Annual holiday planning for the crew of a public transport company

Knut Haase

Technische Universität Dresden, Fakultät Verkehrswissenschaften "Friedrich List", Lehrstuhl für BWL, insb. Verkehrsbetriebslehre und Logistik

Aussois, Column Generation Workshop, June 17, 2008

Professur für BWL, insbesondere Verkehrsbetriebslehre und Logistik

Background of the Project

Problem

Description Social fairness Holiday-Point-System (Application for leave)

Solution Approach

Master problem Subproblem Preliminary Numerical Results

Future Work

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🖌 🛪 프 🕨

Background of the Project

- Innovation competition in 2007 in East-Germany by the ministry of traffic, construction and urban development (BMVBS): 'Economy-meets-Sciences'
- From 157 submitted projects 11 have been selected (award winners)
- Transferring methods from the transportation science to transportation companies taking "Socially acceptable holiday planning" and "Customer oriented line planning" as examples
- Supported by the BMVBS (Ref.-No.: 03WWSN037)

∃ ⊳

Scheduling system (under progress)

э

< ∃→

Background of the Project Problem Solution Approach Future Work
Project
Description
Social fairness
Holiday-Point-System (Application for leave)

Problem description

- City of Dresden: 836 drivers (tram, bus)
- Drivers are qualified for trams or busses or for both
- Some drivers are additionally qualified for operational management tasks
- Connection between pairs of drivers (e.g. married couples)
 - Holiday together
 - Holiday not together
- Holiday entitlement (number of leave days in planning horizon)
- Duty roster (given for the planning horizon) \Rightarrow Staff supply
- \blacktriangleright For each day the number of needed drivers is known \Rightarrow Staff demand
 - \Rightarrow For each day maximum number of drivers allowed to be on holiday

∃ >

Description Social fairness Holiday-Point-System (Application for leave)

< ∃⇒

< D > < P >

э

Problem

Social fairness

- Family situation (children required to attend school)
- Holiday in last year (leave day at christmas)
- Bonus points for splitted duties

Description Social fairness Holiday-Point-System (Application for leave)

< 🗇 🕨

프 > 프

Holiday-Point-System

External pricing system

Description Social fairness Holiday-Point-System (Application for leave)

Holiday-Point-System

External pricing system

Description Social fairness Holiday-Point-System (Application for leave)

Holiday-Point-System

External pricing system

Description Social fairness Holiday-Point-System (Application for leave)

Holiday-Point-System

External pricing system

Description Social fairness Holiday-Point-System (Application for leave)

Holiday-Point-System

External pricing system

aim of the system: conflict avoidance

discount for flexibility in duration or range

Description Social fairness Holiday-Point-System (Application for leave)

Holiday-Point-System

External pricing system

- discount for flexibility in duration or range
- updated every year depending on utilization, granted holidays and so on

Master problem Subproblem Preliminary Numerical Results

Solution Approach

Implementation

Algebraic Modelling Language: GAMS/Cplex

Upper Bound Column Generation

Lower Bound

Integer solution based on the generated holiday schedules (Cplex).

< ∃ >

Master problem Subproblem Preliminary Numerical Results

Master problem

Sets

- G groups of drivers; index: g
- T days; index: t
- H annual holiday schedules; index: h

Parameters

- $c_{gh} \qquad$ nonnegative, normalized and logarithmic weighted utility of annual holiday schedule h of group g
- v_{qtgh} number of drivers with qualification q on leave on day t according to annual holiday schedule h
- b_{qt} maximum allowable number of drivers with qualification q on leave on day t

Variables

 $y_{gh} = 1$, if holiday schedule *h* of group *g* is selected (0, otherwise)

4 3 b

< 🗇 🕨

Master problem Subproblem Preliminary Numerical Results

Model

Maximizing the logarithmic weighted utility

$$\mathsf{max}\, F = \sum_{g,h} c_{gh} y_{gh}$$

Selecting for each group one or none annual holiday schedule

$$\sum_{h} y_{gh} \le 1 \qquad g \qquad (\sigma_g)$$

Maximum number of drivers on leave

$$\sum_{g,h} v_{qtgh} y_{gh} \le b_{qt} \qquad q,t \qquad (\pi_{qt})$$

Domains of variables

$$y_{gh} \in \{0,1\}$$
 g,h

프 🖌 🛪 프 🕨

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Master problem Subproblem Preliminary Numerical Results

Subproblem

Sets

- D_g drivers of holiday group g
- A_d application for leaves of driver d; index: a
- J pairwise application for leaves of one driver or of two drivers which have to be approved together (or not); quadrupels: $(a, d, a', d') \in J$
- N pairwise application for leaves of one driver or of two drivers which cannot be approved together; quadrupels: $(a, d, a', d') \in N$
- S stairs of piecewise linear approximation of a logarithmic function; index: s

Example

Drivers *d* and \hat{d} are a married couple which want to have holiday together. Let *a* and *a'* the application for leaves of driver *d* where *a'* is an alternative to *a*. Respectively \hat{a} and \hat{a}' are the application for leaves of driver \hat{d} .

