

Shortest-Path Based Column Generation on Extremely Large Networks with Many Resource Constraints

Faramroze G. Engineer, George L. Nemhauser and Martin W.P. Savelsbergh

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Column Generation, 2008

- RCSPP preliminaries:
 - problem description and
 - standard DP techniques.
- Strengthening of dominance criteria using support structures.
- An arc-based relaxation of RCSPP.
- An iterative relaxation + bounding scheme.
- Preprocessing by aggregation.
- Computational results on networks > 10⁶ nodes, arcs and resource constraints.

Given network $\mathcal{N} = (N, A)$, where :

- n^s and n^t are the source and sink nodes respectively,
- c_e cost of traversing arc e,
- g_e^k non negative integer amount of resource $k \in \{1, ..., K\}$ consumed when traversing arc e, and
- b^k amount of resource k that is available, find P^* s.t.

$$P^* \in \operatorname{argmin} \left\{ c(P) = \sum_{e \in A(P)} c_e : g^k(P) = \sum_{e \in A(P)} g_e^k \le b^k, \forall k \in \{1, \dots, K\} \right\}$$

Solving RCSPP using DP

Georgialnstitute of Technologyy The H. Milton Stewart School of Industrial and Systems Engineering

The DP algorithm

Enumerate possible paths in a tree search while checking for:

- 1. FEASIBILITY, and
- 2. DOMINANCE.

Dominance

- Given feasible paths P_1 and P_2 from source to node n, P_1 dominates P_2 if:
- 1. $c(P_1) \le c(P_2)$, and
- 2. any feasible extension of P_2 to the sink is also feasible for P_1 . Typically recognized if $g^k(P_1) \le g^k(P_2)$ for all k = 1, ..., K.
 - $P_{1} = (n_{0}, n_{1}, n_{5})$ $c(P_{1}) = -2.1 \text{ and } g(P_{1}) = 17$ $P_{2} = (n_{0}, n_{2}, n_{5})$ $c(P_{2}) = -2.0 \text{ and } g(P_{2}) = 19$ $\Rightarrow P_{1} \text{ dominates } P_{2}$

Solving RCSPP using DP

Georgialnstitute of Technologyy The H. Milton Stewart School of Industrial and Systems Engineering

The DP algorithm

Enumerate possible paths in a tree search while checking for:

- 1. FEASIBILITY, and
- 2. DOMINANCE.

Dominance

- Given feasible paths P_1 and P_2 from source to node n, P_1 dominates P_2 if:
- 1. $c(P_1) \le c(P_2)$, and
- 2. any feasible extension of P_2 to the sink is also feasible for P_1 . Typically recognized if $g^k(P_1) \le g^k(P_2)$ for all k = 1, ..., K.
 - $P_{1} = (n_{0}, n_{1}, n_{5})$ $c(P_{1}) = -2.1 \text{ and } g(P_{1}) = 17$ $P_{2} = (n_{0}, n_{2}, n_{5})$ $c(P_{2}) = -2.0 \text{ and } g(P_{2}) = 19$ $\Rightarrow P_{1} \text{ dominates } P_{2}$

Strengthening Dominance Criteria

Georgia Institute of Technology The H. Milton Stewart School of Industrial and Systems Engineering

If $c(P_1) < c(P_2)$ but $g^k(P_1) > g^k(P_2)$, then we cannot say P_1 dominates P_2 .

However, if $g^{k}(P_{1}) + g^{k}(P'_{1}) \leq b^{k}$ for all P'_{1} from *n* to the sink, then we do not need to check dominance with respect to resource *k*.

Strengthening Dominance Criteria

Support of resource **k** P₁ ns п n

If $c(P_1) < c(P_2)$ but $g^k(P_1) > g^k(P_2)$, then we cannot say P_1 dominates P_2 .

However, if $g^{k}(P_{1}) + g^{k}(P'_{1}) \leq b^{k}$ for all P'_{1} from *n* to the sink, then we do not need to check dominance with respect to resource **k**.

