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Abstract

This paper provides a contribution to the dynamic games literature on the trans-

boundary pollution problem. The results from the dynamic game characterize the

impact from the flow of pollution from the neighboring upstream lake to the down-

stream lake in terms of a closed-loop Stackleberg equilibrium. We show that when

both systems are at steady state, even a small flow of pollution from the upstream

lake can radically change the optimal pollution policy of the downstream lake from

one that converges to a lower (oligotrophic) state to one that leads to an upper (eu-

trophic) steady state. The convergent paths for the downstream lake illustrate the

impact of the upstream lakes convergence to a low steady state given low or high

accumulations of pollution. As a consequence, efficiency requires that upstream

agents limit their own consumption so as to increase that of downstream agents

whose marginal benefits are higher.
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1 Introduction

This paper concentrates on the problem of pollution in system of shallow lakes. In

the model presented in this paper there are two lakes, an upstream and a downstream

lake, and two communities situated around each of the lakes. The upstream lake

feeds into the downstream lake via a connecting waterway. As a byproduct of

their day to day economic activities, the communities situated around each of the

shallow lakes will input phosphorus into their local lake system, contributing to

its phosphorus loading. It is well known that shallow lakes present a hysteresis

in their response to this phosphorous loading (Carpenter, Brock and Hansen 1999,

Carpenter Ludwig and Brock 1999). Hence both lakes will remain in an oligotrophic

(or healthy) state over long periods of time with gradual increases in phosphorous

loading to a point at which it suddenly flips to an alternate, eutrophic state. Once the

flip has occurred, the lake then remains eutrophic despite decreases in phosphorous

loading, and is reversible to a healthy state only if the pollution loading could be

reduced well below the oligotrophic steady state level (Brock et al. 1999). The

threshold point at which the lake changes state, from oligotrophic to eutrophic, is

known as a Skiba point (Skiba 1978, Dechert and Nishimura 1983).

One natural question concerns what happens in systems of shallow lakes when

there are multiple communities sharing its use? Dechert and Brock (2000) and

Mäler, Xepapadeas and De Zeeuw (1999) were the first papers to pose this problem

as a dynamic game between multiple communities sharing a single lake. Both of

these papers show that runoff from pollution creates asymmetry in terms of the

ability of each community to support local economic activity. Mäler, Xepapadeas

and De Zeeuw (1999, 2003) demonstrate that it is possible to address the problem

by imposing of Pigouvian taxes on the level of economic activity for this problem

leading back to a steady state Pareto efficiency. However one problem with this

outcome is that the tax policies constructed in Mäler, Xepapadeas and De Zeeuw

(1999, 2003) are for open-loop Nash equilibrium. Salerno, Beard and McDonald

(2008) show that because these tax policy are not time consistent, they will be

subject to manipulation leading to potentially catastrophic outcomes.
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However, the cumulative impact of this localized pollution is compounded in

the model presented in our paper. Here the runoff from upstream pollution creates

asymmetry in terms of the ability of each lake to support local economic activity. We

show in the cooperative model that Pareto efficiency requires that upstream agents

limit their own consumption so as to increase that of downstream agents whose

marginal benefits are higher. The results from the non-cooperative dynamic game

characterize the impact from the flow of pollution from the neighboring upstream

lake to the downstream lake when each of the communities adopt a separate manage-

ment strategy. They show that when both systems are at steady state, even a small

flow of pollution from the upstream lake can radically change the optimal pollution

policy of the downstream lake from one that converges to a lower (oligotrophic) state

to one that leads to an upper (eutrophic) steady state.

The modeling approach is based on Dechert and Brock (2000), which use a po-

tential as a means of finding the open-loop Nash equilibrium of the dynamic game

as a control problem. As shown in Dechert (2000) one benefit from employing

this procedure is that because the equilibrium emerges as a solution to an opti-

mal control, when the optimal control problem is solved via dynamic programming

its will automatically solve the closed-loop problem. Hence the open-loop Nash

equilibrium will also be closed-loop Nash equilibrium. One potential difficult with

results obtained using the non-cooperative model is that the outcomes are dynamic

Stackleberg equilibrium in which the leader is the upstream community. However,

closed-loop Stackleberg equilibria are notoriously difficult to solve (see Baszar and

Tamer (1999) for a discussion).

