Introduction	App1: Aircraft trajectories	MADS 0000000000000000000000	App2: SOLAR	NOMAD 000000	References

Blackbox optimization: Algorithms and applications

Sébastien Le Digabel

GROUPE D'ÉTUDES ET DE RECHERCHE EN ANALYSE DES DÉCISIONS

CIROQUO, 2023-06-29

Presentation outline

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

Introduction •0000	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

Blackbox / Derivative-Free Optimization

We consider

 $\min_{x\in\Omega} \quad f(x)$

where the evaluations of f and the functions defining Ω are the result of a computer simulation (a blackbox)

$$x \in \mathbb{R}^{n} \xrightarrow{\text{for (i = 0 ; i < nc ; ++i)}}_{\substack{\text{if (i != hat_i) } \\ j = rp.pickup(); \\ if (j == hat_i) \\ j = rp.pickup(); }} f(x)$$

Each call to the simulation may be expensive

The simulation can fail

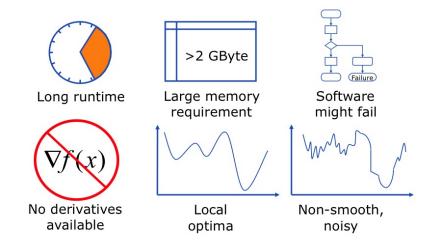
► Sometimes $f(x) \neq f(x)$

Derivatives are not available and cannot be approximated

App2: SOLAR

NOMAD References

Blackboxes as illustrated by a Boeing engineer



Copyright © 2009 Boeing. All rights reserved.

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References
Terms	"Derivative-Free Optimiza	ntion (DEO) is the main	athematical stud	Sympy Series hope and Reactal System	
	ptimization algorithms th		tinematicai stuu	Charles Audet Warren Hare	dia Fara

derivatives" [Audet and Hare, 2017]

- Optimization without using derivatives
- Derivatives may exist but are not available
- Obj./constraints may be analytical or given by a blackbox

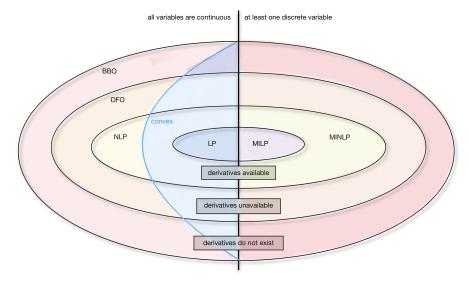
Deringer

 "Blackbox Optimization (BBO) is the study of design and analysis of algorithms that assume the objective and/or constraints functions are given by blackboxes" [Audet and Hare, 2017]

- A simulation, or a blackbox, is involved
- Obj./constraints may be analytical functions of the outputs
- Derivatives may be available (ex.: PDEs)
- Sometimes referred as Simulation-Based Optimization (SBO)

Introduction ○○○○●	App1: Aircraft trajectories	MADS 0000000000000000000000	App2: SOLAR	NOMAD 000000	References

Optimization: Global view



Introduction	App1: Aircraft trajectories ●○○○○○	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

Aircraft takeoff trajectories

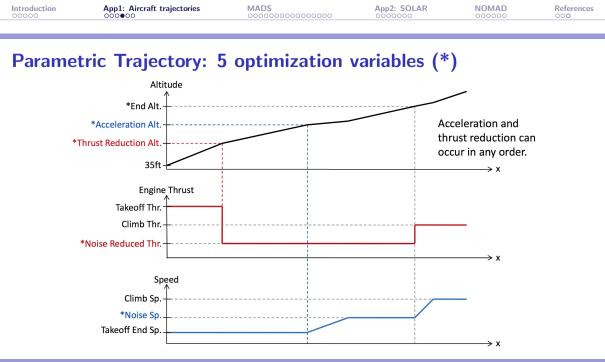
▶ [Torres et al., 2011]

- AIRBUS problem involving (among others): O. Babando, C. Bes, J. Chaptal, J.-B. Hiriart-Urruty, B. Talgorn, B. Tessier, and R. Torres

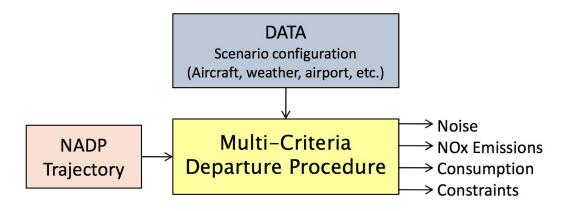
Biobjective optimization problem

Definition of the optimization problem

- Concept : Optimization of vertical flight path based on procedures designed to reduce noise emission at departure to protect airport vicinity
- Minimization of environmental and economical impact: Noise and fuel consumption
- Variables define the NADP (Noise Abatement Departure Procedure): During departure phase, the aircraft will target its climb configuration:
 - Increase the speed up to climb speed (acceleration phase)
 - Reduce the engine rate to climb thrust (reduction phase)
 - Gain altitude



