Shortest-Path Based Column Generation on

 Extremely Large Networks with Many Resource ConstraintsFaramroze G. Engineer, George L. Nemhauser and Martin W.P. Savelsbergh

H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

Column Generation, 2008

Resource Constrained Shortest Paths (RCSPP)

Georgia $n s t i t u t(e)$

Outline

- RCSPP preliminaries:
- problem description and
- standard DP techniques.
- Strengthening of dominance criteria using support structures.
- An arc-based relaxation of RCSPP.
- An iterative relaxation + bounding scheme.
- Preprocessing by aggregation.
- Computational results on networks > 10^{6} nodes, arcs and resource constraints.

Problem Description

Given network $\mathcal{N}=(N, A)$, where :

- n^{s} and n^{t} are the source and sink nodes respectively,
- c_{e} - cost of traversing arc e,
- g_{e}^{k} - non-negative integer amount of resource $k \in\{1, \ldots, K\}$ consumed when traversing arc e, and
- b^{k} - amount of resource k that is available, find P^{*} s.t.

$$
P^{*} \in \operatorname{argmin}\left\{c(P)=\sum_{e \in A(P)} c_{e}: g^{k}(P)=\sum_{e \in A(P)} g_{e}^{k} \leq b^{k}, \forall k \in\{1, \ldots, K\}\right\}
$$

Solving RCSPP using DP

Example: Find shortest path from $\boldsymbol{n}_{\boldsymbol{0}}$ to \boldsymbol{n}_{7} that does not exceed 40 units of resource

The DP algorithm

Enumerate possible paths in a tree search while checking for:

1. FEASIBILITY, and
2. DOMINANCE.

Dominance

Given feasible paths P_{1} and P_{2} from source to node n, P_{1} dominates P_{2} if:

1. $c\left(P_{1}\right) \leq c\left(P_{2}\right)$, and
2. any feasible extension of P_{2} to the sink is also feasible for P_{1}. Typically recognized if $g^{k}\left(P_{1}\right) \leq g^{k}\left(P_{2}\right)$ for all $k=1, \ldots, K$.

The Search Tree:

$$
\begin{aligned}
& P_{1}=\left(n_{0}, n_{1}, n_{5}\right) \\
& c\left(P_{1}\right)=-2.1 \text { and } g\left(P_{1}\right)=17 \\
& P_{2}=\left(n_{0}, n_{2}, n_{5}\right) \\
& c\left(P_{2}\right)=-2.0 \text { and } g\left(P_{2}\right)=19 \\
& \Rightarrow P_{1} \text { dominates } P_{2}
\end{aligned}
$$

Solving RCSPP using DP

Example: Find shortest path from $\boldsymbol{n}_{\boldsymbol{0}}$ to \boldsymbol{n}_{7} that does not exceed 40 units of resource

The DP algorithm

Enumerate possible paths in a tree search while checking for:

1. FEASIBILITY, and
2. DOMINANCE.

Dominance

Given feasible paths P_{1} and P_{2} from source to node n, P_{1} dominates P_{2} if:

1. $c\left(P_{1}\right) \leq c\left(P_{2}\right)$, and
2. any feasible extension of P_{2} to the sink is also feasible for P_{1}. Typically recognized if $g^{k}\left(P_{1}\right) \leq g^{k}\left(P_{2}\right)$ for all $k=1, \ldots, K$.

$$
\begin{aligned}
& P_{1}=\left(n_{0}, n_{1}, n_{5}\right) \\
& c\left(P_{1}\right)=-2.1 \text { and } g\left(P_{1}\right)=17 \\
& P_{2}=\left(n_{0}, n_{2}, n_{5}\right) \\
& c\left(P_{2}\right)=-2.0 \text { and } g\left(P_{2}\right)=19 \\
& \Rightarrow P_{1} \text { dominates } P_{2}
\end{aligned}
$$

Strengthening Dominance Criteria

If $c\left(P_{1}\right)<c\left(P_{2}\right)$ but $g^{k}\left(P_{1}\right)>g^{k}\left(P_{2}\right)$, then we cannot say P_{1} dominates P_{2}.