Support of resource k

- $N^{k} \subset N$ is a support of resource k if it contains all nodes $n \in N$ for which there exists path **P**₁ from source to node **n** and **P**'₁ from **n** to sink with:
- 1. $g^k(P_1) + g^k(P'_1) > b^k$
- $g^{k}(P_{1}) > 0$, and 2.
- 3. $g^k(P'_1) > 0$.

Strengthened Dominance

Given feasible paths P_1 and P_2 from source to node n, P_1 dominates P_2 whenever:

1. $c(P_1) ≤ c(P_2)$, and

2. $g^{k}(P_{1}) \leq g^{k}(P_{2})$ for all k = 1, ..., K s.t. $n \in N^{k}$.

Support of resource k —

path P	<i>c</i> (<i>P</i>)	g ^k (P)		
(P ₀ , n ₁)	0.0	5		
(P_0, n_2)	-1.5	11		
(<i>P₀,n₁,n₂</i>)	-1.1	9		
(P_0, n_1, n_3)	-1.1	16		
(<i>P₀,n₂,n₃</i>)	-2.6	25		
(P ₀ ,n ₁ ,n ₂ ,n ₃)	-2.2	23		
(P_{0}, n_{1}, n_{4})	-1.0	15		
(P ₀ , n ₂ , n ₄)	-2.5	22		
(P ₀ , n ₁ , n ₂ , n ₄)	-2.1	20		
(P ₀ , n ₁ , n ₃ , n ₄)	-2.6	33		
(P ₀ ,n ₂ ,n ₃ ,n ₄)	-4.1	42 🗙		
(P ₀ , n ₁ , n ₂ , n ₃ , n ₄)	-3.7	40		
(P_{0}, n_{1}, n_{5})	-1.0	15		
(P ₀ , n ₂ , n ₅)	-2.5	26		
(<i>P₀,n₁,n₂,n₅</i>)	-2.1	24		
(<i>P₀, n₁, n₆</i>)	-3.0	16		
(<i>P₀,n₂,n₆</i>)	-4.5	22		
(<i>P₀,n₁,n₂,n₆</i>)	-4.1	20		
(<i>P₀,n₁,n₅,n₆</i>)	-5.0	31		
(<i>P₀,n₂,n₅,n₆</i>)	-6.5	42		
(P ₀ , n ₁ , n ₂ , n ₅ , n ₆)	-6.1	40		
No. of feasible state	19			
No. of non-dominate	19			

GeorgiaInstitute Techin OCIV The H. Milton Stewart School of Industrial and Systems Engineering

Support of resource **k**

Uniform scaling of resource consumption:

 γ - positive integer

$$S_{\gamma}(g_{e}^{k}) = \left\lfloor \frac{g_{e}^{k}}{\gamma} \right\rfloor \times \gamma$$
$$S_{\gamma}(g^{k}(P)) = \sum_{e \in A(P)} S_{\gamma}(g_{e}^{k})$$

path <i>P</i> c(<i>P</i>)		g ^k (P)	$S_5(g^k(P))$	
(P ₀ ,n ₁)	0.0	5	5	
(P ₀ ,n ₂)	-1.5	11	10	
(P ₀ ,n ₁ ,n ₂)	-1.1	9	5	
(P ₀ ,n ₁ ,n ₃)	-1.1	16	15 🗙	
(P ₀ ,n ₂ ,n ₃)	-2.6	25	20	
(P ₀ ,n ₁ ,n ₂ ,n ₃)	-2.2	23	15	
(P ₀ ,n ₁ ,n ₄)	-1.0	15	15 🗙	
(P ₀ ,n ₂ ,n ₄)	-2.5	22	20	
(P ₀ ,n ₁ ,n ₂ ,n ₄)	-2.1	20	15	
(P ₀ ,n ₁ ,n ₃ ,n ₄)	-2.6	33	30 🗙	
(P ₀ ,n ₂ ,n ₃ ,n ₄)	-4.1	42 🗙	35	
(P ₀ ,n ₁ ,n ₂ ,n ₃ ,n ₄)	-3.7	40	30	
(P ₀ ,n ₁ ,n ₅)	-1.0	15	15	
(P ₀ ,n ₂ ,n ₅)	-2.5	26	25	
(P ₀ ,n ₁ ,n ₂ ,n ₅)	-2.1	24	20	
(P ₀ ,n ₁ ,n ₆)	-3.0	16	15 🗙	
(P ₀ ,n ₂ ,n ₆)	-4.5	22	20	
(P ₀ ,n ₁ ,n ₂ ,n ₆)	-4.1	20	15	
(P ₀ ,n ₁ ,n ₅ ,n ₆)	-5.0	31	30	
(P ₀ ,n ₂ ,n ₅ ,n ₆)	-6.5	42	40	
(P ₀ ,n ₁ ,n ₂ ,n ₅ ,n ₆)	-6.1	40	35	
No. of feasible state	19	17		
No. of non-dominate	19	17		