Hence, we adapt the approach of Dechert and Brock, by using backward induc-

tion methods from the steady state point to solve the potential function iteratively, to

generate the closed-loop equilibrium. The numerical results show that an upstream

lake converging to its steady state with low accumulation increases the speed of

convergence of the downstream lake but does not change its path overall. If the

upstream lake is converging to its steady state from high accumulation of pollution,

the downstream lake eventually converges to its lower steady state but initially, the

3



lake undergoes a transient state with the accumulation of pollution in the down-

stream lake converging toward its upper steady state. Hence the convergent paths

for the downstream lake illustrate the impact of the upstream lakes convergence to

a low steady state given low or high accumulations of pollution.

The paper is organized as follows. Section 2 describes the couple lake system

and structure and preferences of the communities situated around each of the lake.

Section 3 provides the cooperative model for the coupled lake game. Section 4

provides a description of the non-cooperative model. Section 5 examines the Hamil-

tonian derived from the cooperative game and the non-cooperative game. For the

non-cooperative game the dynamics are constructed for both stationary and non-

stationary transition paths. This section shows that for both games all dynamics

will converge to a steady state equilibrium path. Section 6 provides numerical sim-

ulations of the coupled lake system and a discussion of their implications for each

of the local communities.

2 Model

The model in this paper introduces a coupled lake system and is an extension of

work that was first introduced in Dechert and Brock (2000, 2008). In this model Pi

is the quantity of phosphorus in lake i, where we will denote the upstream lake by

i = 1 and the downstream lake by i = 2. Li is the loading of phosphorus per unit

time into lake i. We assume the dynamics of Pi(t), i = 1, 2 are given by

Ṗ1 = L1 − δ1P1 + r1
(P1/m1)q1

1 + (P1/m1)q1
, P1(0) = P 0

1 , (2.1)

Ṗ2 = L2 − δ2P2 + r2
(P2/m2)q2

1 + (P2/m2)q2
+ γP1, P2(0) = P 0

2 . (2.2)

Here δPi is the rate (per unit time) at which phosphorus flows out of lake water1, r

is the quantity of phosphorus that is reintroduced from the mud per unit time and

1Some of the outflow is sequestered into the mud at the bottom of the lake which can be stirred up
and reintroduced into the lake water, while the rest of the outflow is passed along down stream.
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m is the anoxic level (which is one half of the quantity of phosphorus that will cause

the lake water to be saturated with phosphorus). The amount of phosphorus from

the upstream lake that is introduced into the downstream lake is denoted by γP1.

Since this cannot be more than the outflow from the upstream lake, the restriction

that γ ≤ δ1 is imposed on the model.

In order to reduce the number of independent parameters in equations (2.1) and

(2.2) as well as to establish a “standard” lake we use the following transformation

of time

τ =
hr1
m1

t,

where h is the small increment of time that will be used in the discrete time version of

the model. This leads to the following transformed system of differential equations:

hẋ1 = a1 + (b1 − 1)x1 +
xq11

1 + xq11
, x1(0) = x1,0, (2.3)

hẋ2 = a2 + (b2 − 1)x2 + ν
xq22

1 + xq22
+ µx1, x1(0) = x2,0, (2.4)

where the constants in this system of differential equations are defined as follows:

b1 = 1−m1δ1/r1, b2 = 1− m1δ2
r1

, ν =
r2m1

r1m2
and µ =

γm2
1

r1m2
.

and the restriction m2µ/m1 ≤ 1/b1 must hold2

There is a farming community situated around each lake that loads phosphorus

(mostly as runoff from fertilization) into their own lake, and each community derives

benets from their lake. In this paper we will examine the nature of the solution to

two variations of this model. In the rst the two communities act non cooperatively.

In the second we examine the social optimum for the two communities together.

The preferences of each community are modeled using a representative agent, whose

2This follows from the restriction that γ ≤ δ1.
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preferences are given by

∫ ∞
0

e−ρtvi(xi(t), ai(t))dt, i = 1, 2, (2.5)

where Ji denotes the utility that community i derives from the loading and the pol-

lution level, ρ is the rate of discounting the future and vi is the utility for community

i at time t.

Increases in the loading are assumed to bring increased economic production

which in turn implies higher consumption levels. Increases in the level of pollution

are assumed to reduce the ecosystem service quality. Thus the loading is an economic

good and the level of pollution is an economic bad in utility terms. We will assume

that benefits and costs are separable, so that

vi(xi, ai) = ui(ai)− ci(xi), i = 1, 2, (2.6)

where ui denotes the benefits that are derived from increased economic production

and ci denotes the social costs (measured in terms of disutility) that are derived the

pollution which emerges as a by-product of this activity3.

