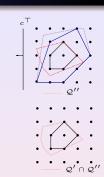
 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{c \mid x \mid x \in \mathcal{P}' \cap \mathcal{Q}''\} \ge z_{LP}$$

- Traditional decomposition-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x,\mathcal{P}')$ or $OPT(c,\mathcal{P}')$
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)



Common Threads

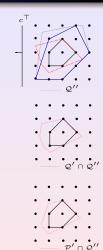
 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{LP}$$

- Traditional decomposition-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information.
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x, \mathcal{P}')$ or $OPT(c, \mathcal{P}')$.
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)



Common Threads

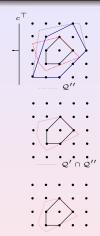
 The LP bound is obtained by optimizing over the intersection of two explicitly defined polyhedra.

$$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{Q}' \cap \mathcal{Q}'' \}$$

 The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

$$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in \mathcal{P}' \cap \mathcal{Q}'' \} \ge z_{LP}$$

- Traditional decomposition-based bounding methods contain two primary steps
 - Master Problem: Update the primal/dual solution information.
 - Subproblem: Update the approximation of \mathcal{P}' : $SEP(x, \mathcal{P}')$ or $OPT(c, \mathcal{P}')$.
- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)

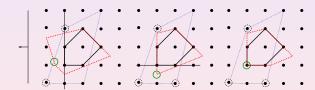


Price and Cut

Price and Cut: Use DW as the bounding method. If we let $\mathcal{F}' = \mathcal{P}' \cap \mathbb{Z}^n$, then

$$z_{DW} = \min_{\lambda \in \mathbb{R}_+^{\mathcal{F}'}} \{ c^\top \big(\sum_{s \in \mathcal{F}'} s \lambda_s \big) : A'' \big(\sum_{s \in \mathcal{F}'} s \lambda_s \big) \geq b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

- As in the cutting plane method, separate $\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to [A'', b''].
- Advantage: Cut generation takes place in the space of the compact formulation (the original space), maintaining the structure of the column generation subproblem.

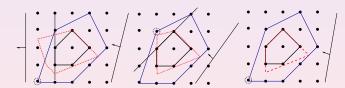


Relax and Cut

Relax and Cut: Use LD as the bounding method.

$$z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{s \in \mathcal{F}'} \{ (c^\top - u^\top A'') s + u^\top b'' \}$$

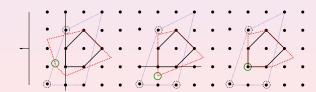
- In each iteration, separate $\hat{s} \in \operatorname{argmin}_{s \in \mathcal{F}'} \{ (c^\top u^\top A'') s + u^\top b'' \}$, a solution to the Lagrangian relaxation.
- Advantage: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x} .



Decompose and Cut

Decompose and Cut: As in price and cut, use DW as the bounding method, but use the decomposition obtained in each iteration to generate improving inequalities as in RC.

- Rather than (or in addition to) separating \hat{x} , separate each member of $D = \{s \in \mathcal{F}' \mid \hat{\lambda}_s > 0\}.$
- As with RC, it is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x} .
- RC only gives us one member of \mathcal{F}' to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x} .
- We can also use CP and decompose the fractional solution obtained in each iteration into a convex combination of members of \mathcal{F}' and apply the same technique.
- In case this decomposition fails, we still get a Farkas cut for free.

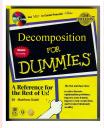


DECOMP Framework: Motivation

DECOMP Framework

DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It's very difficult to compare the variants discussed here in a controlled wa
- The method for separation/optimization over \mathcal{P}' is the primary application-dependent component of any of these algorithms.
- DECOMP abstracts the common, generic elements of these methods.
 - Key: The user defines application-specific components in the space of the compact formulation
 The framework takes care of reformulation and implementation for all variants described here.

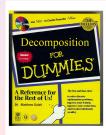


DECOMP Framework: Motivation

DECOMP Framework

DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It's very difficult to compare the variants discussed here in a controlled way.
- ullet The method for separation/optimization over \mathcal{P}' is the primary application-dependent component of any of these algorithms.