$$(a, d, a', d), \ (\hat{a}, \hat{d}, \hat{a}', \hat{d}) \in N$$

 $(a, d, \hat{a}, \hat{d}), \ (a', d, \hat{a}', \hat{d}) \in J$

Master problem Subproblem Preliminary Numerical Results

Subproblem

Parameters

- u_{ad} utility of driver d if application for leave a is approved
- $\tilde{\pi}_{ad}$ _ opportunity cost of application for leave a of driver d derived from the dual variables π_{qt}
- σ_g dual variable related to the constraint 'selecting at most one holiday schedule for each group'

Example

Driver *d* has qualification *q*. According to his application for leave *a* he has applied for holiday from period t = 4 to period t = 10.

$$\tilde{\pi}_{ad} = \sum_{t=4}^{10} \pi_{qt}$$

< 🗇 🕨

∃ >

Master problem Subproblem Preliminary Numerical Results

Subproblem

Variables

- $X_{ad} = 1$, if application for leave *a* of driver *d* is approved (0, otherwise)
- U_{ds} part worth utility of driver d in the stair s; $U_{ds} \in [0, 1/ | S |]$

Remark

The maximum total utility a driver can achieved is 1.

< ∃⇒

< 🗇 🕨

Master problem Subproblem Preliminary Numerical Results

Subproblem

Maximizing reduced cost of holiday group

$$\max \bar{c}_g = -\sigma_g + \sum_{d \in D_g} \sum_{s=1}^{|S|} (\ln(1+s) - \ln(s)) U_{ds} - \sum_{a,d} \pi_{ad} X_{ad}$$

Utility of driver

$$\sum_{a} u_{ad} X_{ad} \geq \sum_{s=1}^{|S|} U_{ds} \quad d \in D_g$$

Maximum number of days of holiday of driver

$$\sum_{a,d} h_{ad} X_{ad} \le E_d \qquad d$$

イロト イポト イヨト イヨト

Background of the Project Problem Solution Approach Future Work Preliminary Numerical Results

Jointly on holiday

$$X_{ad} - X_{a'd'} = 0 \qquad (a, d, a', d') \in J$$

Not together on holiday

$$X_{ad} + X_{a'd'} \leq 1$$
 $(a, d, a', d') \in N$

Domains of variables

$$egin{aligned} X_{ad} \in \{0,1\} & a,d \ U_{ds} \in [0,rac{1}{\mid S\mid}] & d,s \end{aligned}$$

イロト イポト イヨト イヨト

Master problem Subproblem Preliminary Numerical Results

Preliminary Numerical Results

Randomly generated instance

- planning horizon 400 days (overlapping with next years)
- 800 drivers
- 400 single driver groups
- 200 groups with 2 drivers
- 2 types of qualifications
- Applications for leaves of drivers
 - one application with a duration $\in \{9, 10, ..., 21\}$ days (relative high probability that holiday will be applied for the middle of the year)
 - ▶ duration of the other applications: \in {3,4,...,8} days
- holiday entitlement: 40 days (including off days according to unknown duty rosters)
- ▶ | *S* |= 10

< ∃ >

Master problem Subproblem Preliminary Numerical Results

Preliminary Numerical Results

Upper	bound	i: 17	7.13	(be	st p	ossi	ble	of f	irst	ite	rati	on (2% c	or 0.	1 abso	lute))
Lower	bound	1: 170	0.26	(be	st p	ossi	ble:	173	.33)							
Computation time: 7 min																
Iterat	ion	Ofv 1	last	er i												
	1 0.00				175.06											
	2	14	C		148	.71										
	3 163.65			5		75	.76									
	4 169.56			6	11.71											
	:	:					:									
	8 173.02			2	1.08											
	9 173.23			3	0.63											
driver	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
								:								
7	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	
								:								
11	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	
							:									

・ロト ・個ト ・モト ・モト

æ

Future Work

Using GAMS enhancement regarding column generation

・ロト ・個ト ・モト ・モト

Ξ 9 Q (P

GAMS enhancement

・ 同 ト ・ ヨ ト ・ ヨ ト

GAMS enhancement

calls master & branching.gms

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

∢ ≣⇒

Future Work

Using GAMS enhancement regarding column generation

₹ 9Q@

イロト イポト イヨト イヨト

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)

프 🖌 🛪 프 🕨

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)
- ▶ Rounding up heuristic with column generation after each rounding ⇒ saving computation time and obtaining improved solution (?)

< 🗇 🕨

< ∃ >

э.

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)
- ▶ Rounding up heuristic with column generation after each rounding ⇒ saving computation time and obtaining improved solution (?)
- Using real data instances

< 🗇 🕨

< 3 >

э.

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)
- ▶ Rounding up heuristic with column generation after each rounding ⇒ saving computation time and obtaining improved solution (?)
- Using real data instances
- Integration of the solution approach in the holiday planner of id systeme

< ∃ >

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)
- ▶ Rounding up heuristic with column generation after each rounding ⇒ saving computation time and obtaining improved solution (?)
- Using real data instances
- Integration of the solution approach in the holiday planner of id systeme
- Making a lot of money!?

< ∃ >

3

Future Work

- Using GAMS enhancement regarding column generation
- Comparison with a compact formulation (time and quality)
- ▶ Rounding up heuristic with column generation after each rounding ⇒ saving computation time and obtaining improved solution (?)
- Using real data instances
- Integration of the solution approach in the holiday planner of id systeme
- Making a lot of money!?

Thank you very much for your attention!

- E - N