In this paper we focus on outcomes generated by two types of games: a coop-

erative game, where the two communities jointly manage the coupled lake system,

and a non-cooperative game, where each community’s focus is on an independent

management strategy for their respective lake. In the cooperative game the objec-

tive function is a weighted average of utilities for the upstream and downstream

communities:

W (x1, x2) = max
a1,a2

∫ ∞
0

v1(x1(t), a1(t)) + λ (v2(x1(t), a1(t))) , (2.7)

subject to equations (2.3) and (2.4). This corresponds to a social welfare function

with different weights λ > 0 on the upstream and downstream utilities, as would

3This assumption is standard in much of ecological economics, see for example Maler, Xepapadeas,
and de Zeeuw (2003), Brock and Starrett (2003), Dasgupta and Maler (2003) and Xepapadeas (2006),
and the references cited in those articles.
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be the case is there were differences in population in the two regions. The outcome

of this game delivers a benchmark – the Pareto optimal outcome. However, in the

non-cooperative setting of this paper, the core problem that we are attempting to

analyze is the possibility of a non-binding agreement being formed between both

parties for joint management of the lake that implement this outcome.

The problem with such an agreement is that the upstream polluter has minimal

incentive to commitment its agreed level of economic activity given the structure

of the coupled lake environment. This is modeled as a dynamic Stackleberg game,

where the follower is the downstream community by virtue that its decisions have

no direct impact on the quality of the upstream community’s lake. Here is what

happens in the open-loop problem: At time 0 the upstream polluter announces a

control path a1. The downstream polluter then takes this as given and makes his

decision regarding the choice of a2:

J2(x2, a1) = max
a2

∫ ∞
0

e−r2tv2(x2(t), a1(t), a2(t))dt

s.t. ẋ2 = f2(x2(t), a1(t), a2(t)), x2(0) given, (2.8)

where f2(x2(t), a1(t), a2(t)) is as defined in equation (2.4). The first order conditions

for the downstream polluter are then given as follows:

∂v2(x(t), a2(t))
∂a2(t)

− ∂λ2(t)f2(x2(t), a1(t), a2(t))
∂a2(t)

= 0 (2.9)

and

λ̇2 = r2λ2(t)− ∂v2(x2(t), a2(t))
∂x2(t)

− ∂λ2(t)f2(x2(t), a1(t), a2(t))
∂x2(t)

(2.10)

with the transversality condition given by

lim
t→∞

e−r2tλ2(t)x2(t) = 0. (2.11)

These first order conditions, when taken together with state equation and the

transversality condition (i.e., equations (2.8) – (2.11)), characterize the follower’s
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best response control path a2(t) := ϕ2(x2(t), a1(t)).

Given that there is complete information here and the downstream community’s

control path is known by every agent, the upstream community can now choose a

path a1(t) by applying the following maximization problem:

J1 = max
a1

∫ ∞
0

e−r1tv2(x1(t), a1(t))dt,

s.t. ẋ1 = f1 (x1(t), a1(t)) , x1(0) given.

Hence, for each optimal time path a∗1(t) chosen by the upstream community their

will be a corresponding best response path a∗2(t) for the downstream community.

The state and co-state variables corresponding to this optimal path are given by

x∗2(t) and λ∗2(t), respectively and satisfy x∗2(0) and the transversality condition

limt→∞ e−r2tλ∗2(t)x∗2(t) = 0. If λ∗2(0) depends on the optimal control path of the

leader, a∗1(t), then the open-loop equilibrium will not be time consistent. Hence at

any point in time in the future the control path for the follower at time t will de-

pend on future behavior of the leader and because of this, the open-loop Stackleberg

equilibria are usually not the appropriate equilibrium for this dynamic setting.

3 Dynamic Cooperative Game

Because we are looking at a numerical solution for this problem, we begin by breaking

time into short durations by letting τ = nh for n = 0, 1, · · · , and let x1,n = x1(nτ)

and x2,n = x2 (nτ). Similarly, a1,n = a1(nτ) and a2,n = a2(nτ). Using the Caucy

scheme

ẋ ≈ x(τ + h)− x(τ)
h
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the differential equations for x1 and x2 can be approximated by

x1,n+1 = b1x1,n +
xq11,n

1 + xq11,n
+ a1,n (3.1)

x2,n+1 = µx1,n + b2x2,n + ν
xq22,n

1 + xq2,n2
+ a2,n (3.2)

