

A Column Generation Approach for the post Enrolment Course Timetabling Problem of the ITC

John van den Broek and Cor Hurkens

June 18 2008

Input

- \bullet set E of events.
- set T of timeslots (5 days of 9 hours each).
- set R of rooms with $\forall r \in R$:
 - C_r = seating capacity of room r.
 - $-F_r$ = set of features satisfied by room r.
- set S of students with $\forall s \in S$:
 - set E_s of events that student s is attending.

Input

 $\forall e \in E:$

- F_e = set of features required by event e.
- N_e = number of students attending event e.
- T_e = set of available timeslots for event e.
- R_e = set of allowed rooms for event e.
 - $-F_e \subseteq F_r$
 - $-N_e \le C_r$

Precedence requirements:

 $\forall e, f \in E : p_{ef} = 1$ if event e has to be scheduled before event f, zero otherwise.

Hard Constraints:

- I. No student can attend more than one event at the same time.
- 2. An event e can only be assigned to a room $r \in R_e$.
- 3. Only one event is assigned to each room in any timeslot.
- 4. An event *e* can only be assigned to a time slot $t \in T_e$.
- 5. Events have to be scheduled in the prescribed order in the week.

Soft Constraints:

I. Events/students should not be assigned in the last timeslot of a day.

2. Students should not have to attend three or more events in successive timeslots on the same day.

3. Students should not be required to attend only one event a day.

How to compare solutions?

Valid timetable \rightarrow no hard constraint violations, unplaced events allowed. Feasible timetable \rightarrow no hard constraint violations and all events in timetable

The quality of solutions is evaluated with two measures:

- I. Distance to feasibility (dtf)
- 2. Total number of violated soft constraints.

Two events *collide* if they have:

- a student in common,
- only one possible room that is the same,
- a precedence relation between the two events

 c_e = the number of events colliding with event e.

TU/e technische universiteit eindhoven Slot-schedule

A *slot-schedule* k has a timeslot t_k and a set E_k of events.

A slot-schedule is feasible if:

- $\forall e, f \in E_k : e, f \text{ are not colliding.}$
- $\forall e \in E_k : t_k \in T_e.$
- $\forall e \in E_k$: event e is assigned to a room $r \in R_e$.

- At most one event is assigned to each room.

$$a_{ke} := \begin{cases} 1 & \text{if } e \in E_k \\ 0 & \text{otherwise} \end{cases}$$

Room Assignment Generator (RAG)

Input: a set E^p of events and corresponding weights $w_e \in E^p$.

Goal: Determine feasible room assignments with the sum of the weights of the assigned events maximized.

Constraints: Events are assigned to allowed rooms. Only one event is assigned to each room No two events are colliding.

Output: a set of feasible room assignments for events in E^p .

Heuristic for RAG

Sort events in: 1. Decreasing order of w_e .

- 2. Increasing order of c_e .
- 3. Increasing order of $|R_e|$.

To generate the p - th room assignment:

- 1. Select event e on position p of the sorted list of events.
- 2. If $\exists r \in R_e$ that has no event assigned, then assign e to room r and go to 5.
- 3. Try to find an augmenting path.
- 4. If augmenting path found, then assign all events to the rooms found in the matching. Otherwise event e can not be assigned.
- 5. If there are rooms and events left, p := p+1, go back to 1.

Master Problem

$$\min\sum_{e\in E} y_e + \sum_{e,f\in E|p_{ef}=1} z_{ef}$$

$$y_e + \sum_{k \in K} a_{ke} x_k \ge 1 \qquad \forall e \in E$$

$$\sum_{k \in K \mid t_k = t} x_k \le 1 \qquad \forall t \in T$$
(1)
(2)

$$z_{ef} + \sum_{k \in K} t_k (a_{kf} - a_{ke}) x_k \ge 1 \qquad \forall e, f \in E | p_{ef} = 1$$
 (3)

- $\begin{array}{ll}
 x_k \ge 0 & \forall k \in K \\
 y_e \ge 0 & \forall e \in E
 \end{array} \tag{4}$
- $y_e \ge 0 \qquad \forall e \in E \tag{5}$ $z_{ef} \ge 0 \qquad \forall e, f \in E | p_{ef} = 1 \tag{6}$

The Pricing Problem

Weighting factor
$$w_e, \forall e \in E^p$$
 is equal to:
 $w_e := \begin{cases} (\alpha_e - \gamma_{ef}) & \exists f \in E | p_{ef} = 1 \\ (\alpha_e + \gamma_{fe}) & \exists f \in E | p_{fe} = 1 \\ \alpha_e & \not\exists f \in E | p_{ef} = 1 \end{cases}$

