Outline	Model	Computational results	Future research

A Column Generation based Heuristic for Train Driver Rescheduling

Daniel Potthoff potthoff@few.eur.nl

joint work with D. Huisman and G. Desaulniers

June 18, 2008

A I > A = A A

3

D. Potthoff

Outline	Model	Computational results	Future research

1 Introduction

- 4 Computational results
- 5 Future research

◆□> ◆□> ◆目> ◆目> ◆目> □目 − のへで

D. Potthoff

Outline	Introduction	Model	Computational results	Future research
ام میں ا				

Introduction

Reasons for unexpected disruptions

- Infrastructure malfunctions
 - Rails, switches, catenary, bridges
- Computer problems in control centers
- Rolling stock breakdowns
- Accidents with other traffic
- Weather conditions
- Crew no shows

Disruptions	
	933
Medium	1011
Large	834

э

Outline	Introduction	Model	Computational results	Future research
المحينة ما ا				

Introduction

Reasons for unexpected disruptions

- Infrastructure malfunctions
 - Rails, switches, catenary, bridges
- Computer problems in control centers
- Rolling stock breakdowns
- Accidents with other traffic
- Weather conditions
- Crew no shows

Numbers from 2007				
Disruptions	#			
Small	933			
Medium	1011			
Large	834			

3

Outline	Introduction	Model	Computational results	Future research
Proble	em descript	tion		

Given a blocked route and an estimated duration

- The timetable has been modified according to emergency scenarios
- The rolling stock has been rescheduled

Crew rescheduling

- Cover as much tasks as possible such that:
 - each original duty gets a feasible extension
 - the modifications to the crew schedule and the usage of taxis is as minimal as possible

Outline	Introduction	Model	Computational results	Future research

Feasible extensions - example Gn 107

・ロト ・回ト ・ヨト ・ヨト

= 990

D. Potthoff

Outline	Introduction	Model	Computational results	Future research

Feasible extensions - example Gn 107

Outline	Introduction	Model	Computational results	Future research

Feasible extensions - example Gn 107

*ロト *個ト *注ト *注ト

Ξ.

Outline		Model	Computational results	Future research
Notatio	on			

- N: Set of tasks, where for every $i \in N$
 - *f_i*: Cost for canceling task *i*
- Δ: Set of original duties
- \mathcal{K}^{δ} : Set of all feasible extensions for original duty $\delta \in \Delta$

•
$$c_k^{\delta}$$
: Cost of extension k for original duty δ

• $x_k^{\delta} = \begin{cases} 1, \text{ if extension } k \text{ is selected for original duty } \delta \\ 0, \text{ otherwise} \end{cases}$ • $y_i = \begin{cases} 1, \text{ if task } i \text{ is canceled} \\ 0, \text{ otherwise} \end{cases}$

・ロト ・回ト ・ヨト ・ヨト

3

$$\min \sum_{\delta \in \Delta} \sum_{k \in K^{\delta}} c_k^{\delta} x_k^{\delta} + \sum_{i \in N} f_i y_i$$
(1)
s.t.
$$\sum_{\delta \in \Delta} \sum_{k \in K^{\delta}} a_{ik}^{\delta} x_k^{\delta} + y_i \geq 1 \quad \forall i \in N$$
(2)
$$\sum_{k \in K^{\delta}} x_k^{\delta} = 1 \quad \forall \delta \in \Delta$$
(3)
$$x_k^{\delta} \in \{0,1\} \quad \forall \delta \in \Delta, \forall k \in K^{\delta}$$
(4)
$$y_i \in \{0,1\} \quad \forall i \in N$$
(5)

イロト イヨト イヨト イヨト

Ξ.