Notice that the differences in equations (3.1) and (3.2) are the term µx1,n in the

latter as well as the constant ν in the non-linear term. The units of mi/ri are the

same as t (i.e., units of time) so when

m1

r1
>
m2

r2

Using the discrete time steps of τ = nh, the objective function for the upstream

community becomes

∫ ∞
0

e−ρtv1(x1(t), a1(t))dt =
∫ ∞

0

e−r2tu1(x1(t))− c1(a1(t))dt

=
∞∑
n=0

∫ (n+1)h

nh

e−
ρm1τ
hr1 u1(x1(t))− c1(a1(t))dt

≈
∞∑
n=0

βn [u1(a1,n)− c1(x1,n)] (3.3)

where βn = exp ρm1/r1 . In similar fashion, we can approximate the objective

function for the downstream community as follows:

∫ ∞
0

e−ρtv2(x2(t), a2(t))dt =
∫ ∞

0

e−r2tu2(x2(t))− c2(a2(t))dt

≈
∞∑
n=0

βn [u2(a2,n)− c2(x2,n)] . (3.4)

In the literature on the lake game it is common to use the values of q1 = q2 = 2 and

the functional forms of ui(ai) = ln(ai) and ci(xi) = kixi for the community utility
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and cost functions4

For the cooperative we get the dynamic optimization, which we solve to get the

socially efficient outcome:

max
∞∑
n=0

βn
[
u1(a1,n)− c1(x1,n) + λ

(
u2(a2,n)− c2(x2,n)

)]
(3.5)

subject to: x1,n+1 = b1x1,n +
xq11,n

1 + xq11,n
+ a1,n (3.6)

x2,n+1 = µx1,n + b2x2,n + ν
xq22,n

1 + xq22,n
+ a2,n (3.7)

For convenience of notation, we define Gi(x, b, q) = bxi + xqii /(1 + xqii ). The value

function for the cooperative game is:

W (x1, x2) = max
a1,a2

{u1(a1)− c1(x1) + λ (u2(a2)− c2(x2))

+ βW (G1(x1, b1, q1) + a1, µx1 + νG2(x2, b2/ν, q2) + a2)} .(3.8)

The parameter λ is the relative weight of the two communities in the social costbenet

optimization. Now let u1(a) = u2(a) = ln(a) and ci(x) = kix
2.

The Euler equations for the cooperative game are as follows:

0 = W1(n) + β−1F3(n− 1) (3.9)

0 = F2(n) + β−1F4(n− 1) (3.10)

where the Wi denote the partial derivatives of the value function for the cooperative

4See Maler, Xepapadeas, and de Zeeuw (2003) for the specification of the functional form of the
model.
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game. These partial derivatives of W are given as follows:

W1(n) = −
{

G′(xn, b1)
xn+1 −G(xn, b1)

+ 2k1xn

+
λµ

yn+1 − νG(yn, b2/ν)− µxn

}
(3.11)

W2(n) = − λνG′(yn, b2/ν)
yn+1 − νG(yn, b2/ν)− µxn

− 2λk2yn (3.12)

W3(n− 1) =
1

xn −G(xn−1, b1)
(3.13)

(3.14)

W4(n− 1) =
λ

yn − νG(yn−1, b2/ν)− µxn−1
, (3.15)

where for shallow lakes (q = 2):

Gi(xi, b) = bx+
x2
i

1 + x2
i

and G′i(xi, b) = b+
2xi

(1 + x2
i )2

.

The steady state, (x̄, ȳ), which satisfies the Euler equations with xn = xn+1 = x̄

and yn = yn+1 = ȳ is given below:

β−1

x̄−G(x̄, b1)
=

G′1(x̄, b1)
x̄−G1(x̄, b1)

+ 2k1x̄+
λµ

ȳ − νG2(ȳ, b2/ν)− µx̄
(3.16)

and

β−1

ȳ − νG(ȳ, b2/ν)− µx̄
=

νG′2(ȳ, b2/ν)
ȳ − νG2(ȳ, b2/ν)− µx̄

+ 2k2ȳ (3.17)

The interesting term is the last one in the first steady state equation. Without it

the upper lake steady state would be the same as in the non cooperative solution.
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4 The Non-Cooperative Game

Under the discrete time formulation of this problem the upstream community solves

the following control problem

J1 = max
a1,n

∞∑
n=0

βn [u1(a1,n)− c1(x1,n)] (4.1)

s.t. x1,n+1 = b1x1,n +
xq11,n

1 + xq11,n
+ a1,n

The downstream community solves the following optimization problem

J2 = max
a2,n

∞∑
n=0

βn [u2(a2,n)− c2(x2,n)] (4.2)

s.t. x2,n+1 = µx1,n + b2x2,n + ν
xq22,n

1 + xq22,n
+ a2,n

As in the last section, the analytics (as well as the programming) can be simplified

by defining the auxiliary function

Gi(xi, bi, qi) = bixi +
xqii

1 + xqii
, i = 1, 2

The dynamics for the two lakes can then be written as

x1,n+1 = G1(x1,n, b1, q1) + a1,n

x2,n+1 = µx1,n +G2(x2,n, b2, q2) + a2,n

We will use the notation G′i(xi, bi, qi) to denote the derivative of Gi with respect to

xi, and similarly G′′i (xi, bi, qi) for the second derivative.

