PARALLEL PRIMAL-DUAL WITH COLUMN GENERATION

Diego Klabjan, Northwestern University

Primal-Dual Algorithm

- Started with Dantzig, Ford, and Fulkerson in 1956.
- Primal-dual algorithms
 - Primal step: Solve a primal subproblem.
 - Dual step: Improve the dual feasible solution. Iterate.
- Successfully used in many combinatorial problems
 - Matching algorithms (Edmonds)
 - Minimum cost network flows

Primal-Dual Algorithm

Primal-Dual Algorithm

The primal-dual algorithm

- \blacksquare Let ρ be a dual vector and let π be a dual feasible vector.
- Find a scalar α such that $\alpha \rho + (1-\alpha)\pi$ is a dual feasible vector and the gain in the objective value is maximum.
- $\square \pi := \alpha \rho + (1 \alpha) \pi.$
- Form a new LP by pricing out columns with best reduced cost based on the new π .
- \blacksquare Solve the LP and let ρ be an optimal dual solution.
- Iterate until optimal.
- Developed by H. Jing and Ellis L. Johnson.

Parallelization

- Solving problems with huge number of columns in short time
 - More problems become tractable
 - Columns spread across machines due to memory limitations
 - Improvements in execution times
- Possible parallelism
 - Parallel pricing strategies
 - Reduce the number of major iterations
 - Using a parallel LP solver

Parallel Pricing

- Parallel depth-first search
 - Relatively easy to parallelize
- Parallel constrained shortest path
 - Interesting and challenging
 - In transportation
 - Many labels
 - Acyclic networks

Parallel Layered Algorithm

Embarrassing parallel at each level

Parallel Partitioning

- Partition the network
- 🗆 Loop
 - Constrained shortest path in each partition
 - Exchange labels at the boundary nodes

Parallel Primal-Dual Algorithm

The parallel primal-dual algorithm on p processors

- Let $\rho_1, \rho_2, ..., \rho_p$ be dual vectors and let π be a dual feasible vector.
- Find scalars α such that $\alpha_0 \pi + \sum_{i=1}^{\nu} \alpha_i \rho_i$ is a dual feasible vector and the gain in the objective value is maximum.

$$\square \pi := \alpha_0 \pi + \sum_{i=1}^{r} \alpha_i \rho_i.$$

- **D** Form p new LPs by controlled randomization based on the new dual feasible vector π .
- Solve the LPs in parallel. Let ρ_i be an optimal dual solution to the *i*th LP.
- Iterate until optimal.

Parallel Primal-Dual Algorithm

Convex Combination of Dual Vectors

- □ Find scalars α such that $\alpha_0 \pi + \sum_{i=1}^{p} \alpha_i \rho_i$, $\sum_{i=0}^{p} \alpha_i = 1$ is a dual feasible vector and the gain in the objective value is maximum.
- □ An LP with p rows and all columns has to be solved at each iteration to obtain the scalars α .

$$\max \sum_{i=1}^{p} \alpha_{i}(v_{i} - v)$$

$$\sum_{i=1}^{p} \alpha_{i}(rc_{\pi}^{q} - rc_{\rho_{i}}^{q}) \leq rc_{\pi}^{q} \quad \text{for every column } q$$

$$\sum_{i=1}^{p} \alpha_{i} \leq 1$$

$$a \geq 0$$

Convex Combination of Dual Vectors

The reduced cost of a column from the LP

Expressed as a reduced cost of the original column with respect to the dual vector

$$(1 - \sum_{i=1}^{p} \alpha_i)\pi + \sum_{i=1}^{p} \alpha_i \rho_i$$

A parallel constrained shortest path algorithm is employed

Overall Algorithm

Upper Bounds on Variables

- Original LP has upper bounds on variables
- Upper bounds are transferred over to the tiny LP
- Tricky to adjust objective values
 - Doable

Computational Instances

Instances

- Airline crew pairing problems with up to 6 labels
- Airline aircraft routing problems with up to 3 labels
- Number of rows ranges from 300 to 3,000
- Networks
 - From 3,000 to 300,000 nodes
 - Number of arcs from 300,000 to 400 million

Computational Architectures

- Cluster of 16 personal computers
- Each one 8-way
- Dedicated gigabit Ethernet
- - IBM eServers
 - 484 2-way Pentium III
 - 100 Mbit Ethernet

IHPCL

NCSA

Number of LPs

Very Large-Scale Instances

Common Theme

- Speed-up
 - Almost linear speed-up up to 8 processors
 - Decent speed-up up to 16 processors
- Elapsed time
 - Elapsed time reductions even up to 30 processors
- Large-scale instances
 - Significant elapsed time reductions even on 50 processors

