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The Scheduling Problem:

J = {1, . . . , n} - set of jobs to be processed

M = {1, . . . ,m} - set of parallel identical machines

pj - job j positive integral processing time

fj(Cj) - cost function over completion time of job j

Cj - completion time of job j

Find the machines and instants in time for all jobs to start such
that:

i No preemption

ii Each machine can process at most one job at a time

iii Machines can stay idle

iv Minimizes
∑n

j=1 fj(Cj)
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Special cases of this cost function:

1||
∑

wjTj single machine weighted tardiness

P||
∑

wjTj multiple machine weighted tardiness

dj - due date of job j
Tj = max{0,Cj − dj} - tardiness of job j
wj - weight of tardiness of job j

Strongly NP-Hard
Models any cost function based on penalties for

job earliness or tardiness

time window for start and/or completion of jobs

penalties can be infinity
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‘
Exact approaches use two distinct kinds of formulations
(Queyranne,Schulz 97):

MIP formulations where job sequence is represented by binary
variables and completion times by continuous variables;

IP time indexed formulations, where the completion time of
each job is represented by binary variables indexed over a
discretized time horizon

Latter formulations are known to yield better bounds

Pseudo-polynomially large number of variables =⇒ difficulty
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Avella, Boccia and D’Auria (2005):

- near-optimal solutions (gaps bellow 3%)
- instances with n up to 400, using Lagrangean relaxation to

approximate the time indexed formulation bound

Pan and Shi (2007):

- showed that the classical time indexed bound can be exactly
computed by solving a cleverly crafted transportation problem.

- branch-and-bound for the 1||
∑

wjTj that consistently solved
all the OR-Library instances with up to 100 jobs

Bigras, Gamache and Savard (2008):

- proposed obtaining the same bound by column generation
- branch-and-price somehow less efficient
- could not solve some of those instances

The last two algorithms may need to explore large
enumeration trees
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Time indexed formulation for the single machine scheduling
problem.

Dyer, Wolsey 1990

Sousa, Wolsey 1992

Van der Akker et al. 1999,2000

...

all jobs must be processed in a given time horizon ranging
from 0 to T

binary variables y t
j indicate that job j starts at time t on some

machine
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Time-Indexed Formulation

Minimize
∑

j∈J

T−pj∑

t=0

fj(t + pj)y
t
j (1a)

S.t.
T−pj∑

t=0

y t
j = 1 j ∈ J (1b)

∑

j ∈ J,

t + pj ≤ T

t∑

s=max{0,t−pj+1}

y s
j ≤ 1 (t = 0, . . . ,T − 1), (1c)

y t
j ∈ {0, 1} j ∈ J; t = 0, . . . ,T − pj (1d)

Parallel machines: right-hand side 1 −→ m.
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Proposed Formulation: Arc-Time-Indexed

Uses an even larger number of variables:

one for each pair of jobs and
each possible completion time.

Also assumes an execution time horizon from 0 to T

Machines are idle at time 0 and after time T

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Binary variables x t
ij , i 6= j ,

indicate that job i completes and job j
starts at time t on the same machine.

x t
0j indicate that job j starts at time t in a machine that was

idle from time t − 1 to t

in particular, x0
0j indicate that j starts on some machine at

time 0

x t
i0 indicate that job i finishes at time t at a machine that will

stay idle from time t to t + 1

in particular, variables xT
i0 indicate that i is the last job at a

machine

integral variables x t
00 indicate the number of machines that

were idle from time t − 1 to t that will remain idle from time
t to t + 1

J+ = {0, 1, . . . , n}
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Arc-Time-Indexed Formulation

Min
X
i∈J+

X
j∈J\{i}

T−pjX
t=pi

fj(t + pj)x
t
ij (2a)X

i∈J+\{j}

T−pjX
t=pi

x t
ij = 1 ∀ j ∈ J (2b)X

j ∈ J+ \ {i}
t − pj ≥ 0

x t
ji −

X
j ∈ J+ \ {i}

t + pi + pj ≤ T

x t+pi
ij = 0 ∀ i ∈ J; t = 0, . . . , T − pi(2c)X

j ∈ J+

t − pj ≥ 0

x t
j0 −

X
j ∈ J+,

t + pj + 1 ≤ T

x t+1
0j = 0 t = 0, . . . , T − 1 (2d)

