Integrated gate and bus assignment at Amsterdam Airport Schiphol

June 2008

antesantesant Di generate

KLW

1 <>>>

Marjan van den Akker, Guide Diepen, Han Hoogeveen -

marjan@cs.uu.nl

Department of Information and Computing Sciences Utrecht University The Netherlands

Gate assignment

Problem description

We have a set of flights:

- Arrival and departure time
- Type of aircraft
- Region of origin/destination (Schengen/EU/Non-EU)
- Preferences of airline
- Ground handler

And we have a set of gates

- Possible regions (Schengen/EU/Non-EU)
- Possible aircraft
- Possible ground handlers

Problem description (2)

Goal:

- find assignment one day ahead
- maximize robustness

that satisfies:

- region constraints
- aircraft constraints
- ground handler constraints
- time constraints
- preferences

Problem description (3)

Problem description (3)

What is robust?:

Problem description (4)

Cost function: $c(t) = 100(\arctan(0.21(5-t)\frac{\pi}{2}))$

- High for small separation times
- Low for long separation times
- Descending steeply in beginning

Refinements:

- Certain combinations of flights are more desirable
- Certain assignments are less desirable

Gate plans

Distinguish only between gate types (not between individual gates)

Gate plan:

- Set of flights assigned to the same gate
- Designed for a given type of gate
- Cost of gate plan = cost due to corresponding separation times

Decision variable $x_i = 0/1$ if gate plan *i* is (not) selected.

We can incorporate all mentioned constraints within *valid* gate plans

The model

э

Column genration: pricing problem

Create graph G_a for gate type a:

- Vertices: possible flights v
- Arc (v, v') if flight v' can be placed after flight v
- Set cost arc (v, v') to contribution flight v to reduced cost

Shortest path in Directed Acyclic Graph with topological order.

Column generation

Extra columns:

- Solving pricing problem resulted in shortest path
- Disable flights from this new gate plan one by one and solve shortest path again

Column deletion:

if reduced cost exceed threshold

Solving: ILP

Add the unique columns to the ILP problem:

- Tremendous speed up
- Better solutions
- ► Gamble for small integrality gap (0.35 %).
- Aggressive CPLEX settings

Summary gate assignment

- 1. Assigning flights to gate plans:
 - Colum generation
 - Fast (some minutes for solving complete day)
 - Small integrality gap
- 2. Assigning gate plans to gates:
 - Every single gate is separate type: done
 - Solve small assignment problems

Bus planning

Problem description

- Some stands don't have air bridge
- Flights at platform require bus trips
- Correspondance to gate assignment model:
 Flight → Trip Gate type → Shift
 - Gate plan \rightarrow Bus plan
- Differences:
 - Bus drivers must get some breaks during shift
 - There are two types of buses

The model

- Decision variable $y_j = 0/1$ if bus plan j is (not) selected.
- Cost function based on robustness
- Each trip in exactly one bus plan
- Correct number of bus plans per shift type
- Incorporate breaks in pricing problem

Integrating the two problems

Integrating the two problems

Some advantages:

- Possibility of feed-back from bus planning to gate planning
- Better overall robustness
- Reducing number of buses needed

But:

- Unknown which trips need to be driven
- Problem size increases enormously

The model

Minimize robustness cost function

Subject to:

- gate assignment constraints
- correct number of bus plans per shift type
- correct bus trips are driven:

$$\text{NNT}_t + \text{UAT}_t + \sum_{j=1}^M h_{tj} y_j = 1$$
 for all trips t

coupling constraints:

$$\text{NNT}_t + \sum_{i=1}^N \sum_{v=1}^V t_{tvi} r_i x_i = 1$$
 for all trips t

Solving LP

 Pricing is finding shortest path, coupling constraint 'incorporated' in finding gate plans

Pricing for gates and buses in each iteration

Fight degeneracy

- Extra columns are added during column generation (up to 20.000)
- Stabilized column generation
 - Add bounded surplus and slack variables with positive coefficient in objective function
- Column deletion

Solving ILP

Additional constraints for ILP:

- rounding heuristic
- fix flight on type of gate or bus on type of shift

Gamble for small integrality gap of 0,5 %

Test instances

Gates:

- Three high-season days at AAS: 600 flights, 1000 possible arrival/departure events for platform flights
- Three low-season days at AAS: 500 flights, 900 possible arrival/departure events for platform flights

Buses:

Thirty days with 20 shifts and 60 buses

LP results

-	Time LP (s)		Avg tin	ne (s)/iter
Instance	Average	Avg iter	RMP	Pricing
HS1-GG	1129.6	161.67	2.8	3.9
HS1-SG	2070.1	171.90	4.8	6.8
HS2-GG	97 <mark>3.</mark> 9	148.27	2.6	3.7
HS2-SG	1847.4	163.07	4.4	6.5
HS3-GG	1142.6	157.50	3.2	4.0
HS3-SG	2575.2	212.77	4.6	7.2
LS1-GG	658.5	165.17	1.1	2.7
LS1-SG	1235.8	175.17	1.9	4.8
LS2-GG	710.0	161.90	1.3	2.8
LS2-SG	1383.4	175.87	2.5	5.0
LS3-GG	595.0	141.37	1.2	2.8
LS3-SG	1125.1	151.70	2.2	4.9

э

ILP results

	-	Average addition	Average solving			
	Instance	Flight constraints	Trip constraints	time ILP (s)		
	HS1-GG	121.4	57.6	43.5		
	HS1-SG	103.4	57.9	54.1		
	HS2-GG	117.8	57.1	42.0		
	HS2-SG	105.4	57.7	103.3		
	HS3-GG	119.3	57.2	82.7		
	HS3-SG	108.7	57.5	95.2		
	LS1-GG	108.9	58.4	86.5		
	LS1-SG	91.0	59.0	271.0		
	LS2-GG	107.0	59.1	45.8		
	LS2-SG	84.2	59.3	170.6		
	LS3-GG	118.5	59.9	20.6		
	LS3-SG	105.6	59.6	29.5		

990

Conclusion

- Integrated model to optimize robustness
- Realistic constraints can be incorporated
- Computation times are quite good:
 - Gate assignment can be solved within a few minutes
 - Bus planning with one minute
 - Integrated problem within one hour