Note that the optimization problem for the downstream community depends also

on the outcome generated from the upstream community’s optimization problem.

Hence this is a dynamic Stackleberg game. For the upstream community, we know
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from Brock and Dechert (2000) that the upstream community will be converging

to one of the two steady states: xo1, which denotes the oligotrophic steady state,

or xe1, which we use to denote the eutrophic steady state for that lake. When

the upstream community is at one of these two steady states, the solution of the

downstream communitys optimization is stationary. In this case the technique in

Brock and Dechert can be used to get the noncooperative solution for the problem.

For a general initial condition, (x1,0, x2,0), it is the case that the upstream lake

converges to a steady state in a relatively few number of periods, typically between

30 and 50. We can solve the optimal control problem for the downstream lake by

using the solution sequence for the upstream lake and iterating the Euler equation

for the down stream lake backwards from the steady state.

For this stationary case, the optimization problem for the downstream commu-

nity as

J2 = max
x1,n

∞∑
n=0

βn [u2 (µx1,n + x2,n+1 + νG2(x2,n, b2/ν, q2))− c2(x2,n)]

s.t. x2,n+1 ≥ max {0, νG2 (x2,n, b2/ν, q2)− µx1,n} ,

and so the Euler equation for the downstream lake is

0 = β−1u′2 (µx1,n + x2,n+1 + νG2(x2,n, b2/ν, q2)

−u′2 (µx1,n + x2,n+1 + νG2(x2,n, b2/ν, q2) νG′ (x2,n, b2/ν, q2)− c′2 (x2,n)

To iterate this backwards, we need to be able to solve for x2,n−1 given values for

x2,n, x2,n+1, x1,n and x1,n+1.

For the non-stationary case, we note that the upper lake in the non cooperative

game converges to the steady state fairly quickly We can program the non time sta-

tionary dynamic programing problem as follows so that it exploits this observation.

Let x̄ be the steady state that the upper lake is converging towards. (Note that this
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may depend on the initial state if it is a Skiba lake.) Let x0, x1, · · · be the optimal

sequence statrting from x0, and suppose that by time T this sequence has for all

practical purposes converged to x̄ (i.e., we assume that xt = x̄ for all t ≥ T ). The

dynamic programming recursion for the lower lake is now given as follows

Vt−1(y) = −k2y
2 + max

u
{ln(u) + βVt (νG(y, b2/ν) + µxt−1 + u)} (4.3)

This is solved recursively as follows: By our assumption that xt = x̄ for t ≥ T , it

is the case that VT (y) = V (y) where V is the solution to the dynamic programming

problem when the upper lake is at steady state:

V (y) = −k2y
2 + max

u
{ln(u) + βV (νG(y, b2/ν) + µx̄+ u)}

for which we already have a program. So, the way to solve for V0 in equation (4.3)

is to solve it backwards from VT = V . Read in V and then compute VT−1. Now

iterate, for VT−2, · · · , V1, V0. To simulate the model (once you have the solution)

then you will need to store the optimal policy function for each stage. That is, if

ht−1(y) is the maximizing value of u in equation (4.3), then you will have to write

to disk the value of hT−1, hT−2, · · · , h1, h0.

5 Hamiltonian Dynamics

5.0.1 Stationary Case

Let’s start with the stationary dynamics (when the upper lake is at a steady state,

x̄, so that the downstream lake gets the constant amount of loading µx̄ from the

upper lake). The Hamiltonian is

H(y, p, u) = (νG(y, b2/ν) + µx̄+ u) p− ln(u) + ky2. (5.1)
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Maximizing the Hamiltonian with respect to u implies that p − 1
u = 0 or that

u = 1/p. The dynamics of the state–costate equations are:

yt+1 = νG(yt, b2/ν) + µx̄+
1
pt

(5.2)

β−1pt−1 = νG′(yt, b2/ν)pt + 2kyt (5.3)

Notice that to iterate these equations forward (in t) given values of y0 and p0

equation (5.2) can be solved for y1. Then with y1 and p0 equation (5.3) can be

solved for p1. To iterate these equations backwards given values of yT and pT , solve

equation (5.3) for pT−1. Then with the values of yT and pT−1 solve equation (5.2)

for yT−1. Notice that this step requires solving the non-linear equation

νG(yT−1, b2/ν) = yT − µx̄−
1

pT−1
(5.4)

for yT−1. Then continue in this fashion. If either yt < 0 or yt−µx̄−1/pt−1 at some

iteration, then stop.