Support of resource k —

Uniform scaling of resource consumption:

 γ - positive integer

$$S_{\gamma}(g_{e}^{k}) = \left\lfloor \frac{g_{e}^{k}}{\gamma} \right\rfloor \times \gamma$$
$$S_{\gamma}(g^{k}(P)) = \sum_{e \in A(P)} S_{\gamma}(g_{e}^{k})$$

path <i>P</i>	с(Р <u>)</u>	<i>g^k(P</i>)	$S_2(g^k(P))$	
(P ₀ ,n ₁)	0.0	5	4	
(P ₀ ,n ₂)	-1.5	11	10	
(P ₀ ,n ₁ ,n ₂)	-1.1	9	8	
(P ₀ ,n ₁ ,n ₃)	-1.1	16	14	
(P ₀ ,n ₂ ,n ₃)	-2.6	25	24	
(P ₀ ,n ₁ ,n ₂ ,n ₃)	-2.2	23	22	
(P ₀ ,n ₁ ,n ₄)	-1.0	15	14	
(P ₀ ,n ₂ ,n ₄)	-2.5	22	20	
(P ₀ ,n ₁ ,n ₂ ,n ₄)	-2.1	20	18	
(P ₀ ,n ₁ ,n ₃ ,n ₄)	-2.6	33	30	
(P ₀ ,n ₂ ,n ₃ ,n ₄)	-4.1	42 🗙	40	
(P ₀ ,n ₁ ,n ₂ ,n ₃ ,n ₄)	-3.7	40	38	
(P ₀ ,n ₁ ,n ₅)	-1.0	15	14	
(P ₀ ,n ₂ ,n ₅)	-2.5 26		24	
(P ₀ ,n ₁ ,n ₂ ,n ₅)	-2.1	24	22	
(P ₀ ,n ₁ ,n ₆)	-3.0	16	14	
(P ₀ ,n ₂ ,n ₆)	-4.5	22	20	
(P ₀ ,n ₁ ,n ₂ ,n ₆)	-4.1	20	18	
(P ₀ ,n ₁ ,n ₅ ,n ₆)	-5.0	31	30	
(P ₀ ,n ₂ ,n ₅ ,n ₆)	-6.5	42 🗙	40	
(P ₀ ,n ₁ ,n ₂ ,n ₅ ,n ₆)	-6.1	40	38	
No. of feasible state	19	21		
No. of non-dominate	19	21		

Georgial Stitute of Technology The H. Milton Stewart School of Industrial and Systems Engineering