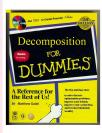


DECOMP Framework: Motivation

DECOMP Framework

DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It's very difficult to compare the variants discussed here in a controlled way.
- ullet The method for separation/optimization over \mathcal{P}' is the primary application-dependent component of any of these algorithms.
- DECOMP abstracts the common, generic elements of these methods.
 - Key: The user defines application-specific components in the space of the compact formulation.
 - The framework takes care of reformulation and implementation for all variants described here.



DECOMP Framework: Implementation

COmputational INfrastructure for Operations Research

DECOMP was built around data structures and interfaces provided by COIN-OR.

• a wrapper class that calls (algorithmic) methods from DecompAlgo

DECOMP Framework: Implementation

COmputational INfrastructure for Operations Research

- DECOMP was built around data structures and interfaces provided by COIN-OR.
- The **DECOMP** framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DECOMP provides the bounding method for branch and bound
- ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlg

DECOMP Framework: Implementation

COmputational INfrastructure for Operations Research

- DECOMP was built around data structures and interfaces provided by COIN-OR.
- The **DECOMP** framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo
- DECOMP provides the bounding method for branch and bound.
- ALPS (Abstract Library for Parallel Search) provides the framework for parallel tree search.
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC
- Automatic reformulation allows users to deal with variables and constraints in the origina space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the origina space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point)
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space)
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point)
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool management
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool managemen
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space
- Active LP compression, variable and cut pool management
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides
- Visualization tools for graph problems (linked to graphviz)

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with variables and constraints in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (since cut generation is always done in the original space).
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Visualization tools for graph problems (linked to graphviz).

- The base class DecompApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.

```
    DecompApp::APPcreateModel(). Define [A", b"] and [A', b'] (optional).
    TSP 1-Tree: [A", b"] define the 2-matching constraints.
    TSP 2-Match: [A", b"] define trivial subtour constraints.
    DecompApp::isUserFeasible(). Does x* define a feasible solution?
    TSP: do we have a feasible tour?
    DecompApp::APPsolveRelaxed(). Provide a subroutine for OPT(c, P').
    This is optional as well, if [A', b'] is defined (it will call the built in IP solver, currently CBC).
    TSP 1-Tree: provide a solver for 1-tree.
    TSP 2-Match: provide a solver for 2-matching.
```

- All other methods have appropriate defaults but are virtual and may be overridden.
 - DecompApp::APPheuristics()
 - DecompApp::generateInitVars()
 - DecompApp::generateCuts()
 - .

- The base class DecompApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DecompApp::APPcreateModel(). Define [A'', b''] and [A', b'] (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: $[A^{\prime\prime},b^{\prime\prime}]$ define trivial subtour constraints.

- All other methods have appropriate defaults but are virtual and may be overridder
 - DecompApp::APPheuristics(
 - DecompApp::generateInitVars()
 - DecompApp::generateCuts()

- The base class DecompApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DecompApp::APPcreateModel(). Define [A'', b''] and [A', b'] (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.
- DecompApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?

```
    TSP 1-Tree: provide a solver for 1-tree.
    TSP 2-Match: provide a solver for 2-matching.
```

- All other methods have appropriate defaults but are virtual and may be overridden
 - DecompApp::APPheuristics()
 - DecompApp::generateInitVars()
 - DecompApp::generateCuts()

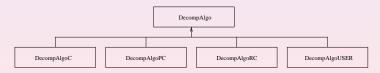
Galati, Ralphs

- The base class DecompApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DecompApp::APPcreateModel(). Define [A'', b''] and [A', b'] (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.
- DecompApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?
- DecompApp::APPsolveRelaxed(). Provide a subroutine for $OPT(c, \mathcal{P}')$.
 - This is optional as well, if [A', b'] is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.
- All other methods have appropriate defaults but are virtual and may be overridden.
 - DecompApp::APPheuristics()
 - DecompApp::generateInitVars()
 - DecompApp::generateCuts()
 - .

- The base class DecompApp provides an interface for the user to define the application-specific components of their algorithm.
- In order to develop an application, the user must derive the following methods/objects.
- DecompApp::APPcreateModel(). Define [A'',b''] and [A',b'] (optional).
 - TSP 1-Tree: [A'', b''] define the 2-matching constraints.
 - TSP 2-Match: [A'', b''] define trivial subtour constraints.
- DecompApp::isUserFeasible(). Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?
- DecompApp::APPsolveRelaxed(). Provide a subroutine for $OPT(c, \mathcal{P}')$.
 - This is optional as well, if [A', b'] is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.
- All other methods have appropriate defaults but are virtual and may be overridden.
 - DecompApp::APPheuristics()
 - DecompApp::generateInitVars()
 - DecompApp::generateCuts()
 - ٠..

