A Branch-and-Price Method for an Inventory Routing Problem in the LNG Business

Marielle Christiansena
Guy Desaulniersb,c, Jacques Desrosiersb,d, Roar Grønhauga

18. June 2008

aNorwegian University of Science and Technology, bGERAD, cEcole Polytechnique de Montreal, dHEC Montreal
Agenda

- The LNG Inventory Routing Problem (LNG-IRP)
- Column generation
 - Decomposition
 - The master problem
 - The subproblems
 - Branch-and-price
- Computational results
- Concluding remarks
The LNG-IRP

- Maximize supply chain profit – 2-3 months planning horizon
- Decide LNG production and sales levels on day to day basis
- Optimal ship routes and schedules with corresponding optimal unloading quantities
 - The ship is fully loaded when it sails from a pick-up port
 - A ship can visit several consecutive delivery ports unloading a number of cargo tanks before returning to a pick-up port
Inventory management

Liquefaction plant i

- Inventory balance
 - $S_i \leq \text{inventory } (s_{it}) \leq \bar{S}_i$
 - $Y_{it} \leq \text{production } (y_{it}) \leq \bar{Y}_{it}$

Berth constraints

Regasification terminal i

- Inventory balance
 - $S_i \leq \text{inventory } (s_{it}) \leq \bar{S}_i$
 - $Y_{it} \leq \text{sales } (y_{it}) \leq \bar{Y}_{it}$

Berth constraints
LNG Ships

- Heterogeneous fleet
- Each ship: 4-6 cargo tanks
- LNG transported at boiling state (-162°C)
 - Boil-off from each cargo tank (Fixed % of tank capacity per day)
 - Used as fuel for the ship
 - Some LNG needed in tank to keep it cool
- Each tank should be unloaded once before refilling
 - Ships’ cargo tanks should be as close as possible to full or empty to avoid sloshing
 - Need to leave just enough cargo in tanks to cover the boil-off for the rest of the trip to a pickup port
Example with P-D-D-P and Boil-off

The unloading quantity at node j cannot be decided before the ship returns to a pick-up port. Assume the pick-up port is l_2.

Unloading quantity of a tank = $\text{Tank capacity} \cdot (1 - B) \cdot (T_{l_2} - T_i)$
Ship paths

- Geographical route: P1 → D2 → D1 → P2 → D1 → P2 → D2
- Schedule: T1, T2, T3, T4, T5, T6, T7
- Quantity: Q1, Q2, Q3, Q4, Q5, Q6, Q7
Inventory management and routing

Constrained inventory and prod. capacity
- LNG production volume
- Ship arrival time
- Loading quantity
- Berth capacity (number of ships)

Sufficient amount of LNG available
- LNG sale
- Ship arrival time
- Unloading quantity
- Berth capacity (number of ships)

Liq. plant
- LNG

Rengas. terminal
- LNG

Ships (capacity, cost structure)
- Routing
- Arrival time
- # of waiting days outside port
- Loading/unloading quantity
- Boil-off
Decomposition for Col. Gen.

• Master Problem
 – Sales and production at port i, y_{it}
 – Inventory management at port i, s_{it}
 – Port capacity, N_i^{CAP}

• Subproblem for each ship v
 – Ship routing and scheduling, $X_{jvtr} \lambda_{vr}$
 – Ship inventory management
 • Number of tanks unloaded at the delivery port, $L_{ivtr} \lambda_{vr}$
 • Volume loaded/unloaded at the ports including boil-off, $Q_{ivtr} \lambda_{vr}$
Master Problem

\[
\begin{align*}
\text{max } & \sum_{i \in N_D, t \in T} R_{EVi}, y_{it} - \sum_{i \in N, t \in T} C_{OSTi}, y_{it} - \sum_{v \in V, r \in R_v} C_{vr}, \lambda_{vr}, \\
& s_{it} - s_{i(t-1)} + I_i y_{it} - \sum_{v \in V, r \in R_v} I_i O_{i vtr}, \lambda_{vr} = 0, \quad \forall i \in N, t \in T, \\
& \sum_{v \in V, r \in R_v} Z_{ivtr}, \lambda_{vr} \leq N_i^{CAP}, \quad \forall i \in N, t \in T, \\
& \sum_{r \in R_v} \lambda_{vr} = 1, \quad \forall v \in V, \\
& S_i \leq s_{it} \leq S_i, \quad \forall i \in N, t \in T, \\
& Y_{it} \leq y_{it} \leq Y_{it}, \quad \forall i \in N, t \in T, \\
L_{ivtr}, \lambda_{vr} \in \{0,1,\ldots,W_v^{MX}\}, \quad \forall i \in N^D, v \in V, t \in T, \\
\sum_{r \in R_v} X_{ijvtr}, \lambda_{vr} \in \{0,1\}, \quad \forall i \in N, j \in N, v \in V, t \in T, \\
\lambda_{vr} \geq 0, \quad \forall v \in V, r \in R_v.
\end{align*}
\]
Valid ineq. - aggregated berth constr.

- By use of problem characteristics (inventory limits, production and sale limits, berth constraints, ship capacities, shortest round trip for a ship), we can calculate the upper and lower limits on the number of visits to a port for all time intervals.
The Subproblems (1:2)

- Heterogeneous fleet \rightarrow One subproblem for each ship
- Reduced cost for a ship route variable

\[
\text{Max } \bar{C}_{vr} = -C_{vr} - \sum_{i \in N} \sum_{t \in T} (Z_{ivtr} \beta_{it} - I_i Q_{ivtr} \alpha_{it}) - \theta_v.
\]

- Longest path subproblems with side constraints caused by unloading restrictions in number of tanks and boil-off
The Subproblems (2:2)

- A node: Feasible combination of time and port
 - Unloading in number of cargo tanks at delivery ports

- The boil-off complicates the problem
 - Do not know the exact amount of cargo unloaded at the delivery ports before the ships return to a pick-up port
 - DP where partial paths can only be compared in pick-up nodes
Accelerating strategies in col. gen.