The blackbox: Multi-Criteria Departure Procedure



One evaluation \simeq 2 seconds

Special features

- Must execute on different platforms including some old Solaris distributions
- ► The best trajectory parameters are returned to the pilot who enters them in the aircraft system manually → the less decimals the better
- ► Finite precision on optimization parameters: Discretization of optimization variables → granular variables [Audet et al., 2019]

Introduction	App1: Aircraft trajectories	MADS •000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

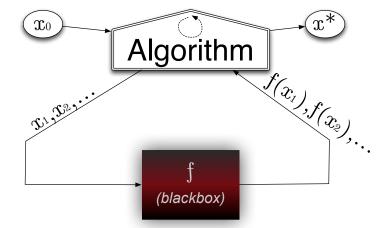
Example 2: Solar thermal power plant

The NOMAD software package

References

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

Typical setting



Unconstrained case, with one initial starting solution

Algorithms for blackbox optimization

A method for blackbox optimization should ideally:

- Be efficient given a limited budget of evaluations
- Be robust to noise and blackbox failures
- Natively handle general constraints
- Deal with multiobjective optimization
- Deal with integer and categorical variables
- Easily exploit parallelism
- Have a publicly available implementation
- Have convergence properties ensuring first-order local optimality in the smooth case – otherwise why using it on more complicated problems?

Families of methods

- "Computer science" methods:
 - Heuristics such as genetic algorithms
 - No convergence properties
 - Cost a lot of evaluations
 - Should be used only in last resort for desperate cases

Statistical methods:

- Design of experiments
- Bayesian optimization: EGO algorithm based on surrogates and expected improvement
- Still limited in terms of dimension
- Does not natively handle constraints
- Good to use these tools in conjonction with DFO methods

Derivative-Free Optimization methods (DFO)

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

DFO methods

Model-based methods:

- Derivative-Free Trust-Region methods
- Based on quadratic models or radial-basis functions
- Use of a trust-region
- Better for $\{ \mathsf{DFO} \setminus \mathsf{BBO} \}$
- Not resilient to noise and hidden constraints
- Not easy to parallelize

Direct-search methods:

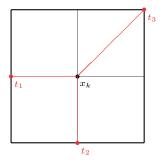
- Classical methods: Coordinate search, Nelder-Mead the other simplex method
- Modern methods: Generalized Pattern Search, Generating Set Search, Mesh Adaptive Direct Search (MADS)

So far, the size of the instances (variables and constraints) is typically limited to $\simeq 50$, and we target local optimization

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

MADS illustration with n = 2: Poll step

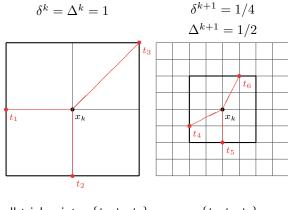
$$\delta^k = \Delta^k = 1$$



poll trial points= $\{t_1, t_2, t_3\}$

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References

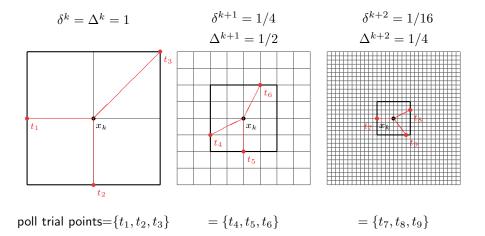
MADS illustration with n = 2: Poll step



poll trial points= $\{t_1, t_2, t_3\}$ = $\{t_4, t_5, t_6\}$

Introduction	App1: Aircraft trajectories	MADS 0000000000000000	App2: SOLAR	NOMAD 000000	References

MADS illustration with n = 2: Poll step



Introduction

App1: Aircraft trajectories

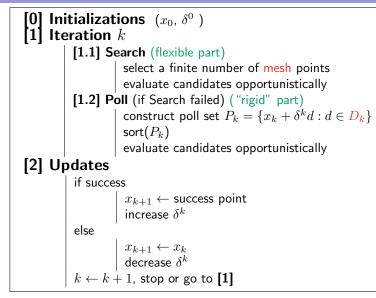
MADS

Apj 00

App2: SOLAR

References

NOMAD



The MADS algorithm [Audet and Dennis, Jr., 2006]