The problem in this approach is that we cannot iterate the equations forward,

since we do not know the initial value to use for p0. However, what we do know is

that the sequence of state–costate variables is converging to a steady state which is

the solution to

ȳ = νG(ȳ, b2/ν) + µx̄+
1
p̄

β−1p̄ = νG′(ȳ, b2/ν)p̄+ 2kȳ.

The next thing to do is to linearize the dynamics at the steady state and to solve

for the stable and unstable manifolds. To that end, subtract equations (5.5) and
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(5.5) from equations (5.2) and (5.3) to get:

yt+1 − ȳ = ν (G(yt, b2/ν)−G(ȳ, b2/ν)) +
1
pt
− 1
p̄

(5.5)

β−1(pt−1 − p̄) = ν (G′(yt, b2/ν)pt −G′(ȳ, b2/ν)p̄) + 2k(yt − ȳ) (5.6)

Next, expand the right hand sides of equations (5.5) and (5.6) in a Taylor series at

(ȳ, p̄) keeping only the first order terms:

yt+1 − ȳ = νG′(ȳ, b2/ν)(yt − ȳ)− 1
p̄2

(pt − p̄) (5.7)

β−1(pt−1 − p̄) = (νG′′(ȳ, b2/ν)p̄+ 2k) (yt − ȳ) + νG′(ȳ, b2/ν)(pt − p̄) (5.8)

Finally, step up the dates from (t− 1, t) in equation (5.8) to (t, t+ 1) and collect

the terms in t+ 1 onto the left hand side and the terms in t onto the right hand side

to get the matrix equation:

A

 yt+1 − ȳ

pt+1 − p̄

 = B

 yt − ȳ

pt − p̄


The matrices A and B are

A =


1 0

νG′′(ȳ, b2/ν)p̄+ 2k νG′(ȳ, b2/ν)

 B =


νG′(ȳ, b2/ν) p̄−2

0 β−1


Note that this linear system is of the form

zt+1 = Czt (5.9)

where C = A−1B. Now, get the eigenvalues and eigenvectors of equation (5.9). Call

them (λ1, λ2) and (v1,v2), respectively. One of the two eigenvalues will be less than
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one in magnitude, say |λ1| < 1. Then v1 will be the linear approximation to the

stable manifold. If we let ε be small, we can start the backwards iteration scheme

at 
yT

pT

 =


ȳ

p̄

± εv1 (5.10)

where the sign on ε determines which side of the steady state to start the dynamics.

5.1 Time Non-Stationary Case

Now, we turn to the time non stationary case, when the loading from the upper

lake into the lower lake varies over time, µxt. The Hamiltonian for this case is time

dependent:

Ht(y, p, u) =
(
νG(y, b2/ν) + µxt + u

)
p− ln(u) + ky2

and the time dependence does not affect the solution of maximizing the Hamiltonian,

p− 1
u = 0.

Basically the rest of the solution is the same as above, but with x̄ replaced by

xt. The dynamics of the state–costate equations are:

yt+1 = νG(yt, b2/ν) + µxt +
1
pt

(5.11)

β−1pt−1 = νG′(yt, b2/ν)pt + 2kyt (5.12)

The steady state equations (5.5) and (5.5) are the same since the time dependent

case has the optimal sequence {xt} converging to x̄. To start the backwards iteration

of equations (5.11) and (5.12) simulate the upper lake for x0, x1, · · · , xT , where

xT is close (within ε) to x̄. Pick (yT , pT ) according to equation (5.10) and iterate

backwards to get {(yT−1, pT−1), · · · , (y0, p0)}. Along this solution path, the optimal

loading for the lower lake at (xt, yt) is ut = 1/pt.
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5.2 Cooperative Game

Equations (3.5) – (3.7) are the optimal control problem for the social optimum of the

coupled lake system. Using the function Gi, i = 1, 2, and letting xt = (x1,t,x2,t),

ut = (u1,t, u2,t) and pt = (p1,t, p2,t). The following notation will be used when there

is no time subscript: x = (x1, x2), u = (u1, u2) and p = (p1, p2)). The Hamiltonian

for the cooperative game is

H(x,p,u) = − ln(u1) + k1x
2
1 − λ

(
ln(u2)− k2x

2
2

)