However, if $g^{k}\left(P_{1}\right)+g^{k}\left(P^{\prime}\right) \leq b^{k}$ for all P_{1}^{\prime} from \boldsymbol{n} to the sink, then we do not need to check dominance with respect to resource \boldsymbol{k}.

Strengthening Dominance Criteria

Georgialnstitufe

Support of resource k

$\mathbf{N}^{\boldsymbol{k}} \subseteq \mathbf{N}$ is a support of resource \boldsymbol{k} if it contains all nodes $\boldsymbol{n} \in \boldsymbol{N}$ for which there exists path \boldsymbol{P}_{1} from source to node \boldsymbol{n} and $\boldsymbol{P}^{\prime}{ }_{1}$ from \boldsymbol{n} to sink with:

1. $g^{k}\left(P_{1}\right)+g^{k}\left(P_{1}{ }_{1}\right)>b^{k}$
2. $g^{k}\left(P_{1}\right)>0$, and
3. $g^{k}\left(P^{\prime}{ }_{1}\right)>0$.

If $c\left(P_{1}\right)<c\left(P_{2}\right)$ but $g^{k}\left(P_{1}\right)>g^{k}\left(P_{2}\right)$, then we cannot say P_{1} dominates P_{2}.

However, if $g^{k}\left(P_{1}\right)+g^{k}\left(P_{1}^{\prime}\right) \leq b^{k}$ for all P_{1}^{\prime} from \boldsymbol{n} to the sink, then we do not need to check dominance with respect to resource \boldsymbol{k}.

Strengthened Dominance

Given feasible paths \boldsymbol{P}_{1} and \boldsymbol{P}_{2} from source to node $\boldsymbol{n}, \boldsymbol{P}_{\mathbf{1}}$ dominates $\boldsymbol{P}_{\mathbf{2}}$ whenever:

1. $c\left(P_{1}\right) \leq c\left(P_{2}\right)$, and
2. $g^{k}\left(P_{1}\right) \leq g^{k}\left(P_{2}\right)$ for all $k=1, \ldots, K$ s.t. $n \in N^{k}$.

An Arc-Based Relaxation

path P	$c(P)$	$g^{k}(P)$
$\left(P_{0}, n_{1}\right)$	0.0	5
$\left(P_{0}, n_{2}\right)$	-1.5	11
$\left(P_{0}, n_{1}, n_{2}\right)$	-1.1	9
$\left(P_{0}, n_{1}, n_{3}\right)$	-1.1	16
$\left(P_{0}, n_{2}, n_{3}\right)$	-2.6	25
$\left(P_{0}, n_{1}, n_{2}, n_{3}\right)$	-2.2	23
$\left(P_{0}, n_{1}, n_{4}\right)$	-1.0	15
$\left(P_{0}, n_{2}, n_{4}\right)$	-2.5	22
$\left(P_{0}, n_{1}, n_{2}, n_{4}\right)$	-2.1	20
$\left(P_{0}, n_{1}, n_{3}, n_{4}\right)$	-2.6	33
$\left(P_{0}, n_{2}, n_{3}, n_{4}\right)$	-4.1	$42 X$
$\left(P_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)$	-3.7	40
$\left(P_{0}, n_{1}, n_{5}\right)$	-1.0	15
$\left(P_{0}, n_{2}, n_{5}\right)$	-2.5	26
$\left(P_{0}, n_{1}, n_{2}, n_{5}\right)$	-2.1	24
$\left(P_{0}, n_{1}, n_{6}\right)$	-3.0	16
$\left(P_{0}, n_{2}, n_{6}\right)$	-4.5	22
$\left(P_{0}, n_{1}, n_{2}, n_{6}\right)$	-4.1	20
$\left(P_{0}, n_{1}, n_{5}, n_{6}\right)$	-5.0	31
$\left(P_{0}, n_{2}, n_{5}, n_{6}\right)$	-6.5	$42 X$
$\left(P_{0}, n_{1}, n_{2}, n_{5}, n_{6}\right)$	-6.1	40
No. of feasible states (bese $=40)$	19	
No. of non-dominated paths	19	