Special features of MADS

- Constraints handling with the Progressive Barrier technique [Audet and Dennis, Jr., 2009]
- Surrogates [Talgorn et al., 2015]
- Categorical/Meta variables [Audet et al., 2023]
- ► Granular and discrete variables [Audet et al., 2019]
- Global optimization [Audet et al., 2008a]
- ▶ Parallelism [Le Digabel et al., 2010, Audet et al., 2008b]
- Multiobjective optimization [Audet et al., 2008c, Bigeon et al., 2021]
- Sensitivity analysis [Audet et al., 2012]
- ▶ Handling of stochastic blackboxes [Alarie et al., 2021, Audet et al., 2021]

Introduction	App1: Aircraft trajectories	MADS 00000000000000000	App2: SOLAR	NOMAD 000000	References

Some MADS features

In the following slides, we focus on these MADS features:

Constraints handling

Use of surrogates

Domain: $\Omega = \{x \in \mathcal{X} : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$

 \blacktriangleright *X* corresponds to <u>unrelaxable</u> constraints

Cannot be violated;

Example: x > 0 when $\log x$ is used inside the simulation

 $\text{Domain:} \ \ \Omega = \{x \in \mathcal{X}: c_j(x) \leq 0, j \in J\} \subset \mathbb{R}^n$

- \mathcal{X} corresponds to unrelaxable constraints
- ▶ $c_i(x) \leq 0$: Relaxable and quantifiable constraints

May be violated at intermediate designs

 $c_j(x)$ measures the violation

Example: $cost \leq budget$

Domain: $\Omega = \{x \in \mathcal{X} : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$

- \mathcal{X} corresponds to unrelaxable constraints
- $c_j(x) \leq 0$: Relaxable and quantifiable constraints
- Hidden constraints

when the simulation fails, even for points in $\boldsymbol{\Omega}$

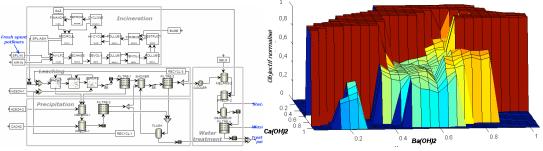
Example:

Segmentation fault Bus error ERROR 42 DIVISION BY ZERO

Domain: $\Omega = \{x \in \mathcal{X} : c_j(x) \leq 0, j \in J\} \subset \mathbb{R}^n$

- \mathcal{X} corresponds to unrelaxable constraints
- $c_j(x) \le 0$: Relaxable and quantifiable constraints
- Hidden constraints

Example: Chemical process:



7 variables, 4 constraints. The ASPEN software fails on 43% of the calls

Three strategies to deal with constraints

Extreme barrier (EB)

Treats the problem as being unconstrained, by replacing the objective function f(x) by

$$f_{\Omega}(x) := \begin{cases} f(x) & \text{if } x \in \Omega \\ \infty & \text{otherwise} \end{cases}$$

The problem

$$\min_{x \in \mathbb{R}^n} f_{\Omega}(x)$$

is then solved.

Remark: this strategy can also be applied to a priori constraints in order to avoid the costly evaluation of f(x)

Three strategies to deal with constraints

- Extreme barrier (EB)
- Progressive barrier (PB)

Defined for relaxable and quantifiable constraints.

As in the filter methods of Fletcher and Leyffer, it uses the non-negative constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$

$$h(x) := \begin{cases} \sum_{j \in J} \left(\max(c_j(x), 0) \right)^2 & \text{if } x \in \mathcal{X} \\ \infty & \text{otherwise} \end{cases}$$

At iteration k, points with $h(x)>h_k^{\max}$ are rejected by the algorithm, and h_k^{\max} decreases toward 0 as $k\to\infty$

 App2: SOLAR

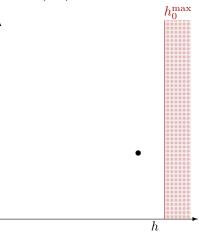
References

NOMAD

Three strategies to deal with constraints

- Extreme barrier (EB)
- Progressive barrier (PB)

f



Introduction

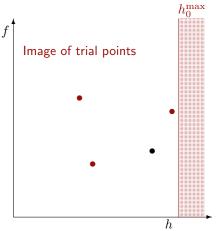
App1: Aircraft trajectories

MADS

App2: SOLAR

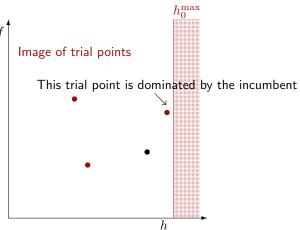
NOMAD References

- Extreme barrier (EB)
- Progressive barrier (PB)



Introduction	App1: Aircraft trajectories	MADS	App2: SOLAR	NOMAD	References

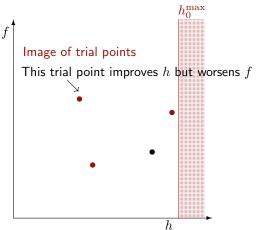
- Extreme barrier (EB)
- Progressive barrier (PB)