(2e)
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j∈J+

x0
0j = m (3a)

x t
ij ∈ Z+ ∀ i ∈ J+; ∀ j ∈ J+ \ {i} (3b)

t = pi , . . . , T − pj), (3c)

x t
00 ∈ Z+ t = 0, . . . , T − 1 (3d)

. . . and the redundant equation:X
i∈J+

xT
i0 = m (4)

It defines a network flow of m units over an acyclic layered graph G = (V , A).
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Network m units sent from source to sink
Example: m = 2, n = 4 p1 = 2, p2 = 1, p3 = 2, p4 = 4
T = 6

1 2 3 4 5 6t  =  0

j  =  0

1

2
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4

x
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x
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0

x
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4

x
3 2
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x
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4
x

1 0

6

x
0 0

5 x
0 0

6

An integral solution of the arc-time indexed formulation:

paths in the layered network.
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Proposition

The Arc-Time-Indexed formulation dominates the Time-Indexed
formulation.

Proof.

Let x̄ be a linear relaxation solution of Arc-Time-Indexed with
cost z . x̄ can be converted into ȳ a linear relaxation solution
of the Time-Indexed formulation with same cost:

ȳ t
j =

∑
i∈J+\{j} x̄ t

ij , j ∈ J, t = 0, . . . ,T − pj .

Arc-Time-Indexed formulation can be strictly better than the
Time-Indexed formulation: Example

1||
∑

wjTj problem where n = 3;
p1 = 100, p2 = 300, p3 = 200; d1 = 200, d2 = 300, d3 = 400;
w1 = 6,w2 = 3,w3 = 2; and T = 600.
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If the Arc-Time-Indexed formulation is weakened by adding x t
jj

variables:

it becomes equivalent to the Time-Indexed formulation
i.e., it is only slightly better

On the other hand, the Arc-Time-Indexed formulation can be
strengthened

Proposition

For jobs i and j in J, i < j , let x t
ij and x

t−pi+pj

ji be a pair of
variables defined in Arc-Time-Indexed and let
∆ = (fi (t) + fj(t + pj)) − (fj(t − pi + pj) + fi (t + pj))

If ∆ ≥ 0 variable: x t
ij can be removed

(Else) If ∆ < 0, x
t−pi+pj

ji can be removed.
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Job i and j are processed consecutively on some machine

Swap jobs

Completion times are known for each job in both cases

Just compare the resulting f (Ci ) + f (Cj)

A similar reasoning shows that:

Proposition

For job j in J, let x t
j0 and x

t−pj+1
0j be a pair of variables defined in

the Arc-Time-Indexed formulation. Let ∆ = fj(t) − fj(t + 1).

If ∆ > 0 variable x t
j0 can be removed

If ∆ ≤ 0, x
t−pj+1
0j can be removed.

Result of this Preprocessing

Exact 50% of the arcs are removed

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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The Arc-Time-Indexed Formulation has none of the eliminated
arcs
The acyclic network G = (V , A) also has none of these arcs in
A
The LP relaxation accepts pseudo-schedules: jobs may repeat
(although this preprocessing eliminates many)

New Formulation

To the best of our knowledge, this formulation is NEW.

Picard and Queyranne (1978): three-index formulation for the
1||

∑
wjTj

variables xk
ij , meaning that job j follows job i and is the k-th

job to be scheduled
it has O(n3) variables and O(n2) constraints

Arc-Time-Indexed formulation has O(n2T ) variables and
O(nT ) constraints

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Pseudo-polynomially large number of variables and constraints
makes the direct use of this formulation prohibitive

We can rewrite it in terms of variables associated to the
pseudo-schedules

The pseudo-schedules are source-destination paths in
G = (V , A)

Let P be the set of all source-destination paths in G = (V , A).