Support of resource k -

path <i>P</i>	с(Р <u>)</u>	<i>g</i> ^{<i>k</i>} (<i>P</i>)	S ₂ (g ^k (P))	$F_{A^k}(g^k(P))$	
(P ₀ ,n ₁)	0.0	5	4	0	
(P ₀ ,n ₂)	-1.5	11	10	10	
(P ₀ ,n ₁ ,n ₂)	-1.1	9	8	0	
(P ₀ ,n ₁ ,n ₃)	-1.1	16	14	0 X	
(P ₀ ,n ₂ ,n ₃)	-2.6	25	24	11	
(P ₀ ,n ₁ ,n ₂ ,n ₃)	-2.2	23	22	0	
(P ₀ ,n ₁ ,n ₄)	-1.0	15	14	0 🗙	
(P ₀ ,n ₂ ,n ₄)	-2.5	22	20	11 X	
(P ₀ ,n ₁ ,n ₂ ,n ₄)	-2.1	20	18	0 🗙	
(P ₀ ,n ₁ ,n ₃ ,n ₄)	-2.6	33	30	0 🗙	
(P ₀ ,n ₂ ,n ₃ ,n ₄)	-4.1	42	40	11	
(P ₀ ,n ₁ ,n ₂ ,n ₃ ,n ₄)	-3.7	40	38	0	
(P ₀ ,n ₁ ,n ₅)	-1.0	15	14	0	
(P ₀ ,n ₂ ,n ₅)	-2.5	26	24	26	
(P ₀ ,n ₁ ,n ₂ ,n ₅)	-2.1	24	22	15	
(P ₀ ,n ₁ ,n ₆)	-3.0	16	14	0 🗙	
(P ₀ ,n ₂ ,n ₆)	-4.5	22	20	11	
(P ₀ ,n ₁ ,n ₂ ,n ₆)	-4.1	20	18	0	
(P ₀ ,n ₁ ,n ₅ ,n ₆)	-5.0	31	30	16	
(P ₀ ,n ₂ ,n ₅ ,n ₆)	-6.5	42	40	42	
(P ₀ ,n ₁ ,n ₂ ,n ₅ ,n ₆)	-6.1	40	38	31	
No. of feasible state	19	21	14		
No. of non-dominate	19	21	14		

An iterative relaxation based search procedure

Bounding the search

The Search Tree:

Let *t*(*n*) be a lower-bound on the cost of a min-cost path from *n* to the sink.

 \Rightarrow If $c(P) + t(n_3) > UB$, then P can be discarded (i.e. search fathomed at P)

Q: How to compute *t*(*n*) for each *n*?

A: Bounds obtained for FREE as a natural byproduct of relaxation scheme and alternating search directions.

The Backward Search Tree:

 $t(n) = \min \left\{ c(P) : \frac{P \text{ is a non - dominated path}}{\text{from } n \text{ to sink.}} \right\}$

t(*n*) is a valid bound for pruning search from source to sink.

The Forward Search Tree:

$$s(n) = \min \left\{ c(P) : \frac{P \text{ is a non - dominated path}}{\text{from source to } n.} \right\}$$

s(n) is a valid bound for pruning search from sink to source.

The Backward Search Tree:

$$t(n) = \min \left\{ c(P) : \frac{P \text{ is a non - dominated path}}{\text{from } n \text{ to sink.}} \right\}$$

t(*n*) is a valid bound for pruning search from source to sink.

A Relaxation + Bounding based DP

Georgia Institute of Technology The H. Milton Stewart School of Industrial and Systems Engineering

Impact of Aggregation on Network

no. of nodes					min, max, and average size of supports					
No. Jets	No. Ports	No. Reqs	Agg.	N (×10 ⁶)) A (x10 ⁶)	(x10 ⁶)	min(<i>N</i> ^k	max(<i>N</i> ^k)	avg(<i>N</i> ^k)	Ρ
		-	No	0 22	0.37	0 24	. 1	(X10°)	10	
10	15	60	Yes	0.01	0.07	0.14	1	0.004	2	
			No	0.51	0.97	0.14	2	0.004	24	
25	20	173	Yes	0.02	0.38	0.35	1	0.014	3	
			No	1 24	2 50	1.05	2	0.62	56	
50	30	356	Yes	0.09	1 14	0.84	1	0.043	8	
			No	1 94	4 11	1.33	2	0.97	105	
75	30	559	Yes	0.15	2.04	1.13	1	0.073	15	
			No	2.79	6.22	1.69	4	1.39	160	
100	35	751	Yes	0.24	3.33	1.51	1	0.12	24	
			No	3.77	8.67	2.00	5	1.89	240	
125	41	956	Yes	0.34	4.89	1.88	2	0.17	36	
			No	4.60	10.80	2.11	5	2.30	328	
150	41	1172	Yes	0.41	6.20	2.01	1	0.20	47	
			No	5.56	13.33	2.23	6	2.78	429	
175	41	1364	Yes	0.50	7.75	2.13	2	0.25	62	
			No	5.90	14.28	2.25	5	2.95	474	
185	41	1448	Yes	0.54	8.39	2.17	2	0.27	70	
			No	6.40	15.64	2.28	6	3.2	534	
200	41	1457	Yes	0.58	9.23	2.20	2	0.29	78	