D. Potthoff

Outline		Model	Computational results	Future research
Math	ematical m	odel		

Observations

- Only a few original duties need to be rescheduled in order to obtain a good solution
- The number of feasible extension for each original duty might be huge

Solution approach

- Consider a core problem containing only a subset of the original duties and tasks
- Use a column generation based heuristic to solve the core problem

D. Potthoff

Overview over the algorithm

æ

D. Potthoff

Overview over the algorithm

æ

D. Potthoff

Selection of the initial core problem

- Define N_p as the subset of tasks, where at least on of the following conditions holds:
 - 1 The task is canceled or modified (rerouted)
 - 2 The task is performed on the obstructed route and the departure time of task *i* lies in the interval $[t_0, t_1 + p]$
 - 3 The task is part of the same train as one of the tasks selected in 1 and 2

< ロ > < 同 > < 三 > < 三

- The subset of original duties is now defined as $\overline{\Delta} := \{ \delta \in \Delta : \delta \text{ covers at least one task in } N_{\rho} \}.$
- The core problem is given by $\overline{\Delta}$ and \overline{N} where \overline{N} the set of tasks covered by a original duty in $\overline{\Delta}$.

Selection of the initial core problem

- Define N_p as the subset of tasks, where at least on of the following conditions holds:
 - **1** The task is canceled or modified (rerouted)
 - 2 The task is performed on the obstructed route and the departure time of task *i* lies in the interval $[t_0, t_1 + p]$
 - 3 The task is part of the same train as one of the tasks selected in 1 and 2

< ロ > < 同 > < 三 > < 三

The subset of original duties is now defined as $\overline{\Delta}$

 $\overline{\Delta} := \{ \delta \in \Delta : \delta \text{ covers at least one task in } N_p \}.$

The core problem is given by $\overline{\Delta}$ and \overline{N} where \overline{N} the set of tasks covered by a original duty in $\overline{\Delta}$.

Selection of the initial core problem

- Define N_p as the subset of tasks, where at least on of the following conditions holds:
 - 1 The task is canceled or modified (rerouted)
 - 2 The task is performed on the obstructed route and the departure time of task *i* lies in the interval $[t_0, t_1 + p]$
 - 3 The task is part of the same train as one of the tasks selected in 1 and 2

(日) (同) (日) (日)

- The subset of original duties is now defined as $\overline{\Delta} := \{ \delta \in \Delta : \delta \text{ covers at least one task in } N_p \}.$
- The core problem is given by and where whe

Outline	Model	Algorithm	Computational results	Future research

A column generation heuristic to solve a core problem

æ

D. Potthoff

The RMP of the core problem in the *n*th column generation iteration reads.

$$\min \sum_{\delta \in \overline{\Delta}} \sum_{k \in K_n^{\delta}} c_k^{\delta} x_k^{\delta} + \sum_{i \in \overline{N}} f_i y_i \qquad (1)$$
s.t.
$$\sum_{\delta \in \overline{\Delta}} \sum_{k \in K_n^{\delta}} a_{ik}^{\delta} x_k^{\delta} + y_i \geq 1 \quad \forall i \in \overline{N} \qquad (2)$$

$$\sum_{k \in K_n^{\delta}} x_k^{\delta} = 1 \quad \forall \delta \in \overline{\Delta} \qquad (3)$$

$$x_k^{\delta} \in \{0,1\} \quad \forall \delta \in \overline{\Delta}, \forall k \in K_n^{\delta} \qquad (4)$$

$$y_i \in \{0,1\} \quad \forall i \in \overline{N} \qquad (5)$$

- 4 回 ト 4 三 ト 4 三

э

D. Potthoff

Lagrangian relaxation

If we relax the set covering constraints, the Lagrangian subproblem becomes

$$\begin{split} \phi(\lambda) &= \min \sum_{\delta \in \overline{\Delta}} \sum_{k \in K^{\delta}} c_k^{\delta} x_k^{\delta} + \sum_{i \in \overline{N}} f_i y_i + \sum_{i \in \overline{N}} \lambda_i (1 - \sum_{\delta \in \overline{\Delta}} \sum_{k \in K^{\delta}} a_{ik}^{\delta} x_k^{\delta} - y_i) \\ \phi(\lambda) &= \min \sum_{i \in \overline{N}} \lambda_i + \sum_{\delta \in \overline{\Delta}} \sum_{k \in K^{\delta}_n} (c_k^{\delta} - \sum_{i \in \overline{N}} \lambda_i a_{ik}^{\delta}) x_k^{\delta} + \sum_{i \in \overline{N}} (f_i - \lambda_i) y_i \\ \text{s.t.} \quad \sum_{k \in K^{\delta}_n} x_k^{\delta} &= 1 \quad \forall \delta \in \overline{\Delta} \\ x_k^{\delta} &\in \{0, 1\} \quad \forall \delta \in \overline{\Delta}, \forall k \in K^{\delta}_n \\ y_i &\in \{0, 1\} \quad \forall i \in \overline{N} \end{split}$$