 Introduction
 App1: Aircraft trajectories
 MADS
 App2: SOLAR
 NOMAD
 References

 00000
 0000000
 000000
 000000
 000000
 000000
 000000

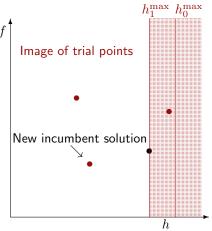
- Extreme barrier (EB)
- Progressive barrier (PB)



App2: SOLAR

NOMAD References

- Extreme barrier (EB)
- Progressive barrier (PB)



Three strategies to deal with constraints

- Extreme barrier (EB)
- Progressive barrier (PB)
- Progressive-to-Extreme Barrier (PEB)

Initially treats a relaxable+quantifiable constraint by the progressive barrier. Then, if polling around the infeasible poll center generates a new infeasible incumbent that satisfies a constraint violated by the poll center, then that constraint moves from being treated by the progressive barrier to the extreme barrier

Static versus dynamic surrogates

- Static surrogate: A cheaper model defined a priori by the user. It is used as a blackbox. Typically a simplified physics model. Variable fidelity may be considered.
- Dynamic surrogate: Model managed by the algorithm, based on past evaluations. It can be periodically updated.

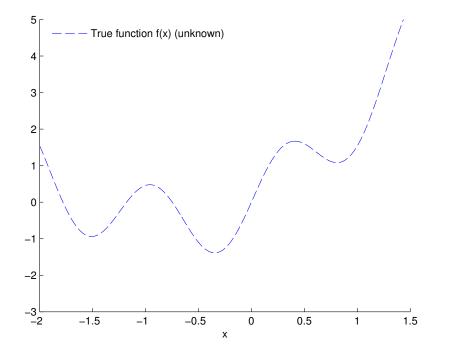
In the remaining, we focus on dynamic surrogates

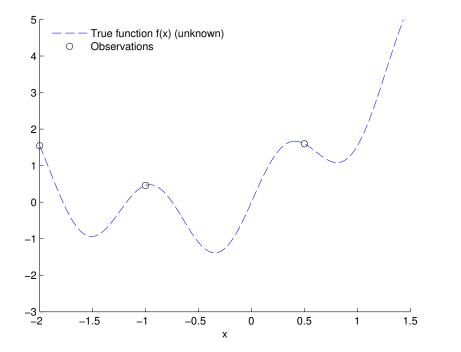
Surrogate-assisted optimization

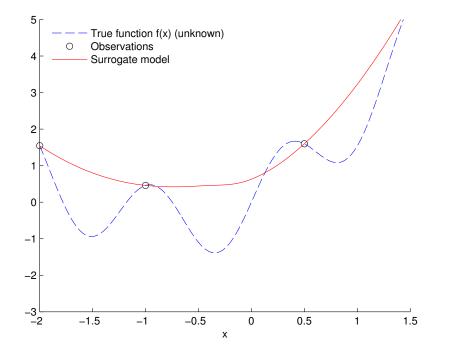
- 1. Use $[\mathbf{X}, f(\mathbf{X})]$ to build a surrogate \hat{f} of the function f
- 2. Find $x_S \in \underset{x}{\operatorname{argmin}} \hat{f}(x)$ (or minimize another criteria such as the EI)
- **3.** Evaluate $f(x_S)$
- 4. $\mathbf{X} \leftarrow \mathbf{X} \cup \{x_S\}$
- 5. Go back to Step 1.

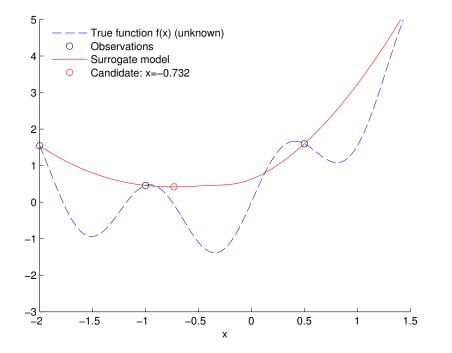
For constrained problems the same method can be used for constrained problems:

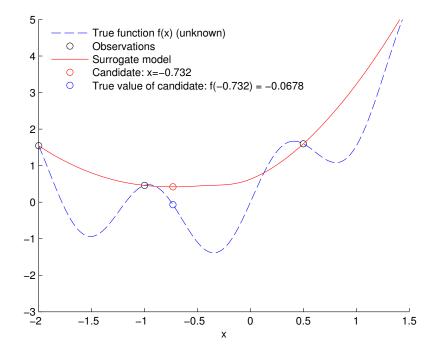
- Build the models of the constraints
- $x_S \leftarrow \text{minimizer of } \hat{f} \text{ subject to the constraints } \hat{c}_j \leq 0, \ j = 1, 2, \dots, m$