+
(
G(x1, b1) + u1

)
p1 +

(
νG(x2, b2/ν) + µx1 + u2

)
p2

Maximizing the Hamiltonian with respect to u implies that

u1 =
1
p1

u2 =
λ

p2
(5.13)

and the resulting dynamics are

x1,t+1 = G(x1,t, b1) +
1
p1,t

(5.14)

x2,t+1 = νG(x2,t, b2/ν) + µx1,t +
λ

p2,t
(5.15)

β−1p1,t−1 = G′(x1,t, b1)p1,t + µp2,t + 2k1x1,t (5.16)

β−1p2,t−1 = νG′(x2,t, b2/ν)p2,t + 2λk2x2,t (5.17)
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The steady states5 satisfy the equations:

x̄1 = G(x̄1, b1) +
1
p̄1

(5.18)

x̄2 = νG(x̄2, b2/ν) + µx̄1 +
λ

p̄2
(5.19)

β−1p̄1 = G′(x̄1, b1)p̄1 + µp̄2 + 2k1x̄1 (5.20)

β−1p̄2 = νG′(x̄2, b2/ν)p̄2 + 2λk2x̄2 (5.21)

The linearized system around the steady states is:

x1,t+1 − x̄1 = G′(x̄1, b1)(x1,t − x̄1)− 1
p̄2
1

(p1,t − p̄1) (5.22)

x2,t+1 − x̄2 = νG′(x̄2, b2/ν)(x2,t − x̄2) + µ(x1,t − x̄1)

− λ

p̄2
2

(p2,t − p̄2) (5.23)

β−1(p1,t − p̄1) = G′(x̄1, b1)(p1,t+1 − p̄1) +G′′(x̄1, b1)p̄1(x1,t+1 − x̄1)

+ µ(p2,t+1 − p̄2) + 2k1(x1,t+1 − x̄1) (5.24)

β−1(p2,t − p̄2) = νG′(x̄2, b2/ν)(p2,t+1 − p̄2) + νG′′(x̄2, b2/ν)p̄2(x2,t+1 − x̄2)

+ 2λk2(x2,t+1 − x̄2) (5.25)

5Note that It is probably easier to calculate the steady states in two steps. First, use equations (3.16)
and (3.17) and solve for x̄1 and x̄2. Then use equations (5.20) and (5.21) to solve for p̄1 and p̄2. These
latter two equations are linear in p̄1 and p̄2 and so are trivial to solve.
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This time let zt be

zt =


x1,t

x2,t

p1.t

p2,t


,

then the matrix equation is again of the form zt+1 = Czt where C = A−1B and A

and B are

A =



1 0 0 0

0 1 0 0

G′′(x̄1, b1)p̄1 + 2k1 0 G′(x̄1, b1) µ

0 νG′′(x̄2, b2/ν)p̄2 + 2λk2 0 νG′(x̄2, b2/ν)


and

B =



G′(x̄1, b1) 0 −p̄−2
1 0

µ νg′(x̄2, b2/ν) 0 −λp̄−2
2

0 0 β−1 0

0 0 0 β−1



Let the eigenvalue–eigenvector pairs be (λi,vi) for i = 1, · · · , 4 and assume that

they are ordered in such a way that the first two have |λ1| < 1 and |λ2| < 1. Then

the linear approximation to the stable manifold at a steady state is the span of
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{v1,v2}. So for the backwards iteration of equations (5.14) – (5.17) start at


x1,T

x2,T

p1,T

p2,T


=


x̄1

x̄2

p̄1

p̄2


± ε1v1 ± ε2v2

for small values of ε1 and ε2. Again, the signs will determine what direction the

dynamics are coming from. Along the dynamics the optimal level of loadings will

be

u1.t =
1
p1,t

and u2,t =
1
p2,t

. (5.26)

6 Simulation Results

In this section we will focus on the equilibrium loadings generated from the non-

cooperative game. The results are not included here at present. We state that

the total loadings for the cooperative are always less than the total loadings of

the non-cooperative (except for the case where the welfare weight on the lower

lake community is zero, where the cooperative outcome coincides with the non-

cooperative game. We also state that for both cooperative and non-cooperative

games, there are four different “phases” that the system can be in with respect to

the parameters. They are

1. LSS: only the lower of the two steady states is an optimal steady state;

2. USS: only the upper of the two steady states is an optimal steady state;

3. SSS: there is only one steady state, which is therefore the optimal steady state;

and

4. Skiba: both steady states are optimal steady states and there is a Skiba point

in between them.