An Arc-Based Relaxation

Support of resource \boldsymbol{k}

Uniform scaling of resource consumption:
γ-positive integer

$$
\begin{aligned}
& S_{\gamma}\left(g_{e}^{k}\right)=\left\lfloor\frac{g_{e}^{k}}{\gamma}\right\rfloor \times \gamma \\
& S_{\gamma}\left(g^{k}(P)\right)=\sum_{e \in A(P)} S_{\gamma}\left(g_{e}^{k}\right)
\end{aligned}
$$

path P	$c(P)$	$g^{k}(P)$	$S_{5}\left(g^{k}(P)\right)$
$\left(P_{0}, n_{1}\right)$	0.0	5	5
(P_{0}, n_{2})	-1.5	11	10
$\left(P_{0}, n_{1}, n_{2}\right)$	-1.1	9	5
$\left(P_{0}, n_{1}, n_{3}\right)$	-1.1	16	15 X
$\left(P_{0}, n_{2}, n_{3}\right)$	-2.6	25	20
$\left(P_{0}, n_{1}, n_{2}, n_{3}\right)$	-2.2	23	15
$\left(P_{0}, n_{1}, n_{4}\right)$	-1.0	15	15 X
$\left(P_{0}, n_{2}, n_{4}\right)$	-2.5	22	20
$\left(P_{0}, n_{1}, n_{2}, n_{4}\right)$	-2.1	20	15
$\left(P_{0}, n_{1}, n_{3}, n_{4}\right)$	-2.6	33	$30 \times$
$\left(P_{0}, n_{2}, n_{3}, n_{4}\right)$	-4.1	42X	35
$\left(P_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)$	-3.7	40	30
$\left(P_{0}, n_{1}, n_{5}\right)$	-1.0	15	15
$\left(P_{0}, n_{2}, n_{5}\right)$	-2.5	26	25
$\left(P_{0}, n_{1}, n_{2}, n_{5}\right)$	-2.1	24	20
(P_{0}, n_{1}, n_{6})	-3.0	16	15 X
$\left(P_{P}, n_{2}, n_{6}\right)$	-4.5	22	20
$\left(P_{0}, n_{1}, n_{2}, n_{6}\right)$	-4.1	20	15
$\left(P_{0}, n_{1}, n_{5}, n_{6}\right)$	-5.0	31	30
$\left(P_{0}, n_{2}, n_{5}, n_{6}\right)$	-6.5	42X	40
$\left(P_{0}, n_{1}, n_{2}, n_{5}, n_{6}\right)$	-6.1	40	35
No. of feasible states ($b^{k}=40$)		19	17
No. of non-dominated paths		19	17

An Arc-Based Relaxation

Support of resource \boldsymbol{k}

Uniform scaling of resource consumption:
γ-positive integer

$$
\begin{aligned}
& S_{\gamma}\left(g_{e}^{k}\right)=\left\lfloor\frac{g_{e}^{k}}{\gamma}\right\rfloor \times \gamma \\
& S_{\gamma}\left(g^{k}(P)\right)=\sum_{e \in A(P)} S_{\gamma}\left(g_{e}^{k}\right)
\end{aligned}
$$

path P	$c(P)$	$g^{k}(P)$	$S_{2}\left(g^{k}(P)\right)$
$\left(P_{0}, n_{1}\right)$	0.0	5	4
$\left(P_{0}, n_{2}\right)$	-1.5	11	10
$\left(P_{0}, n_{1}, n_{2}\right)$	-1.1	9	8
$\left(P_{0}, n_{1}, n_{3}\right)$	-1.1	16	14
$\left(P_{0}, n_{2}, n_{3}\right)$	-2.6	25	24
$\left(P_{0}, n_{1}, n_{2}, n_{3}\right)$	-2.2	23	22
$\left(P_{0}, n_{1}, n_{4}\right)$	-1.0	15	14
$\left(P_{0}, n_{2}, n_{4}\right)$	-2.5	22	20
$\left(P_{0}, n_{1}, n_{2}, n_{4}\right)$	-2.1	20	18
$\left(P_{0}, n_{1}, n_{3}, n_{4}\right)$	-2.6	33	30
$\left(P_{0}, n_{2}, n_{3}, n_{4}\right)$	-4.1	$42 X$	40
$\left(P_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)$	-3.7	40	38
$\left(P_{0}, n_{1}, n_{5}\right)$	-1.0	15	14
$\left(P_{0}, n_{2}, n_{5}\right)$	-2.5	26	24
$\left(P_{0}, n_{1}, n_{2}, n_{5}\right)$	-2.1	24	22
$\left(P_{0}, n_{1}, n_{6}\right)$	-3.0	16	14
$\left(P_{0}, n_{2}, n_{6}\right)$	-4.5	22	20
$\left(P_{0}, n_{1}, n_{2}, n_{6}\right)$	-4.1	20	18
$\left(P_{0}, n_{1}, n_{5}, n_{6}\right)$	-5.0	31	30
$\left(P_{0}, n_{2}, n_{5}, n_{6}\right)$	-6.5	$42 X$	40
$\left(P_{0}, n_{1}, n_{2}, n_{5}, n_{6}\right)$	-6.1	40	38
N_{0}. of feasible states ($\left.b^{k}=40\right)$	19	21	
N_{0}. of non-dominated paths	19	21	