Then the value of the generated column (= c^k)is:

$$c^k = \sum_{e \in E^p} w_e y'_e + \beta_t$$

The Column Generation Procedure

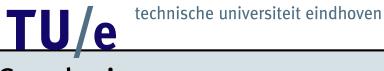
- ı. Initialize period p and the set of columns and set t = 0.
- 2. Solve RMP \rightarrow , $\alpha_e, \beta_t, \gamma_{ef}$ (shadowprices) and obj^{rmp} . If $obj^{rmp} \leq 0$, then quit.
- 3. Generate columns for timeslots $t, \ldots, t + p 1$.
- 4. Add k if c^k is larger than 0.85 times the average reduced costs over the last 40 added slot-schedules.
- 5. t = t + p(mod|T|)
- 6. If no new slot-schedules found for a number of periods, then quit.
- 7. Go to step 2.

Heuristic based on LP-solution

- I. Initialize $T_c = T \setminus \{8, 17, 26, 35, 44\}$ and $E_c = E$.
- 2. Apply column generation procedure $\rightarrow K$.
- 3. Solve MP as IP, break after five seconds if no optimal solution found.
- 4. $\forall k \in K, obj_k = \sum_{e \in E} a_{ke}c_e$ penalties.
- 5. Fix slot-schedule k' with maximum obj_k .

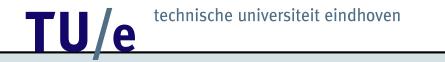
6. $T_c = T_c \setminus t_{k'}$, $E_c = E_c \setminus E_{k'}$ and delete all columns that are infeasible.

7. If $|T_c| > 0$ and $|E_c| > 0$, then go to step 2.


8. If $|E_c| > 0$, then solve an IP to assign as much as possible of the events in E_c to $t \in \{8, 17, 26, 35, 44\}$.

Computational Results

T	E	R	F	S	c + (c)	dtf	2 o in row	T o o dov	eod e	C C
		n			c.t.(s)	uu	3 e in row	1 e a day		s.c.
I	400	IO	IO	500	316	0	1882	34	508	2424
2	400	IO	10	500	324	0	1755	38	529	2322
3	200	20	10	1000	55	0	850	776	0	1626
4	200	20	IO	1000	57	0	884	700	0	1584
5	400	20	20	300	209	0	1026	24	213	1263
6	400	20	20	300	218	0	IIII	26	232	1369
7	200	20	20	500	29	0	387	321	0	708
8	200	20	20	500	44	0	428	330	0	758
9	400	IO	20	500	328	0	1928	33	735	2696
IO	400	IO	20	500	331	0	1621	38	730	2389
II	200	IO	10	1000	43	0	939	713	0	1652
12	200	IO	IO	1000	64	0	960	552	306	1818
13	400	20	10	300	200	0	1182	31	223	1436
14	400	20	IO	300	215	0	1013	13	249	1275
15	200	IO	20	500	73	0	497	338	108	943
16	200	IO	20	500	40	0	553	340	0	893


Comparison with the best results of the finalists

Ι	dı	S.C.I	d2	S.C.2	d3	s.c.3	d4	s.c.4	d5	s.c. 5	d us	s.c. us
I	0	61	0	571	0	1482	0	1482	0	1861	0	2424
2	0	547	0	993	0	1635	0	1755	39	2174	0	2322
3	0	382	0	164	0	288	0	850	0	272	0	1626
4	0	529	0	310	0	385	0	884	0	425	0	1584
5	0	5	0	5	0	559	0	1026	0	8	0	1263
6	0	0	0	0	0	851	0	IIII	0	28	0	1369
7	0	0	0	6	0	IO	0	387	0	13	0	708
8	0	0	0	0	0	0	0	428	0	6	0	758
9	0	0	0	1560	0	1947	0	1928	162	2733	0	2696
IO	0	0	0	2163	0	1741	0	1621	161	2697	0	2389
II	0	548	0	178	0	240	0	939	0	263	0	1652
12	0	869	0	146	0	475	0	960	0	804	0	1818
13	0	0	0	0	0	675	0	1182	0	285	0	1436
I4	0	0	0	I	0	864	0	1013	0	IIO	0	1275
15	0	379	0	0	0	0	0	497	0	5	0	943
16	0	191	0	2	0	Ι	0	553	0	132	0	893

Conclusions

- The heuristic finds a feasible timetable for all instances.
- The number of violated soft constraints is large in comparison with the 5 finalists.

www.cs.qub.ac.uk/itc2007

Wake UP!