λp: 0-1 variable associated to pseudo-schedule p

qtp
a : 0-1 coefficient indicating if arc at is in the path of

pseudo-schedule p

qtp
a is associated to variable x t

a in the Arc-Time-Indexed
formulation

Define f0(t) as zero for all t.
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We may write the Explicit Master:

Minimize
∑

(i ,j)t∈A

fj(t + pj)x
t
ij (5a)

S.t.
∑
p∈P

qtp
a λp − x t

a = 0 (∀ at ∈ A), (5b)

∑
(j ,i)t∈A

x t
ji = 1 (∀ i ∈ J), (5c)

∑
(0,j)0∈A

x0
0j = m (5d)

λp ≥ 0 (∀ p ∈ P), (5e)

x t
a ∈ Z+ (∀ at ∈ A). (5f)
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We eliminate the x variables and relax integrality to obtain the
Dantzig-Wolfe Master (DWM) LP:

Minimize
∑
p∈P

(
∑

(i ,j)t∈A

qtp
ij fj(t + pj))λp (6a)

S.t.
∑
p∈P

(
∑

(j ,i)t∈A

qtp
ji )λp = 1 (∀ i ∈ J), (6b)

∑
p∈P

(
∑

(0,j)0∈A q0p
0j )λp = m (6c)

λp ≥ 0 (∀ p ∈ P). (6d)

∑
(0,j)0∈A q0p

0j = 1 for any p ∈ P

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Cuts on the x variables,
∑

at∈A αt
alx

t
a ≥ bl

take the form
∑P

p=1 (
∑

at∈A αt
alq

tp
a )λp ≥ bl in the DWM.

Suppose we have r constraints where α is the coefficients for
it in the x format.

π are the dual variables associated to these constraints

The reduced cost of an arc at = (i , j)t is then:

c̄t
a = fj(t + pj) −

r∑

l=0

αt
alπl . (7)

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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We separated the Extended Capacity Cuts:

Generic family of cuts (Uchoa 2005)

Effective on the capacitated minimum spanning tree (Uchoa
et al. 2008)

Also effective on many vehicle routing problem variants
(Pessoa et al. 2008)
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Cuts over the time-indexed variables are derived.

For each vertex i ∈ V+ the following balance equation is valid:P
at∈δ−(i)

tx t
a −

P
at∈δ+(i)

tx t
a = pi . (8)

Let S ⊆ V+ be a set of vertices. Summing the equalities corresponding to
each i ∈ S , we get the time-balance equation over S :

Definition

An Extended Capacity Cut (ECC) over S is any inequality valid for P(S), the
polyhedron given by the convex hull of the 0-1 solutions ofX

at∈δ−(S)

tx t
a −
X

at∈δ+(S)

tx t
a = p(S)

It can be noted that those equations are always satisfied by the solutions

(DWM) (translated to the x t space by
pP

j=1

qtj
a λj − x t

a)

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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HECCs: aggregated variables v t and z t

v t =
P

at∈δ+(S)

x t
a (t = 1, . . . , T ), (9)

z t =
P

at∈δ−(S)

x t
a (t = 1, . . . , T ). (10)

The balance equation over those variables is:

TP
t=1

tv t −
TP

t=1

tz t = p(S) . (11)

For each possible pair of values of T and D = p(S), a polyhedron
P(T , D)

HECCs are facets of P(T , D)

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Pricing subproblem:

Shortest path in the acyclic network G = (V , A)

Takes Θ(|A|)
|A| = Θ(n2T )
T = Ω(npavg/m), where pavg is the average job processing
time

Time consuming:
For m = 1, n = 100 and pavg = 50, |A| is more than 25 million.
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i extreme degeneracy, in fact, when m = 1 it can happen that
any optimal basis has just one variable with a positive value

ii extreme variable symmetry, in the sense that there is usually
many alternative solutions with the same cost

iii an expensive pricing with complexity Ω(n3pavg/m), where
pavg is the average job processing time.
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Lagrangean subproblem:

L(π) = Min
∑

at∈A

c̄t
ax

t
a +

r∑
l=0

blπl (12a)

S.t.
∑
p∈P

qtp
a λp − x t

a = 0 (∀ at ∈ A), (12b)

∑
(0,j)0∈A

x0
0j = m (12c)

λp ≥ 0 (∀ p ∈ P), (12d)

x t
a ∈ Z+ (∀ at ∈ A). (12e)

For each possible π, an optimal solution can be constructed
by setting λp∗ = m - p∗: path of minimum reduced cost,
all other λ variables are set to zero,
the x variables are set in order to satisfy (12b).