・ 回 ト ・ 三 ト ・

3

æ

Lagrangian relaxation

If we relax the set covering constraints, the Lagrangian subproblem becomes

$$\phi(\lambda) = \min \sum_{\delta \in \overline{\Delta}} \sum_{k \in K^{\delta}} c_k^{\delta} x_k^{\delta} + \sum_{i \in \overline{N}} f_i y_i + \sum_{i \in \overline{N}} \lambda_i (1 - \sum_{\delta \in \overline{\Delta}} \sum_{k \in K^{\delta}} a_{ik}^{\delta} x_k^{\delta} - y_i)$$

$$\phi(\lambda) = \min \sum_{i \in \overline{N}} \lambda_i + \sum_{\delta \in \overline{\Delta}} \sum_{k \in K_n^{\delta}} (c_k^{\delta} - \sum_{i \in \overline{N}} \lambda_i a_{ik}^{\delta}) x_k^{\delta} + \sum_{i \in \overline{N}} (f_i - \lambda_i) y_i$$

s.t.
$$\sum_{k \in K_n^{\delta}} x_k^{\delta} = 1 \quad \forall \delta \in \overline{\Delta}$$
$$x_k^{\delta} \in \{0, 1\} \quad \forall \delta \in \overline{\Delta}, \forall k \in K_n^{\delta}$$
$$y_i \in \{0, 1\} \quad \forall i \in \overline{N}$$

<**⊡** ► < Ξ ► <

2

D. Potthoff

Building blocks of the CG heuristic

Master problem

Apply Lagrangian relaxation and subgradient optimization

Pricing problems

Solve a resource constraint shortest path problem for each original duty on a dedicated acyclic graph

Feasible solutions

Use the Lagrangian multipliers in a greedy procedure to construct feasible solutions

・ 回 ト ・ ヨ ト ・

D. Potthoff

Building blocks of the CG heuristic

Master problem

Apply Lagrangian relaxation and subgradient optimization

Pricing problems

Solve a resource constraint shortest path problem for each original duty on a dedicated acyclic graph

米部 とくほとくほ

D. Potthoff

Master problem

Apply Lagrangian relaxation and subgradient optimization

Pricing problems

Solve a resource constraint shortest path problem for each original duty on a dedicated acyclic graph

Feasible solutions

Use the Lagrangian multipliers in a greedy procedure to construct feasible solutions

- 4 同 ト 4 ヨ ト 4 ヨ

D. Potthoff

D. Potthoff

- Select the original duties, such that the driver has the route knowledge for task j, covering the r closest departures before and after task j from the same station
- Select the original duty covering j, the first task in reverse direction such that j can be performed directly after j

D. Potthoff

Select the original duties, such that the driver has the route knowledge for task j, covering the r closest departures before and after task j from the same station

Select the original duty covering j, the first task in reverse direction such that j can be performed directly after j

- Select the original duties, such that the driver has the route knowledge for task j, covering the r closest departures before and after task j from the same station
- Select the original duty covering ĵ, the first task in reverse direction such that ĵ can be performed directly after j

Choose for every original duty σ selected in step 1 the s most similar original duties

Where similarity is computed as

- a bonus for original duties from the same depot and
- the number of swap opportunities
 - A swap opportunity occurs if original duties σ and τ cover tasks that depart from the same station around the same time

A I > A = A A

Choose for every original duty σ selected in step 1 the s most similar original duties

Where similarity is computed as

- a bonus for original duties from the same depot and
- the number of swap opportunities
 - A swap opportunity occurs if original duties σ and τ cover tasks that depart from the same station around the same time

A I > A = A A

- Choose for every original duty σ selected in step 1 the s most similar original duties
- Where similarity is computed as
 - a bonus for original duties from the same depot and
 - the number of swap opportunities
 - A swap opportunity occurs if original duties σ and τ cover tasks that depart from the same station around the same time