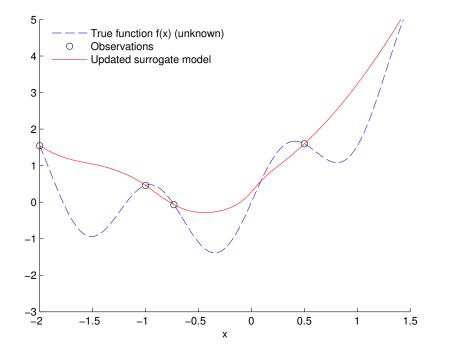


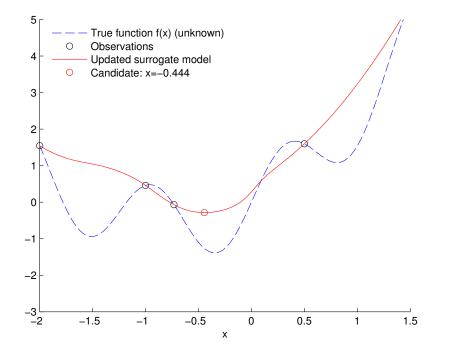


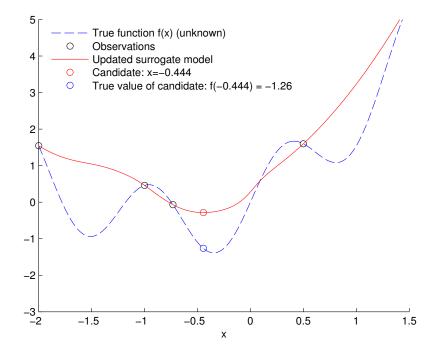


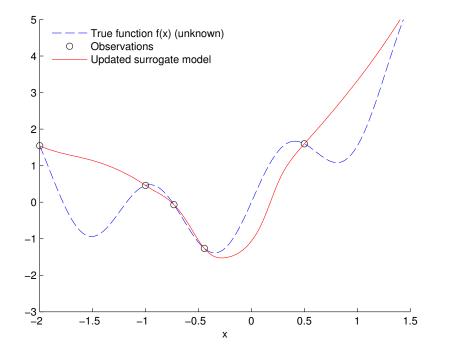


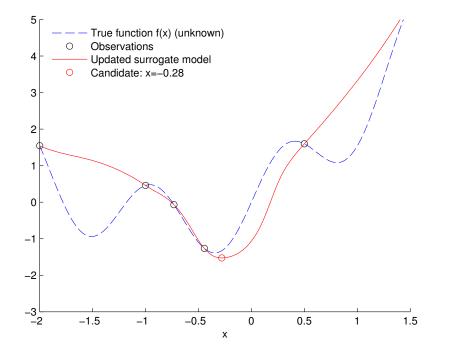


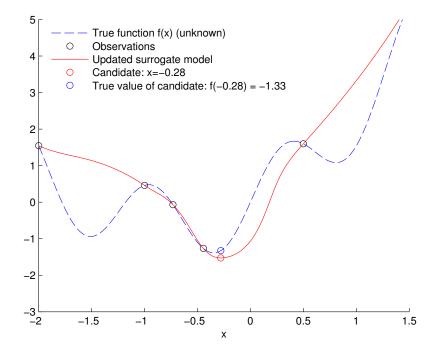


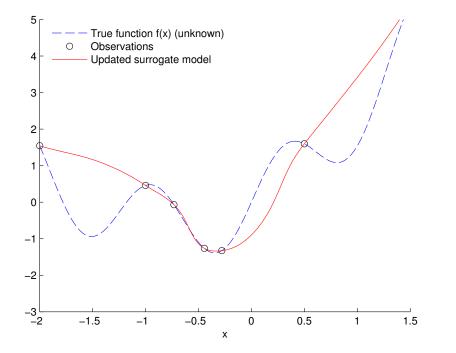


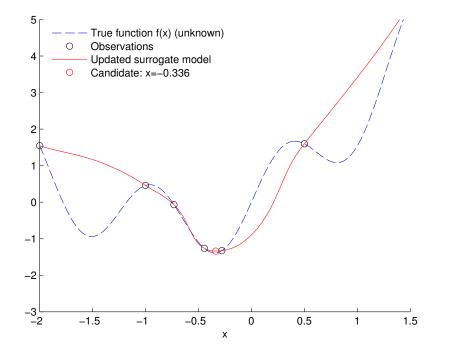


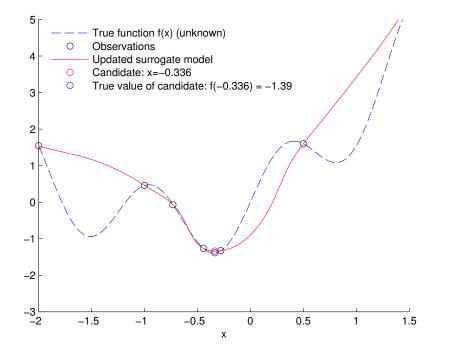


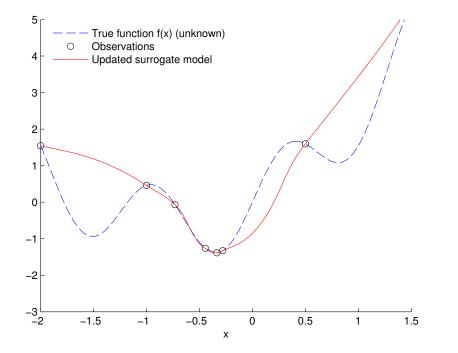


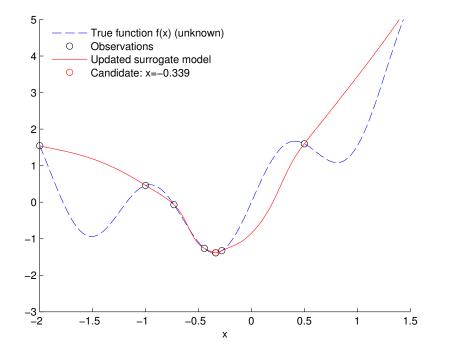












Introduction	App1: Aircraft trajectories	MADS 0000000000000000000000000	App2: SOLAR	NOMAD 000000	References

Surrogate-assisted optimization in MADS

- 1. Initialization:
 - lnitial design (x_0)
 - Initial mesh and poll sizes (δ^0 , Δ^0)
- 2. Search
 - Build the surrogates \hat{f} and $\{\hat{c}_j\}_{j=1,2,...,m}$
 - ▶ $\mathbf{x}_{S} \leftarrow$ solution of the surrogate problem, projected on the current mesh
 - If \mathbf{x}_S is a success, repeat the search
- 3. Poll
 - Construct the poll candidates
 - Use the surrogates to order the poll candidates
 - Evaluate the poll candidates opportunistically
- 4. If no stopping criteria is met, go back to Step 2.

What is a good model for surrogate-assisted optimization

▶ Good model of the objective *f*: respects the **order** between two candidates:

$$f(\mathbf{x}) \leq f(\mathbf{x}') \Leftrightarrow \hat{f}(\mathbf{x}) \leq \hat{f}(\mathbf{x}') \text{ for all } \mathbf{x}, \mathbf{x}' \in \mathcal{X}$$

▶ Good model of a constraint c_j : respects the **sign** of the function:

