A Dynamic Reduce and Generate Approach for Airline Crew Scheduling

Ivo Nowak
Vitali Gintner

Column Generation
2008, June 17-20
Aussois, France
Agenda

Introduction

Crew Optimization Problems

Solution Methods

Final Remarks
Agenda

Introduction

Crew Optimization Problems

Solution Methods

Final Remarks
OASIS Program (2005-2010)
Optimization Algorithms for Seamless and Integrated Solvers

Planning	Control
Crew Management Process
- Pairing Generation
- Crew Assignment
- Pairing & Roster Maintenance
- Crew Control

Integrated Optimization of the Resource Aircraft and Crew
- Fleet Assignment
- Tail Assignment & Maintenance Planning
- Ops Control

Integrated Recovery of Aircraft and Crew

Operations Management Process
- Planning
- Control
Crew scheduling as part of an airline optimization suite

- Study ongoing
 - Integrated optimization
- Development ongoing
 - Pairing Optimization
 - Roster Optimization
 - Tail Assignment Optimization
 - Aircraft Recovery
- Released
 - Crew Recovery
 - Common xOPT core (~40%)
Agenda

Introduction

Crew Optimization Problems

Solution Methods

Final Remarks
Pairing and Roster Construction as Part of an Airline Planning & Control Process

Processes for Aircraft and Crew Planning & Control

<table>
<thead>
<tr>
<th></th>
<th>Aircraft</th>
<th>Crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network planning</td>
<td>Fleet assignment + maintenance routing</td>
<td>Pairing construction</td>
</tr>
<tr>
<td>Fleet reassignment + adaptation of maintenance routing</td>
<td>Tail assignment</td>
<td>Roster construction and roster maintenance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crew recovery</td>
</tr>
</tbody>
</table>

Aircraft
- Network planning
- Fleet assignment + maintenance routing
- Fleet reassignment + adaptation of maintenance routing
- Tail assignment
- Aircraft recovery

Crew
- Pairing construction
- Roster construction and roster maintenance
- Crew recovery
Problem Description: Pairing Construction

- **Output:** Anonymous lines of work (from base to base)

- **Main constraints:**
 - Legality rules for individual pairings: e.g. max. duty time
 - Distribution between crew bases (+ other bounds on the number of pairings with certain features)

- **Objective:**
 - Minimize cost (transports, hotels, …)
 - Maximize robustness and suitability of pairings for roster construction (next planning step)
Problem Description: Roster Construction

Output: Assignment of pairings to crew members

Main constraints:
- Legality rules for individual rosters: e.g. max. duty time per certain period, distribution of off-days..
- Legality rules for combination of rosters: qualification constraints, don’t fly with, …

Objective:
- Minimize cost (by additional transports, hotels, overtime pay, …)
- Maximize crew satisfaction (fair distribution of unattractive duties, respecting preferences based on maximum fulfillments, …)
Seamless Optimization

- Seamless Pairing and Roster Optimization:
 - Changes in the input data
 - Stable solution which is similar to nominal solution, e.g. few changes of off time
 - Minor changes in the solution strategy
Recovery, Robust and Integrated Optimization

- **Crew and Aircraft Recovery (2008-2009):**
 - Objective: Minimize impact of disruptions
 - Crew recovery is an integration of pairing and rostering
 - Shorter run times (few minutes vs. several hours)

- **Robust Crew and Aircraft Planning (2008-2009):**
 - Objective: minimization of total planning and operational costs and increase of punctuality
 - Cooperation with Konrad Zuse Institute Berlin and University of Paderborn

- **Integrated Optimization (2009 - 2010):**
 - Integrated recovery
 - Integrated planning
Agenda

Introduction

Crew Optimization Problems

Solution Methods

Final Remarks
Scheduling Problem Formulation

- **General scheduling problem:** Assignment of resources to paths through a network

- **Constraints:**
 - **Network** structure
 - **Horizontal constraints** for single paths (e.g. max. duty time for a crew member)
 - **Vertical constraints** for multiple paths (e.g. min. number of crew members with a certain qualification)

- **Common solution approach: Column Generation**
Scheduling Problem Formulation - Pairing Event Network

Nodes:
- Leg (blue)
- Cin/Cout (yellow)

Edges:
- Transport (red)
IP and LP Formulation

Enumeration of all legal paths in the network gives the IP-formulation:

Min \(c(x,s) \)
\[\begin{align*}
Ax &= b+s & (1) \\
x &\in \{0,1\}^n, \ s &\in S
\end{align*} \]

- \(c_i \) is the cost of a path and \((c_i, A_i)\) is called a column
- \((1)\) are partitioning and ‘vertical’ legality constraints
- Replacing \(\{0,1\} \) by \([0,1]\) gives the LP-formulation
- Column generation generates a restricted IP with fewer columns
Reduce-and-Generate Approach for solving large-scale Scheduling Problems

- Using traditional column generation with static problem reduction it is not possible to solve large-scale crew scheduling problems with many transport and flight connections in reasonable time.

