Open access to the treatment efficacy within an antibiotic class subject to bacterial resistance

Bruno Nkuiya and Markus Herrmann
Department of Economics and CREATE
Université Laval

November 2012

1We wish to thank participants at the CEA conference 2012 in Calgary and at the SCSE conference 2012 in Mont-Tremblant. Financial support was granted by FQRSC (Fonds québécois de recherche sur la société et la culture). Please address all correspondence to Bruno Nkuiya, Département d’économique, Pavillon J.-A.- DeSève, 1025, avenue des Sciences-Humaines, Université Laval, Québec, Canada, G1V 0A6. E-mail: robeny-bruno.nkuiya-mbakop.1@ulaval.ca.
Open access to the treatment efficacy within an antibiotic class subject to bacterial resistance

Abstract

In this paper, we are interested in how a pharmaceutical industry manages existing antibiotic drugs in the context of bacterial resistance. We consider a model based on an epidemiological framework where antibiotic recovery rates, and thus intrinsic qualities, may differ. Antibiotic efficacy is modeled as a common pool of a non-renewable resource to which antibiotic producers have open access. The paper derives antibiotic demands within a vertical differentiation model and characterizes the dynamics of infected individuals, antibiotic efficacy and treatment rates under the open-access and the socially optimal allocation. We show that the high-quality antibiotic drug loses its comparative advantage over time under both allocations, such that the low-quality drug should be used longer. This occurs at a later point of time in the social optimum and allows for a better control of infection in the longer run. In contrast with the ambiguous outcome reported in the literature, the socially optimal steady-state level of antibiotic efficacy is lower than that of the open-access allocation. We also extend our analysis to a strategic, duopolistic context.

Keywords: Bacterial resistance; Antibiotic management; Public health; Open access; Social optimum; Non-renewable resource.

JEL classification: I18; L13; Q21