In Figure 1 both plots describe non-cooperative choices made for the downstream

lake as the upstream lake converges to its lower steady state. In the upper diagram,

there are two policy functions for the downstream lake. The red line is the policy
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function for the downstream lake when the upstream lake is at the lower steady state.

At steady state, the upstream lake is sending down 0.003347 units of phosphorus

(when µ = 0.01). Both lakes are oligotrophic. The blue line is the policy function

when the upstream lake is 40 periods away from steady state. At period 40, the

upstream lake is sending down 0.018237 units. Policy function characterizes a Skiba

lake.

Notice that the blue line is below the red line for low accumulations of phos-

phorus in the downstream lake and above the red line for high accumulations. This

influences the convergent path of the downstream lake when the upstream lake expe-

riences a shock. We define the flow from the upstream that changes the downstream

lake policy functions as µx. Figure 2 maps out the convergence paths given the

condition of the upstream lake. To produce this map, a program was written that

computed the policy function for the downstream lake when the upstream lake was

m periods away from its steady state. For this example, the upstream lake took up

to 41 periods to converge. The program generate 42 policy functions µt,41 to µt,0

(one for each period and steady state).

The lower diagram in Figure 1 illustrates the paths when y0 = 1.0. When the

policy function is Skiba, this initial value is to the left of the Skiba point. The

steady state value for the downstream lake is indicated with the dashed line. The

path when the upstream lake is at a steady state is represented with the solid black

line. If the upstream lake has a low accumulation of phosphorus, the initial runoff

to the downstream lake is less than µx. The downstream lakes policy function lies

below the policy function when the upstream lake is at a steady state. This implies

that convergence to the downstream steady state is faster. In the graph, this is

illustrated with the red line. The line was generate in the upstream lake was 10

periods away from steady state.

If the upstream has a high accumulation (µx0,j > µx) and the initial accumula-

tion of downstream phosphorus is high, the system eventually convergences to the

lower steady state but the time is longer and the system in the early stages accu-

mulates more phosphorus. This is illustrated by the blue line. The upstream lake
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was 40 periods away from steady state.

7 Conclusion

The model presented in this paper examined the situation where there are two lakes,

an upstream and a downstream lake, and two communities situated around each of

the lakes. The upstream lake feeds into the downstream lake via a connecting

waterway. As a byproduct of their day to day economic activities, the communities

situated around each of the shallow lakes will input phosphorus into their local lake

system, contributing to its phosphorus loading. However, the cumulative impact of

this localized pollution is compounded in the model presented in our paper. Here

the runoff from upstream pollution creates asymmetry in terms of the ability of each

lake to support local economic activity.

We show in the cooperative model that Pareto efficiency requires that upstream

agents limit their own consumption so as to increase that of downstream agents

whose marginal benefits are higher. The results from the non-cooperative dynamic

game characterize the impact from the flow of pollution from the neighboring up-

stream lake to the downstream lake when each of the communities adopt a separate

management strategy. We show that when both systems are at steady state, even

a small flow of pollution from the upstream lake can radically change the optimal

pollution policy of the downstream lake from one that converges to a lower (olig-

otrophic) state to one that leads to an upper (eutrophic) steady state.

In the dynamic game the modeling approach used in this paper uses a potential as

a means of finding the open-loop non-cooperative equilibrium. As shown in Dechert

(2000) one benefit from employing this procedure is that because the equilibrium

emerges as a solution to an optimal control, when the optimal control problem is

solved via dynamic programming its will automatically solve the closed-loop prob-

lem. Hence the open-loop equilibrium will also be closed-loop Nash equilibrium. One

potential difficult with results obtained using the non-cooperative model is that the

outcome of the game is dynamic Stackleberg equilibrium in which the leader is the

upstream community. Closed-loop Stackleberg equilibria are notoriously difficult to
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solve.

We adapt the approach of Dechert and Brock, by using backward induction

methods from the steady state point to solve the potential function iteratively, to

generate the closed-loop equilibrium. The numerical results show that an upstream

lake converging to its steady state with low accumulation increases the speed of

convergence of the downstream lake but does not change its path overall. If the

upstream lake is converging to its steady state from high accumulation of pollution,

the downstream lake eventually converges to its lower steady state but initially, the

lake undergoes a transient state with the accumulation of pollution in the down-

stream lake converging toward its upper steady state. Hence the convergent paths

for the downstream lake illustrate the impact of the upstream lakes convergence to

a low steady state given low or high accumulations of pollution.
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lake community changing c
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Figure 3: Stability analysis of the policy functions for the downstream lake community
changing µ
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