- Choose for every original duty σ selected in step 1 the *s* most similar original duties
- Where similarity is computed as
 - a bonus for original duties from the same depot and
 - the number of swap opportunities
 - A swap opportunity occurs if original duties σ and τ cover tasks that depart from the same station around the same time

A (1) > A (1) > A

Outline		Model	Computational results	Future research
Cost	structure			

20000	Cost for canceling a task (A-B)
3000	Cost for canceling a round task (A-A)
400	Cost for changing an original duty
50	Cost for assigning a task to another original duty
1	Cost for using a transfer that was not in the original duty
1000	Cost for using a taxi

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

D. Potthoff

Outline		Model	Computational results	Future research
Typic	al examples	5		

Neighborhood (r = 4, s = 3), no reserve duties

	lt	LNS	LB	UB	A-B	A-A	SC	Time	
Ztm B	1	. 38096	35555	38096	1	1	423	47	
Ztm B	3 2	2 16303	3217	3217	0	0	200	53	
	-	-							
	lt	LNS	LB	UB	A-B	A-A	SC	Time	
Ht B	1	129004	62894	129004	4	3	658	206	
Ht B	2	77332	43343	46618	1	4	415	310	
Ht B	3	74684	34888	34888	1	3	352	321	
Ht B	4	72894	30675	32236	1	2	381		
Ht B	5	72792	27658	27659	1	2	338		
Ht B	6	71196	28920	28920	1	1		402	
					· •		×≡×	★ E ► E	590

D. Potthoff

Outline		Model	Computational results	Future research
Typic	al examples	5		

Neighborhood (r = 4, s = 3), no reserve duties

	lt	LNS	LB	UB	A-B	A-A	SC	Time
Ztm B	1	38096	35555	38096	1	1	423	47
Ztm B	2	16303	3217	3217	0	0	200	53

	lt	LNS	LB	UB	A-B	A-A	SC	Time	
Ht B	1	129004	62894	129004	4	3	658	206	
Ht B	2	77332	43343	46618	1	4	415	310	
Ht B	3	74684	34888	34888	1	3	352	321	
Ht B	4	72894	30675	32236	1	2	381	360	
Ht B	5	72792	27658	27659	1	2	338	380	
Ht B	6	71196	28920	28920	1	1	306	402	
					- 			(E)	Dac

D. Potthoff

For 3 instances all tasks are covered in the solution found for the initial core problem

- For 7 instances some tasks need to be canceled in the solution found for the initial core problem
 - For 2 of these instances the final solution is better than the lower bound for the initial core problem
 - For 3 of these instances no tasks need to be canceled in the final solution

A (10) F (10)

- For 3 instances all tasks are covered in the solution found for the initial core problem
- For 7 instances some tasks need to be canceled in the solution found for the initial core problem
 - For 2 of these instances the final solution is better than the lower bound for the initial core problem
 - For 3 of these instances no tasks need to be canceled in the final solution

< 🗇 🕨 🔺 🚍 🕨 🔺

- For 3 instances all tasks are covered in the solution found for the initial core problem
- For 7 instances some tasks need to be canceled in the solution found for the initial core problem
 - For 2 of these instances the final solution is better than the lower bound for the initial core problem
 - For 3 of these instances no tasks need to be canceled in the final solution

A I > A = A A

- For 3 instances all tasks are covered in the solution found for the initial core problem
- For 7 instances some tasks need to be canceled in the solution found for the initial core problem
 - For 2 of these instances the final solution is better than the lower bound for the initial core problem
 - For 3 of these instances no tasks need to be canceled in the final solution

A I > A = A A

Outline	Model	Computational results	Future research

Conclusion

Observations

- Good solutions can be obtained within a couple of minutes for real world instances
- Some initial solutions can be improved be exploring the neighborhood of uncovered tasks

Now we are going to ...

- Improve the solutions for the initial core problems
 - Apply column fixing
 - Refine the greedy procedure
- Develop additional neighborhood definitions and integrate them in the overall scheme

Thank you for your attention!

D. Potthoff