An Arc-Based Relaxation

Support of resource \boldsymbol{k}

An arc based relaxation of resource consumption:

$$
\begin{aligned}
& A^{k} \text { - subset of arcs } \\
& F_{A^{k}}\left(g_{e}^{k}\right)=\left\{\begin{array}{l}
g_{e}^{k} \text { if } e \in A^{k} \\
0 \text { otherwise }
\end{array}\right. \\
& F_{A^{k}}\left(g^{k}(P)\right)=\sum_{e \in A(P)} F_{A^{k}}\left(g_{e}^{k}\right)
\end{aligned}
$$

path P	$c(P)$	$g^{k}(P)$	$S_{2}\left(g^{k}(P)\right)$	$F_{A^{k}}{ }^{k}\left(g^{k}(P)\right)$
$\left(P_{0}, n_{1}\right)$	0.0	5	4	0
$\left(P_{0}, n_{2}\right)$	-1.5	11	10	10
$\left(P_{0}, n_{1}, n_{2}\right)$	-1.1	9	8	0
$\left(P_{0}, n_{1}, n_{3}\right)$	-1.1	16	14	$0 \times$
$\left(P_{0}, n_{2}, n_{3}\right)$	-2.6	25	24	11
$\left(P_{0}, n_{1}, n_{2}, n_{3}\right)$	-2.2	23	22	0
$\left(P_{0}, n_{1}, n_{4}\right)$	-1.0	15	14	$0 \times$
$\left(P_{0}, n_{2}, n_{4}\right)$	-2.5	22	20	$11 \times$
$\left(P_{0}, n_{1}, n_{2}, n_{4}\right)$	-2.1	20	18	$0 \times$
$\left(P_{0}, n_{1}, n_{3}, n_{4}\right)$	-2.6	33	30	$0 \times$
$\left(P_{0}, n_{2}, n_{3}, n_{4}\right)$	-4.1	$42 \times$	40	11
$\left(P_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)$	-3.7	40	38	0
$\left(P_{0}, n_{1}, n_{5}\right)$	-1.0	15	14	0
$\left(P_{0}, n_{2}, n_{5}\right)$	-2.5	26	24	26
$\left(P_{0}, n_{1}, n_{2}, n_{5}\right)$	-2.1	24	22	15
$\left(P_{0}, n_{1}, n_{6}\right)$	-3.0	16	14	$0 \times$
$\left(P_{0}, n_{2}, n_{6}\right)$	-4.5	22	20	11
$\left(P_{0}, n_{1}, n_{2}, n_{6}\right)$	-4.1	20	18	0
$\left(P_{0}, n_{1}, n_{5}, n_{6}\right)$	-5.0	31	30	16
$\left(P_{0}, n_{2}, n_{5}, n_{6}\right)$	-6.5	$42 \times$	40	$42 \times$
$\left(P_{0}, n_{1}, n_{2}, n_{5}, n_{6}\right)$	-6.1	40	38	31
No. of feasible states ($b^{k}=40$)		19	21	14
No. of non-dominated paths		19	21	14

An Arc-Based Relaxation

Georgialnstitute
 (of Technology

Support $\boldsymbol{N}^{\boldsymbol{k}}$ of resource \boldsymbol{k}

Observation

If the nodes in \boldsymbol{N}^{k} are reachable from only a small number of arcs in \boldsymbol{A}^{k}, then a large reduction in state-space can be obtained.

