Manpower Routing and Scheduling with Temporal Dependencies Between Tasks

Anders Dohn
Jesper Larsen
Matias Sevel Rasmussen

Technical University of Denmark
Department of Management Engineering
Outline

• What is a temporal dependency?
• Incentive for introducing temporal dependencies.
• Modeling temporal dependencies.
• Branching on time windows.
• Results from practical applications.
• Conclusions.
Tasks with Temporal Dependencies

Synchronization:

Overlap:

Min/max gap:
Temporal Dependencies in Practice

- Ground handling in airports
 - Synchronization (Job teaming)
 - Overlap (Not used in practice yet, but is requested by users)
- Home care crew scheduling
 - Synchronization (Mainly for lifting)
 - Overlap (Lifting)
 - Min and max gap (E.g. medication and laundry)
- Allocation of technicians to service jobs [Li et al. 2005].
- Dial-a-Ride for disabled persons [Rousseau et al. 2003].
- Aircraft fleet assignment and routing [Ioachim et al. 1999].
- Machine scheduling with precedence constraints [van den Akker et al. 2006].
The General Temporal Dependency Constraint

\[t_i + p_{ij} \leq t_j \]
Column Generation - Mathematical Model

\[
\begin{align*}
\text{min} & \quad \sum_{k \in K} \sum_{r \in R^k} c_r^k \lambda_r^k + \sum_{i \in N} c_i \Lambda_i \\
\text{s.t.} & \quad \sum_{k \in K} \sum_{r \in R^k} a_{ir}^k \lambda_r^k + \Lambda_i = 1 \quad \forall i \in N \\
& \quad \sum_{r \in R^k} \lambda_r^k = 1 \quad \forall k \in K \\
& \quad \sum_{k \in K} \sum_{r \in R^k} t_{ir}^k \lambda_r^k + p_{ij} \leq \sum_{r \in R^k} \sum_{k \in K} t_{jr}^k \lambda_r^k + M(\Lambda_i + \Lambda_j) \quad \forall (i, j, p_{ij}) \in P \\
& \quad \lambda_r^k, \Lambda_i \in \{0, 1\} \quad \forall k \in K, r \in R^k, i \in N
\end{align*}
\]

Variables:
- \(\lambda_r^k = \begin{cases} 1 & \text{if route } r \text{ is chosen for team } k \\ 0 & \text{otherwise} \end{cases} \)
- \(\Lambda_i = \begin{cases} 1 & \text{if task } i \text{ is uncovered} \\ 0 & \text{otherwise} \end{cases} \)

Sets:
- \(N \) Tasks
- \(K \) Teams / Vehicles
- \(R^k \) Routes
- \(P \) Temporal Dependencies
Solution Approaches

• Relaxing the temporal dependency constraints:
 • The master problem is a Set Partitioning Problem.
 • The subproblem is an Elementary Shortest Path Problem with Time Windows.
 • Temporal dependencies are enforced by branching.

• Solving the presented set partitioning problem with temporal dependency constraints:
 • The master problem is a Set Partitioning Problem with additional non-binary constraints.
 • The subproblem is an Elementary Shortest Path Problem with Time Windows and Linear Node Costs.
 • Only the acyclic case has been considered in the literature [Ioachim et al. 1997].
Visualizing the Routes

Route r_1:

Task i:

Route r_2:

Task i:

Technical University of Denmark
Branching on Time Windows

- Will remove most fractional values.
- Will enforce all temporal dependencies.
- Proposed as branching strategy to solely remove fractional values in traditional VRPTW [Gélinas et al. 1995].

![Diagram showing time windows for tasks in different routes.](image-url)
Branching on Time Windows

Task j in route r_1

Time window for task j:

Task i in route r_2

Time window for task i:

Left branch:

Right branch:

$p_{ji} = 2$

$p_{ij} = -5$
Branching on Time Windows

Task \(j \) in route \(r_1 \):

Task \(i \) in route \(r_2 \) and route \(r_3 \):

Task \(k \) in route \(r_4 \):

\[
p_{ji} = 2
\]

\[
p_{ik} = 2
\]

Infeasible routes:

Left branch:
- Branching candidate 1: \(r_3, r_1 \)
- Branching candidate 2: \(r_3, r_1 \)
- Branching candidate 3: \(r_1 \)

Right branch:
- \(r_2 \)
- \(r_2, r_4 \)
- \(r_2, r_3, r_4 \)
Results - Ground Handling in Airports

- Real-life data from two of Europe’s major airports.
- 12 data instances of varying size (12-27 teams, 100-300 tasks):
 - 20-60 synchronization constraints.
 - Optimal solutions for 11 of the 12 datasets.
 - Solutions close to the lower bound for the last dataset.
- Solution time:
 - 6 instances: less than 1 hour.
 - Remaining 6 instances: up to 10 hours.
Results - Home Care Crew Scheduling

- Real-life instances: 6-15 caretakers, 60-150 visits per day.
- Current practice: Tailored heuristic and manual planning
 - Number of uncovered tasks reduced by 50%.
 - In manual planning: Time windows and competence requirements were modified to be able to find feasible solutions.
 - Constraints for up to 20% of tasks were modified in some instances.
 - These adjustments are not allowed in the column generation based optimization.
 - Transportation time is approximately the same as in manual planning.
- Solution time: Less than 1 hour.
Conclusions

• There is a clear incentive for introducing temporal dependencies in the models.
 • Certain combinations are found frequently in practice (e.g. synchronization and overlap)
• The general Temporal Dependency Constraint has been introduced and included in column generation.
 • Various practical problems can be modeled.
• Practical applications show encouraging results.
Thank you for your attention.