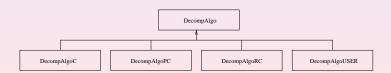
DECOMP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described have derived default implementations DecompAlgoX :
 public DecompAlgo which are accessible by any application class, allowing full flexibility
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods or ACCPN
 - Add stabilization to the dual updates in LD, as in bundle methods.
 - For LD, replace subgradient with Volume, providing an approximate primal solution
 - Hybrid methods like using LD to initialize the columns of the DW master
 - During PC, adding cuts to both inner and outer approximations. simultaneously (Vanderbeck)
 - 0



DECOMP - Algorithms

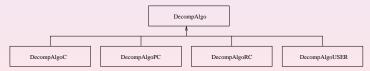
- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described have derived default implementations DecompAlgoX:
 public DecompAlgo which are accessible by any application class, allowing full flexibility.
 - subroutines, which are called from the base class. For example,
 - Add stabilization to the dual undates in LD, as in hundle methods
 - For LD, replace subgradient with Volume, providing an approximate primal solution.
 - Hybrid methods like using LD to initialize the columns of the DW master
 - During PC, adding cuts to both inner and outer approximations. simultaneously (Vanderbeck



DECOMP - Algorithms

- The base class DecompAlgo provides the shell (init / master / subproblem / update).
- Each of the methods described have derived default implementations DecompAlgoX : public DecompAlgo which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods or ACCPM.
 - Add stabilization to the dual updates in LD, as in bundle methods.
 - For LD, replace subgradient with Volume, providing an approximate primal solution.
 - Hybrid methods like using LD to initialize the columns of the DW master.
 - During PC, adding cuts to both inner and outer approximations. simultaneously (Vanderbeck).

...



DECOMP - TSP Example

TSP_Main

```
int main(int argc, char ** argv){
  //create the utility class for parsing parameters
   UtilParameters utilParam(argc, argv);
  //create the user application (a DecompApp)
  TSP_DecompApp tsp(utilParam);
   tsp.createModel();
  //create the algorithm(s) (a DecompAlgo)
   DecompAlgoC * cut = new DecompAlgoC(&tsp, &utilParam);
  DecompAlgoPC * pcOneTree = new DecompAlgoPC(&tsp, &utilParam,
                                                TSP_DecompApp :: MODEL_ONETREE );
   DecompAlgoPC * pcTwoMatch = new DecompAlgoPC(&tsp, &utilParam,
                                                TSP_DecompApp::MODEL_TWOMATCH);
   DecompAlgoRC * rcOneTree = new DecompAlgoRC(&tsp, &utilParam,
                                                TSP_DecompApp :: MODEL_ONETREE );
   DecompAlgoRC * rcTwoMatch = new DecompAlgoRC(&tsp, &utilParam,
                                                TSP_DecompApp :: MODEL_TWOMATCH):
  //create the driver AlpsDecomp model
  AlpsDecompModel alpsModel(utilParam):
  //install the algorithms
  //alpsModel.addDecompAlgo(cut):
   alpsModel.addDecompAlgo(pcOneTree):
  //solve
   alpsModel.solve():
```

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.
- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks
- The code is open-source, currently released under CPL and will soon be available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.
- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks
- The code is open-source, currently released under CPL and will soon be available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.
- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and will soon be available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- ullet Traditional Decomposition Methods approximate ${\mathcal P}$ as ${\mathcal P}'\cap {\mathcal Q}''.$
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.
- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and will soon be available through the COIN-OR project repository www.coin-or.org.
- Related publications
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.
- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.
- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).
- The interface to ALPS allows us to investigate large-scale problems on distributed networks.
- The code is open-source, currently released under CPL and will soon be available through the COIN-OR project repository www.coin-or.org.
- Related publications:
 - T. Ralphs and M.G., Decomposition and Dynamic Cut Generation in Integer Programming, Mathematical Programming 106 (2006), 261
 - T. Ralphs and M.G., Decomposition in Integer Programming, in Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57