A Relaxation based DP

An iterative relaxation based search procedure

Input: Network $\mathscr{N}=(N, A)$, source n^{s}, and sink n^{t}; c_{e} for all $e \in A$ and g_{e}^{k} for all $e \in A$ and $k \in\{1, \ldots, K\}$;
Initialize: $U B \leftarrow \infty$ and $L B \leftarrow \infty$; $A^{k} \leftarrow\{\phi\}$ for all $\left.k \in\{1, \ldots, K\} ;\right\}$
1 while $U B-L B>\varepsilon$
$\left.2 \quad\left(P^{*}, U B\right)=\operatorname{DP}\left(\mathscr{N}, A^{1}, \ldots A^{k}\right)\right\}$
$3 \quad L B \leftarrow c\left(P^{*}\right)$
4 if P * is infeasible then
$5 \quad$ add arcs to A^{k} for one or more k so that P^{*} is no longer feasible in relaxation
6 end
7 end
Output: P^{*}

Ignore all resource consumption.

Run DP to find min-cost path from source to sink when only keeping track of resource k on arcs in A^{k} for each $k \in\{1, \ldots, K\}$. Update LB.

Refine relaxation by adding arcs to A^{k} for one or more k.

Bounding the search

The Search Tree:
X - Infeasible path
X - Dominated path
X - Fathomed path

Let $t(n)$ be a lower-bound on the cost of a min-cost path from n to the sink.
\Rightarrow If $c(P)+t\left(n_{3}\right)>U B$, then P can be discarded (i.e. search fathomed at P)
Q: How to compute $t(n)$ for each n ?
A: Bounds obtained for FREE as a natural byproduct of relaxation scheme and alternating search directions.

Computing Bounds for Fathoming

The Backward Search Tree:

$t(n)=\min \left\{c(P): \begin{array}{l}P \text { is a non-dominated path } \\ \text { from } n \text { to sink. }\end{array}\right\}$
$t(n)$ is a valid bound for pruning search from source to sink.

Computing Bounds for Fathoming

The Forward Search Tree:

$s(n)=\min \left\{c(P): \begin{array}{l}P \text { is a non-dominated path } \\ \text { from source to } n .\end{array}\right\}$
$s(n)$ is a valid bound for pruning search from sink to source.

The Backward Search Tree:

$t(n)=\min \left\{c(P): \begin{array}{l}P \text { is a non-dominated path } \\ \text { from } n \text { to sink. }\end{array}\right\}$
$t(n)$ is a valid bound for pruning search from source to sink.

An iterative relaxation + bounding search procedure

Ignore all resource consumption.

Initialize bounds for fathoming.

Alternate between Forward and Backward searches
[only keeping track of resource k on arcs in A^{k} for each $k \in\{1, \ldots, K\}$.

Update bounds for fathoming.

Update LB.
Refine relaxation by adding arcs to A^{k} for one or more k.