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Let L(π, a, t) be the solution of the Lagrangean problem with
the addtional constraint x t

a ≥ 1

at can be eliminated if L(π, a, t) ≥ ZINC - ZINC best known
solution

L(π, a, t) can be computed by obtaining the shortest path
labels forward and backward, and finally adding at reduced
cost to its extremeties’ labels

Amounts to have a pricing 3 times slower

This fixing procedure performed extremely well.
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Stabilization

Presented by Eduardo Uchoa yesterday

Convex combination of Lagrangean dual and DWM’s current
simplex multipliers

One parameter

Misprice

Either dual or primal improvement: exponential convergence

Hot start with the Volume algorithm
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Branch-cut-and-price (robust)

Primal heuristics

Root bounds are strong

Branching on original variables x t
a

Switch to Branch-and-cut when the number x t
a is small

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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Instances for 1||
∑

wjTj

Experiments taken on the set of 375 instances of the OR
Library

Generated by Potts and Wassenhove (1985) and contains 125
instances for each n ∈ {40, 50, 100}.

Same set used by Pan and Shi (2007) and Bigras, Gamache
and Savard (2008)

Instances for P||
∑

wjTj

We derived 100 new instances from those in the OR-Library

For m ∈ {2, 4}, n{40, 50}

We pick the first 1||
∑

wjTj instance in each group (the one
ending in 1 or 6)
Divided each due date dj by m (and rounded down)
Processing times pj and weights wj were kept unchanged

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation
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All our experiments were performed in a notebook with processor
Intel Core Duo (but using a single core) with a clock of 1.66GHz
and 2GB of RAM. The linear program solver was CPLEX 11
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Table: Comparison of the complete BCP algorithm with the best
algorithm by Pan and Shi

n Alg. Avg T(s) Max T(s) Avg. Nd Max Nd Root Gap %

40 PS 69.0 235 141 293 0.68
BCP 12.1 43.6 1 1 0

50 PS 142.8 232 416 5623 0.74
BCP 28.1 123.8 1 1 0

100 PS 1811 32400 18877 > 909844 0.52
BCP 648.5 8508 2.03 42 0.0013
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Table: Detailed results of the complete BCP algorithm over a sample of
25 OR-Library instances with n = 100.

Volume 1st.LP Remain Root
Inst LB Iter Time R.Arcs LB Iter Time R.Arcs LB CutR Time R.Arcs
16 407703 160 279.9 0 − − − − − − −
21 898925 125 212.7 0 − − − − − − −
26 8 1 69.4 0 − − − − − − −
31 24202 20 90.2 0 − − − − − − −
36 108293 93 209.3 0 − − − − − − −
41 462117 401 922.7 13093 462123 227 120.1 10596 462324 1 24.3
46 829771 340 498.0 1583 829773 115 67.5 1375 829828 1 14.6
51 − − − − − − − − − − −
56 9046 20 76.6 0 − − − − − − −
61 86793 227 480.4 0 − − − − − − −
66 243637 555 1164.7 33525 243644 382 119.3 30002 243822 9 1088.1
71 640799 351 735.1 1178 640802 113 103.2 775 640816 1 16.0
76 − − − − − − − − − − −
81 1400 30 80.2 0 − − − − − − −
86 66850 186 463.5 0 − − − − − − −
91 248284 401 1027.7 77260 248293 428 152.6 64425 248699 4 3089.8
96 495358 376 918.7 18853 495362 275 104.7 15994 495516 2 50.0

101 − − − − − − − − − − −
106 − − − − − − − − − − −
111 158962 454 1554.2 29457 158968 337 143.6 25652 159123 2 1369.2
116 370435 445 1288.2 40265 370451 354 176.4 34754 370614 2 1250.3
121 471166 392 957.4 4024 471175 235 144.2 2626 471214 1 15.6
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Table: Comparison of different bounding methods for multi-machine
instances.