- Dynamic reduce-and-generate approach:
 - Successively solving reduced scheduling problems, called sub-problems, with given size.
 - Determination of sub-problems using dynamic reduction of the network and the path pool.
 - Sub-problems can be solved in reasonable time. Hence, good performance if number of main iterations is not too large.
 - Good solution quality if reduced networks contain legal paths with negative reduced costs. Then the final LP/IP objective value is near globally optimal.
 - Convergence if systematic change of restrictions.
Static Problem Reduction (Fixing)

1. Fixations generated from the IP solver based on fractional LP solutions
 - master problem reduction (column and constraint fixations)
 - network reduction (node/arc fixations)

2. Restrictions generated from main algorithm
 - horizontal pruning constraints and limited path search
 - network reduction based on an approximated scheduling solution
 - window restrictions (block-coordinate search)
Dynamic Problem Reduction (Fixing)

Dynamic network reduction (node/arc fixations) in each path generation iteration generated from:

- network preprocessing
- labels computed by solving a relaxed pricing problem
- vertical information from partially rounded LP solutions
- ‘disjunctive’ path generation
- ‘block-coordinate search’
- dynamic transport generation
Reduce-And-Generate Approach

- Network
- Node/Arc Fixations
- Linear Programming Engine
- Dynamic Fixing Engine
- Static Fixing Engine
- Path Pool
- Path Fixations
- Constrained Shortest Path Engine
- Start Heuristic
- Solution Paths
Optimization Engines

- **Constrained Shortest Path Engine**
 - Generates legal paths with negative „reduced costs“, which improve the LP
 - Depth-first search using labels and dynamic arc sorting

- **Linear Programming Engine**
 - Solves the LP for
 a) computing reduced costs (dual solution)
 b) computing a fractional solution (primal solution)
 - Inexact proximal bundle algorithm

- **Fixing Engine**
 - Determines path or network fixations such that the difference of IP and LP objective values is very small
 - Perturbation heuristic based on fractional LP solutions
Solution Strategy

- **Pairing solution strategy:**
 - generating many paths per iteration
 - use of pruning constraints, i.e. in the beginning search for pairings with restrictions, e.g. length, number of transports

- **Roster solution strategy:**
 - generating few paths per iteration, because of long paths and ‘symmetry’
 - ‘simultaneous path generation’
 - ‘sub-problem refinement’ → linear performance

- Dynamic transport generation for all crew optimizers
Results

■ **Pairing Optimization**
 ■ Production quality solutions for various scenarios, covering 4 different airlines
 ■ Largest planning group:
 ■ Fleet of up to >40 aircraft
 ■ ~7500 legs for a planning period of 1 month
 ■ Base balancing in scenarios with multiple homebases (2-6).
 ■ Solution times: 0.5h-4.5h (Intel 3.0GHz)

■ **Roster Optimization**
 ■ Production quality solutions for various scenarios, covering 3 different airlines
 ■ Largest planning group:
 ■ >1000 crew members
 ■ ~5500 positions to be covered in a planning period of 1 month
 ■ Fair assignment + preferential bidding
 ■ Solution times: 0.5h-9.5h (Intel 3.0GHz)
Agenda

Introduction

Crew Optimization Problems

Solution Methods

Final Remarks
Final Remarks

- Dynamic Reduce-and-Generate approach for solving all airline planning and control problems

- Results for large-scale scheduling problems show:
 - linear/quadratic performance regarding problem size
 - quality is often near globally optimal

- The problem structure can differ strongly depending on business requirements

- Potential for algorithmic improvements, e.g. further developments of dynamic reduction, parallelization, …

- Development of optimizers for integrated airline planning and control problems within OASIS program, which will improve the cost and robustness of the solutions

- See R&D web page for references and other information:
 [optimization]
 http://www.lhsystems.com