$$c_j(\mathbf{x}) \leq 0 \Leftrightarrow \hat{c}_j(\mathbf{x}) \leq 0$$
 for all $\mathbf{x} \in \mathcal{X}$

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR ●000000	NOMAD 000000	References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

References

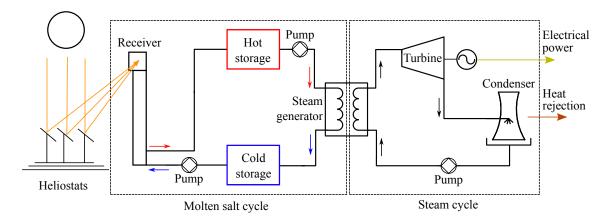
CSP power plant with molten salt thermal energy storage

- A large number of mirrors (heliostats) reflects solar radiation on a receiver at the top of a tower
- The heat collected from the concentrated solar flux is removed from the receiver by a stream of molten salt
- Hot molten salt is then used to feed thermal power to a conventional power block
- The photo shows the Thémis CSP power plant, the first built with this design

Source: https://commons.wikimedia.org/wiki/File:Themis_2.jpg

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR ○○●○○○○	NOMAD 000000	References

System dynamics



Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR ○○○●○○○	NOMAD 000000	References

Ten instances

Instance	#	[∉] of variables		# of obj.	#	of constraints		# of stoch. outputs	Static
	cont.	discr. (cat.)	n	p	simu.	a priori (lin.)	m	(obj. or constr.)	surrogate
solar1	8	1 (0)	9	1	2	3 (2)	5	1	no
solar2 ¹	12	2 (0)	14	1	9	4 (2)	13	3	yes
solar3	17	3 (1)	20	1	8	5 (3)	13	5	yes
solar4	22	7 (1)	29	1	9	7 (5)	16	6	yes
solar5	14	6(1)	20	1	8	4 (3)	12	0	no
solar6	5	0 (0)	5	1	6	0 (0)	6	0	no
solar7	6	1 (0)	7	1	4	2 (1)	6	3	yes
solar8	11	2 (0)	13	2	4	5 (3)	9	3	yes
solar9	22	7 (1)	29	2	10	7 (5)	17	6	yes
solar10 ²	5	0 (0)	5	1	0	0 (0)	0	0	yes

