Integrated gate and bus assignment at Amsterdam Airport Schiphol

Marjan van den Akker, Guido Diepen, Han Hoogeveen

marjan@cs.uu.nl

Department of Information and Computing Sciences
Utrecht University
The Netherlands

Gate assignment

Problem description

We have a set of flights:

- Arrival and departure time
- Type of aircraft
- Region of origin/destination (Schengen/EU/Non-EU)
- Preferences of airline
- Ground handler

And we have a set of gates

- Possible regions (Schengen/EU/Non-EU)
- Possible aircraft
- Possible ground handlers

Problem description (2)

Goal:

- find assignment one day ahead
- maximize robustness
that satisfies:
- region constraints
- aircraft constraints
- ground handler constraints
- time constraints
- preferences

Problem description (3)

What is robust?:

Problem description (3)

What is robust?:

Problem description (4)

Cost function: $c(t)=100\left(\arctan \left(0.21(5-t) \frac{\pi}{2}\right)\right.$

- High for small separation times
- Low for long separation times
- Descending steeply in beginning

Refinements:

- Certain combinations of flights are more desirable
- Certain assignments are less desirable

Gate plans

Distinguish only between gate types (not between individual gates)
Gate plan:

- Set of flights assigned to the same gate
- Designed for a given type of gate
- Cost of gate plan $=$ cost due to corresponding separation times

Decision variable $x_{i}=0 / 1$ if gate plan i is (not) selected.

We can incorporate all mentioned constraints within valid gate plans

The model

Min. $\sum_{i=1}^{N} c_{i} x_{i}+\sum_{v=1}^{V} Q_{v} \mathrm{UAF}_{v} \quad$ s.t.
$\mathrm{UAF}_{v}+\sum_{i=1}^{N} g_{v i} x_{i}=1$ for all flights v

$$
\sum_{i=1}^{N} e_{i a} x_{i}=S_{a} \text { for all gate types } a
$$

Preferences are met

$$
x_{i} \in\{0,1\}
$$

Column genration: pricing problem

Create graph G_{a} for gate type a :

- Vertices: possible flights v
- Arc $\left(v, v^{\prime}\right)$ if flight v^{\prime} can be placed after flight v
- Set cost arc $\left(v, v^{\prime}\right)$ to contribution flight v to reduced cost

Shortest path in Directed Acyclic Graph with topological order.

Column generation

Extra columns:

- Solving pricing problem resulted in shortest path
- Disable flights from this new gate plan one by one and solve shortest path again

Column deletion:

- if reduced cost exceed threshold

Solving: ILP

- Add the unique columns to the ILP problem:
- Tremendous speed up
- Better solutions
- Gamble for small integrality gap (0.35 \%).
- Aggressive CPLEX settings

Summary gate assignment

1. Assigning flights to gate plans:

- Colum generation
- Fast (some minutes for solving complete day)
- Small integrality gap

2. Assigning gate plans to gates:

- Every single gate is separate type: done
- Solve small assignment problems

Bus planning

Problem description

- Some stands don't have air bridge
- Flights at platform require bus trips
- Correspondance to gate assignment model:

Flight \rightarrow Trip
Gate type \rightarrow Shift
Gate plan \rightarrow Bus plan

- Differences:
- Bus drivers must get some breaks during shift
- There are two types of buses

The model

- Decision variable $y_{j}=0 / 1$ if bus plan j is (not) selected.
- Cost function based on robustness
- Each trip in exactly one bus plan
- Correct number of bus plans per shift type
- Incorporate breaks in pricing problem

Integrating the two problems

Integrating the two problems

Some advantages:

- Possibility of feed-back from bus planning to gate planning
- Better overall robustness
- Reducing number of buses needed

But:

- Unknown which trips need to be driven
- Problem size increases enormously

The model

Minimize robustness cost function

Subject to:

- gate assignment constraints
- correct number of bus plans per shift type
- correct bus trips are driven:

$$
\mathrm{NNT}_{t}+\mathrm{UAT}_{t}+\sum_{j=1}^{M} h_{t j} y_{j}=1 \quad \text { for all trips } t
$$

- coupling constraints:

$$
\mathrm{NNT}_{t}+\sum_{i=1}^{N} \sum_{v=1}^{V} t_{t v i} r_{i} x_{i}=1 \quad \text { for all trips } t
$$

Solving LP

- Pricing is finding shortest path, coupling constraint 'incorporated' in finding gate plans
- Pricing for gates and buses in each iteration

Fight degeneracy

- Extra columns are added during column generation (up to 20.000)
- Stabilized column generation
- Add bounded surplus and slack variables with positive coefficient in objective function
- Column deletion

Solving ILP

Additional constraints for ILP:

- rounding heuristic
- fix flight on type of gate or bus on type of shift

Gamble for small integrality gap of 0,5 \%

Test instances

Gates:

- Three high-season days at AAS: 600 flights, 1000 possible arrival/departure events for platform flights
- Three low-season days at AAS: 500 flights, 900 possible arrival/departure events for platform flights

Buses:

- Thirty days with 20 shifts and 60 buses

LP results

	Time LP (s)		Avg time (s)/iter	
Instance	Average	Avg iter	RMP	Pricing
HS1-GG	1129.6	161.67	2.8	3.9
HS1-SG	2070.1	171.90	4.8	6.8
HS2-GG	973.9	148.27	2.6	3.7
HS2-SG	1847.4	163.07	4.4	6.5
HS3-GG	1142.6	157.50	3.2	4.0
HS3-SG	2575.2	212.77	4.6	7.2
LS1-GG	658.5	165.17	1.1	2.7
LS1-SG	1235.8	175.17	1.9	4.8
LS2-GG	710.0	161.90	1.3	2.8
LS2-SG	1383.4	175.87	2.5	5.0
LS3-GG	595.0	141.37	1.2	2.8
LS3-SG	1125.1	151.70	2.2	4.9

ILP results

Instance	Average additional constraints Flight constraints	Average solving Trip constraints	time ILP (s)
HS1-GG	121.4	57.6	43.5
HS1-SG	103.4	57.9	54.1
HS2-GG	117.8	57.1	42.0
HS2-SG	105.4	57.7	103.3
HS3-GG	119.3	57.2	82.7
HS3-SG	108.7	57.5	95.2
LS1-GG	108.9	58.4	86.5
LS1-SG	91.0	59.0	271.0
LS2-GG	107.0	59.1	45.8
LS2-SG	84.2	59.3	170.6
LS3-GG	118.5	59.9	20.6
LS3-SG	105.6	59.6	29.5

Conclusion

- Integrated model to optimize robustness
- Realistic constraints can be incorporated
- Computation times are quite good:
- Gate assignment can be solved within a few minutes
- Bus planning with one minute
- Integrated problem within one hour

Questions?

