
PARALLEL PRIMAL DUAL WITH PARALLEL PRIMAL-DUAL WITH 
COLUMN GENERATION

Diego Klabjan, Northwestern University



Primal-Dual Algorithmg

Started with Dantzig, Ford, and Fulkerson in Started with Dantzig, Ford, and Fulkerson in 
1956.
Primal-dual algorithmsPrimal dual algorithms

Primal step: Solve a primal subproblem.
Dual step: Improve the dual feasible solution. Iterate.

Successfully used in many combinatorial 
problems

Matching algorithms (Edmonds)
Minimum cost network flows



Primal-Dual Algorithmg

dual polyhedron
new dual feasible vectornew dual feasible vector π

dual vector ρ

old dual feasible vector π



Primal-Dual Algorithmg

The primal-dual algorithmThe primal dual algorithm
Let ρ be a dual vector and let π be a dual feasible vector.
Find a scalar α such that αρ+(1-α)π is a dual feasible ρ ( )
vector and the gain in the objective value is maximum.
π:=αρ+(1-α)π.
Form a new LP by pricing out columns with best reduced cost 
based on the new π.
Solve the LP and let ρ be an optimal dual solutionSolve the LP and let ρ be an optimal dual solution.
Iterate until optimal.

Developed by H. Jing and Ellis L. Johnson.Developed by H. Jing and Ellis L. Johnson.



Parallelization

Solving problems with huge number of columns in Solving problems with huge number of columns in 
short time

More problems become tractableMore problems become tractable
Columns spread across machines due to memory limitations

Improvements in execution times

Possible parallelism
Parallel pricing strategiesp g g
Reduce the number of major iterations
Using a parallel LP solver



Parallel Pricingg

Parallel depth-first searchParallel depth first search
Relatively easy to parallelize

Parallel constrained shortest pathParallel constrained shortest path
Interesting and challenging
In transportationIn transportation

Many labels
Acyclic networks



Parallel Layered Algorithmy g

s

Nodes at the same level can be
evaluated in parallel

Nodes with the 
same maximum 
distance to s

Embarrassing parallel at each level



Parallel Partitioning

Partition the network
Loop

Constrained shortest path in each partitionConstrained shortest path in each partition
Exchange labels at the boundary nodes

s



Parallel Primal-Dual Algorithmg

The parallel primal-dual algorithm on p processorsp p g p p
Let ρ1, ρ2,…, ρp be dual vectors and let π be a dual 
feasible vector.
Fi d l  h th t                   i   d l f ibl  ∑ ρα+πα

p

Find scalars α such that                   is a dual feasible 
vector and the gain in the objective value is maximum.
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Form p new LPs by controlled randomization based on the 
new dual feasible vector π. 
Solve the LPs in parallel Let ρ be an optimal dual solution 

1i=

Solve the LPs in parallel. Let ρi be an optimal dual solution 
to the ith LP.
Iterate until optimal.



Parallel Primal-Dual Algorithmg

dual polyhedron feasible region for 

dual vectors ρi

the new dual vector 

old dual feasible vector π



Convex Combination of Dual Vectors

Find scalars α such that                          is a dual 1,
p

i
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ii0 =∑α∑ ρα+παFind scalars α such that                          is a dual 
feasible vector and the gain in the objective value is 
maximum.
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An LP with p rows and all columns has to be solved 
at each iteration to obtain the scalars α.
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Convex Combination of Dual Vectors

The reduced cost of a column from the LPThe reduced cost of a column from the LP
Expressed as a reduced cost of the original column with 
respect to the dual vector
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Overall Algorithmg
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Column generation to Column generation to 
compute α:

PARALLEL CONSTRAINED

SHORTEST PATH



Upper Bounds on Variablespp

Original LP has upper bounds on variablesOriginal LP has upper bounds on variables
Upper bounds are transferred over to the tiny LP
Tricky to adjust objective valuesTricky to adjust objective values

Doable



Computational Instancesp

InstancesInstances
Airline crew pairing problems with up to 6 labels
Airline aircraft routing problems with up to 3 labelsAirline aircraft routing problems with up to 3 labels
Number of rows ranges from 300 to 3,000

NetworksNetworks
From 3,000 to 300,000 nodes
Number of arcs from 300,000 to 400 millionNu be  o  a cs o  300,000 o 00 o



Computational Architecturesp

IHPCLIHPCL
Cluster of 16 personal computers
Each one 8-wayEach one 8 way
Dedicated gigabit Ethernet

NCSANCSA
IBM eServers
484 2-way Pentium III8  way e u  
100 Mbit Ethernet



IHPCL



NCSA



Number of LPs



Very Large-Scale Instancesy g



Common Theme

Speed-upSpeed up
Almost linear speed-up up to 8 processors
Decent speed-up up to 16 processorsDecent speed up up to 16 processors

Elapsed time
Elapsed time reductions even up to 30 processorsElapsed time reductions even up to 30 processors

Large-scale instances
Significant elapsed time reductions even on 50 Significant elapsed time reductions even on 50 
processors