F.G. Engineer

Solving RCSPP on large networks with many resource constraints 1

13/17

S⁰ – Standard DP with proposed dominance scheme.

S¹ – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

S⁰ – Standard DP with proposed dominance scheme.

S¹ – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on speed

S⁰ – Standard DP with proposed dominance scheme.

S¹ – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on speed

S⁰ – Standard DP with proposed dominance scheme.

S¹ – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on memory requirement

S⁰ – Standard DP with proposed dominance scheme.

S¹ – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on memory requirement

Summary of Results

Georgia of **Tech**nology The H. Milton Stewart School of Industrial and Systems Engineering

Refinement schemes

S⁰ – Standard DP with proposed dominance scheme.

 S^1 – Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.

 S^2 – Start as in S^1 and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

No	No	No		No Agg		Yes Agg				
NO.	NO. Dorto	NO. Requests	S.	Scheme:			Scheme:			
Jets	Ports	Requests	S⁰	S ¹	S ²	S⁰	S ¹	S ²		
			5	5	5	5	5	5		No. of solved
10	4.5	100 001	3.06	0.52	0.63	0.66	0.08	0.13		instances
10	15	[60,60]	0.00	2.25	3.95	0.00	2.12	3.58		mstances
			0.89	0.18	0.16	0.07	0.02	0.01		
			5	5	5	5	5	5		Average time (s)
25	20	[472 400]	7.75	1.97	2.21	2.45	0.67	0.77		per pricing
25	20	20 [173,199]	0.00	2.55	4.05	0.00	2.33	3.86		iteration
			2.15	0.58	0.41	0.23	0.07	0.06	1	noration.
			5	5	5	5	5	5		
50	20	1250 2001	19.42	5.71	5.94	6.89	2.11	2.35		Average no. of
50	30	[350,369]	0.00	2.78	5.09	0.00	2.48	4.74		refinements per
			5.19	1.64	0.65	0.65	0.19	0.17		pricing iteration
			2	5	5	5	5	5		pricing iteration.
			33.83	10.04	10.21	13.84	3.42	3.54		
75	30	[543,585]	0.00	2.88	5.23	0.00	2.75	4.97	1	Manual of stoned
			10.11	3.38	1.21	1.32	0.46	0.23		Max no. of stored
			0	5	5	5	5	5		paths (x10 ⁶)
			_	20.78	22.68	20.15	7.29	7.36	١	
100	35	[746,779]	_	2.87	5.52	0.00	2.51	5.23		
			-	5.70	2.52	1.98	0.74	0.42		
			0	0	5	5	5	5		
			-	-	53.87	31.19	10.86	10.74		
125	41	[934,966]	-	-	6.12	0.00	2.57	5.52		
				-	4.79	3.03	1.57	0.72		
			0	0	0	0	2	5		
			-	-	-	-	14.26	14.13		
150	41	[1135,1182]	_		_	_	2.68	5.64		
					_	-	4.37	1.78		
			0	0	0	0	0	5		
					-			18 56		
175	41	[1312,1382]	_	_	_	_	_	5.97		
			_	_	_	_	_	3.38		
			0	0	0	0	0	5		
			-	-	-		-	22 75		
185	41	[1385,1487]						6 31		
						1		4 55		
			0	0	0	0	0	4.00		
			-	U U	5			31 26		
200	41	[1516,1613]						6.97		
								5.60		
	-									