- Greedy Heuristic for solving the subproblems
 - Assume full unloading and does not consider boil-off
 - Post calculate boil-off
 - Topological sorted acyclic network without any complicating side constraints
 - When the greedy heuristic stops generating improving columns, switch to the exact DP algorithm

- Remove all berth constraints and add violated once during B&P

- Add several columns between each call to RMP
 - Several runs of the greedy heuristic
 - Manipulate the cost between each run to give incentive to find columns which traverse different arcs
Branch-and-Price

Depth-first B&B strategy with backtracking for the column generation

Four branching strategies
1. Branch on berth constraints in RMP (and aggregated berth constraints – valid inequalities)
2. Branch on the sum of all ships sailing from a specific port in a given time period (nodes in the subproblem)
3. Branch on the arcs in the subproblem, \(\sum_{r \in R_v} X_{ijvr} \lambda_{vr} \in \{0,1\} \)
4. Branch on deliveries (tanks), \(L_{ivtr} \lambda_{vr} \in \{0,1,\ldots,W_v^{MX}\} \)
Computational Results – based on real world planning problems

<table>
<thead>
<tr>
<th>Id.</th>
<th>s/p/t</th>
<th>Arcs</th>
<th>Path flow</th>
<th>B-P</th>
<th>#MIPsol/BB-nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.MIP/Total (s)</td>
<td>Gap</td>
<td>1.MIP/Total (s)</td>
</tr>
<tr>
<td>1</td>
<td>2/5/30</td>
<td>257</td>
<td>0/0</td>
<td>0</td>
<td>0/0</td>
</tr>
<tr>
<td>2</td>
<td>2/5/45</td>
<td>647</td>
<td>4/973</td>
<td>0</td>
<td>0/9</td>
</tr>
<tr>
<td>3</td>
<td>2/5/60</td>
<td>1144</td>
<td>70/36000</td>
<td>27</td>
<td>2/338</td>
</tr>
<tr>
<td>4</td>
<td>3/4/30</td>
<td>429</td>
<td>0/14</td>
<td>0</td>
<td>0/10</td>
</tr>
<tr>
<td>5</td>
<td>3/4/45</td>
<td>1213</td>
<td>0/13625</td>
<td>0</td>
<td>65/1219</td>
</tr>
<tr>
<td>6</td>
<td>3/4/60</td>
<td>2110</td>
<td>223/36000</td>
<td>28</td>
<td>114/36000</td>
</tr>
<tr>
<td>7</td>
<td>5/6/30</td>
<td>859</td>
<td>0/39</td>
<td>0</td>
<td>1/14</td>
</tr>
<tr>
<td>8</td>
<td>5/6/45</td>
<td>2815</td>
<td>13/36000</td>
<td>16</td>
<td>2348/36000</td>
</tr>
<tr>
<td>9</td>
<td>5/6/60</td>
<td>5613</td>
<td>8724/36000</td>
<td>43</td>
<td>8454/36000</td>
</tr>
</tbody>
</table>
More results solved by B&P

<table>
<thead>
<tr>
<th>Id.</th>
<th>s/p/t</th>
<th>Arcs</th>
<th>1.MIP Sec.</th>
<th>Total Sec.</th>
<th># MIP Sol.</th>
<th>BB Node (1000)</th>
<th>RMP Sec.</th>
<th>gSP / eSP Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/4/45</td>
<td>1213</td>
<td>65</td>
<td>1219</td>
<td>32</td>
<td>43.4</td>
<td>1010</td>
<td>11 / 169</td>
</tr>
<tr>
<td>10</td>
<td>2/3/75</td>
<td>2744</td>
<td>4</td>
<td>26527</td>
<td>29</td>
<td>305.2</td>
<td>18333</td>
<td>81 / 7601</td>
</tr>
<tr>
<td>11</td>
<td>2/4/75</td>
<td>4834</td>
<td>1877</td>
<td>19707</td>
<td>13</td>
<td>76.5</td>
<td>10394</td>
<td>135 / 8980</td>
</tr>
<tr>
<td>12</td>
<td>2/5/75</td>
<td>1681</td>
<td>2</td>
<td>2889</td>
<td>12</td>
<td>30.2</td>
<td>2437</td>
<td>24 / 384</td>
</tr>
<tr>
<td>13</td>
<td>3/4/75</td>
<td>3010</td>
<td>10826</td>
<td>36000</td>
<td>14</td>
<td>255.6</td>
<td>29793</td>
<td>323 / 5273</td>
</tr>
</tbody>
</table>
Concluding Remarks

- New type of problem
 - Extension of the maritime inventory routing problem

- Both master problem and subproblems are complicated

- Real sized instances are solved to optimality by col. gen.

- Future research
 - Improve B&P by reducing the size of the search tree and the time spent in the master problem
 - Different decomposition
 - Developing more valid inequalities
 - Developing solution methods for extended LNG-IRP’s
A Branch-and-Price Method for an Inventory Routing Problem in the LNG Business

Marielle Christiansen⁹
Guy Desaulniers⁷,⁸, Jacques Desrosiers⁷,⁹, Roar Grønhaug⁹

18. June 2008

⁹Norwegian University of Science and Technology, ⁷GERAD,
⁸Ecole Polytechnique de Montreal, ⁹HEC Montreal