¹analytic objective ²unconstrained

Features for BBO benchmarking

- Several numerical methods: real-world blackbox
- Reproducibility accros all platforms
- Continuous and discrete variables
- Different types of constraints (quantifiable, relaxable, a priori, hidden)
- Stochastic and deterministic outputs
- Static surrogates with variable fidelity
- Number of replications is controlable

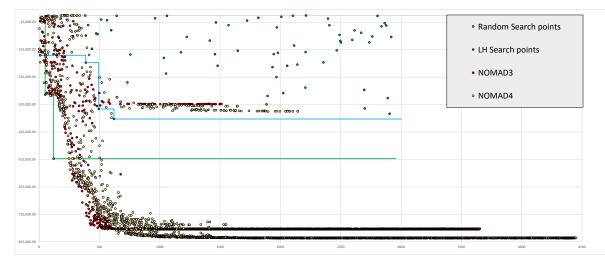
Feasibility with sampling and NOMAD

Instance	LH search (10k points)		NOMAD3				
Instance	satisf. ap constr.	feas. pts	satisf. ap constr.	feas. pts	number of eval.		
solar1	30%	0.35%	96%	74%	3,792		
solar2	0%	0%	97%	0%	1,635		
solar3	0.49%	0%	99%	9%	30,525		
solar4	0%	0%	83%	0%	44,303		
solar5	0%	0%	83%	59%	3,405		
solar6	90%	5%	99%	0%	3,539		
solar7	2%	1%	74%	72%	2,224		
solar8	1%	0.03%					
solar9	1%	0%					

there has been no violation of hidden constraints during the construction of this table

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR ○○○○○○●	NOMAD 000000	References

$Optimization \ on \ solar1$



Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD ●○○○○○	References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

NOMAD (Nonlinear Optimization with MADS)

- ▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]
- Standard C++. Runs on Linux, Mac OS X and Windows
- Parallel versions
- MATLAB versions; Multiple interfaces (Python, Julia, etc.)
- Open and free LGPL license
- Download at https://www.gerad.ca/nomad
- Support at nomad@gerad.ca

 Related articles in TOMS [Le Digabel, 2011] and [Audet et al., 2022]

References

App2: SOLAR

Main functionalities (1/2)

- Single or biobjective optimization
- Variables:
 - Continuous, integer, binary, categorical, granular
 - Periodic
 - Fixed
 - Groups of variables
- Searches:
 - Latin-Hypercube
 - Variable Neighborhood Search
 - Nelder-Mead Search
 - Quadratic models
 - Statistical surrogates
 - User search

App2: SOLAR

Main functionalities (2/2)

- Constraints treated with 4 different methods:
 - Progressive Barrier (default)
 - Extreme Barrier
 - Progressive-to-Extreme Barrier
 - Filter method
- Several direction types:
 - Coordinate directions
 - LT-MADS
 - OrthoMADS
 - Hybrid combinations
- Sensitivity analysis
- $\rightarrow\,$ default values for all parameters
- $\rightarrow\,$ all items correspond to published or submitted papers

Blackbox conception (batch mode)

Command-line program that takes in argument a file containing x, and displays the values of f(x) and the $c_j(x)$'s

Can be coded in any language

Typically: > bb.exe x.txt displays f c1 c2 (objective and two constraints)

NOMAD

00000

Run NOMAD

> nomad parameters.txt

```
[iota ~/Desktop/2018 UQAC NOMAD/demo NOMAD/mac] > ../nomad.3.8.1/bin/nomad parameters.txt
NOMAD - version 3.8.1 has been created by {
        Charles Audet
                          - Ecole Polytechnique de Montreal
        Sebastien Le Digabel - Ecole Polytechnique de Montreal
        Christophe Tribes - Ecole Polytechnique de Montreal
The copyright of NOMAD - version 3.8.1 is owned by {
        Sebastien Le Digabel - Ecole Polytechnique de Montreal
        Christophe Tribes - Ecole Polytechnique de Montreal
NOMAD v3 has been funded by AFOSR, Exxon Mobil, Hydro Québec, Rio Tinto and
IVADO.
NOMAD v3 is a new version of NOMAD v1 and v2. NOMAD v1 and v2 were created
and developed by Mark Abramson, Charles Audet, Gilles Couture, and John E.
Dennis Jr., and were funded by AFOSR and Exxon Mobil.
License : '$NOMAD HOME/src/lgpl.txt'
User guide: '$NOMAD HOME/doc/user guide.pdf'
Examples : '$NOMAD HOME/examples'
Tools : 'SNOMAD HOME/tools'
Please report bugs to nomad@gerad.ca
Seed: 0
MADS run {
        BBE
               OBJ
        4
                0.0000000000
        21
                -1.0000000000
        23
                -3.0000000000
        51
                -4.0000000000
        563
               -4.0000000000
} end of run (mesh size reached NOMAD precision)
blackbox evaluations
                                        : 563
best infeasible solution (min. violation): ( 1.000000013 1.000000048 0.9999999797 0.999999992 -4 ) h=1.10134e-13 f=-4
best feasible solution
                                       : (1111-4) h=0 f=-4
```