Preprocessing by Aggregation

Georgialnstitute

Preprocessing by Aggregation

Georgia nstitute

Impact of Aggregation on Network

no. of nodes
min, max, and average size of supports

No. Jets	No. Ports	No. Reqs	Agg.		$\underset{\left(\times 10^{6}\right)}{\|A\|}$	$\underset{\left(x 10^{6}\right)}{K}$	$\min \left(N^{k}\right.$	$\begin{gathered} \hline \max \left(N^{k}\right. \\) \\ \hline\left(\mathbf{x 1 0 ^ { 6 })}\right. \\ \hline \end{gathered}$	$\operatorname{avg}\left(N_{k}\right)$
10	15	60	No	0.22	0.37	0.24	1	0.11	10
			Yes	0.01	0.11	0.14	1	0.004	2
25	20	173	No	0.52	0.97	0.50	2	0.26	24
			Yes	0.03	0.38	0.35	1	0.014	3
50	30	356	No	1.24	2.50	1.05	2	0.62	56
			Yes	0.09	1.14	0.84	1	0.043	8
75	30	559	No	1.94	4.11	1.33	2	0.97	105
			Yes	0.15	2.04	1.13	1	0.073	15
100	35	751	No	2.79	6.22	1.69	4	1.39	160
			Yes	0.24	3.33	1.51	1	0.12	24
125	41	956	No	3.77	8.67	2.00	5	1.89	240
			Yes	0.34	4.89	1.88	2	0.17	36
150	41	1172	No	4.60	10.80	2.11	5	2.30	328
			Yes	0.41	6.20	2.01	1	0.20	47
175	41	1364	No	5.56	13.33	2.23	6	2.78	429
			Yes	0.50	7.75	2.13	2	0.25	62
185	41	1448	No	5.90	14.28	2.25	5	2.95	474
			Yes	0.54	8.39	2.17	2	0.27	70
200	41	1457	No	6.40	15.64	2.28	6	3.2	534
	41	1457	Yes	0.58	9.23	2.20	2	0.29	78

Computational Tests

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Computational Tests

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on speed

Computational Tests

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on speed

Computational Tests

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on memory requirement

Computational Tests

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

Impact on memory requirement

Summary of Results

Refinement schemes

\mathbf{S}^{0} - Standard DP with proposed dominance scheme.
\mathbf{S}^{1} - Start with relaxing all resource consumption and refine relaxation over a large number of resources and arcs.
$\mathbf{S}^{\mathbf{2}}$ - Start as in $\mathbf{S}^{\mathbf{1}}$ and then switch to a more conservative strategy by only tracking resources and arcs that are part of infeasible paths that are used to compute bounds for pruning.

No. Jets	No. Ports	No. Requests				Yes Agg			
				No Agg		Scheme:			
			S^{0}	S^{1}	S^{2}	S^{0}	S^{1}	S^{2}	
10	15	[60,80]	5	5	5	5	5	5	No. of solved
			3.06	0.52	0.63	0.66	0.08	0.13	instances
			0.00	2.25	3.95	0.00	2.12	3.58	
			0.89	0.18	0.16	0.07	0.02	0.01	
25	20	[173,199]	5	5	5	5	5	5	rage time (s)
			7.75	1.97	2.21	2.45	0.67	0.77	per pricing
			0.00	2.55	4.05	0.00	2.33	3.86	iteration.
			2.15	0.58	0.41	0.23	0.07	0.06	
50	30	[350,369]	5	5	5	5	5	5	
			19.42	5.71	5.94	6.89	2.11	2.35	Average no. of
			0.00 5.19	2.78 1.64	5.09 0.65	0.00 0.65	2.48 0.19	4.74 0.17	refinements per
75	30	[543,585$]$	2	5	5	5	5	5	pricing iteration.
			33.83	10.04	10.21	13.84	3.42	3.54	
			0.00	2.88	5.23	0.00	2.75	4.97	Max no of stored
			10.11	3.38	1.21	1.32	0.46	0.23	Max no. of stored
100	35	[746,779]	0	5	5	5	5	5	paths (x106)
			-	20.78	22.68	20.15	7.29	7.36	
			-	2.87	5.52	0.00	2.51	5.23	
			-	5.70	2.52	1.98	0.74	0.42	
125	41	[934,966]	0	0	5	5	5	5	
			-	-	53.87	31.19	10.86	10.74	
			-	-	6.12	0.00	2.57	5.52	
			-	-	4.79	3.03	1.57	0.72	
150	41	[1135,1182]	0	0	0	0	2	5	
			-	-	-	-	14.26	14.13	
			-	-	-	-	2.68	5.64	
			-	-	-	-	4.37	1.78	
175	41	[1312,1382]	0	0	0	0	0	5	
			-	-		-	-	18.56	
			-		-	-	-	5.97	
185			-	$\overline{-}$	-	\square	$\bar{\square}$	3.38	
	41	[1385,1487]	0	0	0	0	0	5	
			-	-		-	-	22.75	
				-	-	-	-	6.31	
200	41	[1516,1613]	0	0	0	0	0	4	
			-	-	-	-	-	31.26	
			-	-	-	-	-	6.97 5	

Questions?

Georgialnstitute