Time indexed Arc-Time Arc-Time + Cuts
n m Av Gap % M Gap% T(s) Av Gap % M Gap% T(s) Av Gap % M Gap% T(s)

40 2 1.533 21.016 85.6 1.243 20.840 32.2 0.053 0.853 295.9
4 0.544 4.787 32.2 0.406 3.390 14.1 0.105 0.841 63.9

50 2 0.535 4.074 182.2 0.487 4.074 88.3 0.078 1.051 2298.7
4 0.529 5.614 79.5 0.489 5.614 36.8 0.266 5.088 262.5

Column Generation 2008 - Pessoa, Uchoa, Poggi, Rodrigues The Scheduling Problem: Column Generation



Table: Detailed results of the complete BCP algorithm over the instances
with m = 2 and n = 40.

1st.LP Remaining Root Node Total
Inst LB Iter Time R.Arcs LB CutR Time R.Arcs Nd Time Opt

1 584 89 18.0 156948 606 7 325.4 0 1 343.4 606
6 3875 141 25.5 82838 3886 3 119.6 0 1 145.1 3886

11 9592 189 34.5 66999 9617 2 94.6 0 1 129.1 9617
16 38279 292 45.2 59225 38351 2 515.8 59225 3 561.0 38356
21 41048 384 37.1 0 − − − − 1 37.1 41048
26 87 48 12.7 0 − − − − 1 12.7 87
31 3758 172 34.0 106263 3812 5 452.0 0 1 486.0 3812
36 10662 303 44.4 52812 10700 2 1113.6 52812 5 1193.6 10713
41 30802 387 46.4 0 − − − − 1 46.4 30802
46 34146 430 29.8 0 − − − − 1 29.8 34146
51 − − − − − − − − − 0 0
56 1272 80 16.5 107098 1279 2 72.3 0 1 88.8 1279
61 11311 269 45.3 72238 11390 2 1754.2 72238 327 9097.3 11488
66 35130 323 51.9 75499 35196 2 1503.6 75499 196 6451.1 35279
71 47935 423 42.9 42430 47952 2 19.5 0 1 62.4 47952
76 − − − − − − − − − 0 0
81 452 150 20.6 71423 571 2 947.2 0 1 967.8 571
86 5996 302 40.4 47829 6041 2 253.5 47829 6 298.0 6048
91 26075 388 56.6 0 − − − − 1 56.6 26075
96 66110 358 50.9 46481 66116 2 2.9 0 1 53.8 66116

101 − − − − − − − − − 0 0
106 − − − − − − − − − 0 0
111 17898 292 50.0 51884 17936 2 46.5 0 1 96.5 17936
116 25786 317 50.4 54574 25870 2 173.7 0 1 224.1 25870
121 64507 390 50.9 48152 64516 2 3.0 0 1 53.9 64516
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Comments

At the end of this first column generation step, besides having
a bound close to the optimal, the number of non-fixed
variables is usually quite small. Switching to branch-and-cut
was an alternative

In almost all 1||
∑

wjTj benchmark instances from the
OR-Library, with n ∈ {40, 50, 100}, we found that the duality
gaps were reduced to zero still in the root node.

The same algorithm was also tested on the P||
∑

wjTj , a
harder problem. We do not know any paper claiming optimal
solutions on instances of significant size.

Our branch-cut-and-price could solve instances derived from
those in the OR-Library, with m ∈ {2, 4} and n ∈ {40, 50},
consistently. However, the solution of several such
multi-machine instances did required a significant amount of
branching.
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Thank you!

Merci Guy, Jacques and Marco !
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