Introduction	App1: Aircraft trajectories	MADS 0000000000000000000000	App2: SOLAR	NOMAD 000000	References ●○O

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References ○●O

Summary

- Blackbox optimization motivated by industrial applications
- Algorithmic features backed by mathematical convergence analyses and published in optimization journals
- NOMAD: Software package implementing MADS
- Open source; LGPL license
- Features: Constraints, biobjective, global optimization, surrogates, several types of variables, parallelism
- Fast support at nomad@gerad.ca
- ► NOMAD has become a baseline for benchmarking DFO algorithms

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD	References
Referen	ces I				

References I

Alarie, S., Audet, C., Bouchet, P.-Y., and Le Digabel, S. (2021). Optimisation of stochastic blackboxes with adaptive precision. SIAM Journal on Optimization, 31(4):3127-3156. Audet, C., Béchard, V., and Le Digabel, S. (2008a). Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization, 41(2):299-318. Audet, C. and Dennis, Jr., J. (2006). Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization, 17(1):188-217. Audet, C. and Dennis, Jr., J. (2009). A Progressive Barrier for Derivative-Free Nonlinear Programming. SIAM Journal on Optimization, 20(1):445-472. Audet, C., Dennis, Jr., J., and Le Digabel, S. (2008b). Parallel Space Decomposition of the Mesh Adaptive Direct Search Algorithm. SIAM Journal on Optimization, 19(3):1150-1170. Audet, C., Dennis, Jr., J., and Le Digabel, S. (2012). Trade-off studies in blackbox optimization. Optimization Methods and Software, 27(4-5):613-624. Audet, C., Dzahini, K., Kokkolaras, M., and Le Digabel, S. (2021). Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates.

Computational Optimization and Applications, 79(1):1-34.

Introduction	App1: Aircraft trajectories	MADS 000000000000000000000000000000000000	App2: SOLAR	NOMAD 000000	References ○○●

References II

Audet, C., Hallé-Hannan, E., and Le Digabel, S. (2023).

A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables. *Operations Research Forum*, 4(12).

Audet, C. and Hare, W. (2017).

Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Cham, Switzerland.

Audet, C., Le Digabel, S., Rochon Montplaisir, V., and Tribes, C. (2022). Algorithm 1027: NOMAD version 4: Nonlinear optimization with the MADS algorithm. *ACM Transactions on Mathematical Software*, 48(3):35:1–35:22.

Audet, C., Le Digabel, S., and Tribes, C. (2019).

The Mesh Adaptive Direct Search Algorithm for Granular and Discrete Variables. *SIAM Journal on Optimization*, 29(2):1164–1189.

Audet, C., Savard, G., and Zghal, W. (2008c).

Multiobjective Optimization Through a Series of Single-Objective Formulations. SIAM Journal on Optimization, 19(1):188–210.

Bigeon, J., Le Digabel, S., and Salomon, L. (2021).

DMulti-MADS: Mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization. Computational Optimization and Applications, 79(2):301–338.

Le Digabel, S. (2011).

Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4):44:1–44:15.

References III

Le Digabel, S., Abramson, M., Audet, C., and Dennis, Jr., J. (2010). Parallel Versions of the MADS Algorithm for Black-Box Optimization.

In Optimization days, Montréal. Slides available at https://www.gerad.ca/Sebastien.Le.Digabel/talks/2010_JOPT_25mins.pdf.

Le Digabel, S. and Wild, S. (2015).

A Taxonomy of Constraints in Simulation-Based Optimization. Technical Report 1505.07881, ArXiv.

Talgorn, B., Le Digabel, S., and Kokkolaras, M. (2015).

Statistical Surrogate Formulations for Simulation-Based Design Optimization. *Journal of Mechanical Design*, 137(2):021405–1–021405–18.

Torres, R., Bès, C., Chaptal, J., and Hiriart-Urruty, J.-B. (2011).

Optimal, Environmentally-Friendly Departure Procedures for Civil Aircraft. *Journal of Aircraft*, 48(1):11–22.