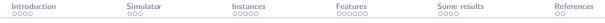


solar: A solar thermal power plant simulator for blackbox optimization benchmarking

Sébastien Le Digabel


GROUP FOR RESEARCH IN DECISION ANALYSIS

POLYTECHNIQUE Montréal

TECHNOLOGICAL UNIVERSITY

SIAM OP23, 2023-06-02

Presentation outline

Introduction

The solar simulator

The solar instances

The solar features

Examples of results

Introduction •000	Simulator	Instances	Features	Some results	References

The solar simulator

The solar instances

The solar features

Examples of results

Contributors

- ▶ This work is based on the MSc thesis of [Lemyre Garneau, 2015]
- The other contributors are
 - Charles Audet
 - Miguel Diago
 - Aïmen Gheribi
 - Mona Jeunehomme
 - Xavier Lebeuf
 - Viviane Rochon Montplaisir
 - Bastien Talgorn
 - Nicolau Andres Thio
 - Christophe Tribes

Context: Blackbox Optimization (BBO)

$$\min_{\mathbf{x}\in\mathcal{X}} \quad F(\mathbf{x}) \text{ s.t. } \mathbf{x}\in\Omega = \{\mathbf{x}\in\mathcal{X}: c_j(\mathbf{x})\leq 0, j=1,2,\ldots,m\}$$

 \mathcal{X} is a *n*-dimensional space, *F* can have p = 1 or p = 2 components, and the evaluations of *F* and the c_i 's are provided by a blackbox:

$$\begin{array}{c} \mathbf{x} \in \mathcal{X} \\ \hline \text{if (i!=hat_i)} \\ n \text{ inputs} \end{array} \xrightarrow{\text{for (i=0; i < nc; ++i)}}_{\substack{\text{if (i!=hat_i)} \\ j = rp.pickup(); \\ j = rp.pickup(); \\ j = rp.pickup(); \\ \end{array}} F(\mathbf{x}), c_j(\mathbf{x}), j = 1, 2, \dots, m$$

- Each call to the blackbox may be expensive
- The evaluation can fail
- Sometimes $F(\mathbf{x}) \neq F(\mathbf{x})$
- Derivatives are not available and cannot be approximated

Objectives of this work

Provide a realistic application for "true" BBO benchmarking, that

- is easy to install (stand-alone, standard code)
- is multiplatform
- allows to reproduce results
- includes many options allowing to
 - test different aspects of BBO such as
 - time-consuming evaluations
 - discrete/categorical variables
 - constraints handling
 - noise in the blackbox outputs
 - static surrogates
 - multiobjective optimization
 - propose sets of instances to draw performance/data profiles

Introduction	Simulator •00	Instances	Features	Some results	References

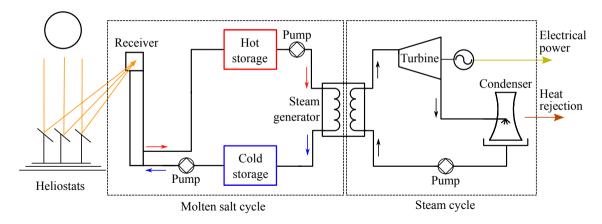
The solar simulator

The solar instances

The solar features

Examples of results

CSP power plant with molten salt thermal energy storage


- A large number of mirrors (heliostats) reflects solar radiation on a receiver at the top of a tower
- The heat collected from the concentrated solar flux is removed from the receiver by a stream of molten salt
- Hot molten salt is then used to feed thermal power to a conventional power block
- The photo shows the Thémis CSP power plant, the first built with this design

Source: https://commons.wikimedia.org/wiki/File:Themis_2.jpg

Introduction	Simulator	Instances 00000	Features	Some results	References

System dynamics

Introduction	Simulator	Instances • 0000	Features	Some results	References

The solar simulator

The solar instances

The solar features

Examples of results

Introduction	Simulator	Instances ○●○○○	Features	Some results	References

The solar code is

- a command-line application
- ▶ the "natural heir" of our STYRENE simulator [Audet et al., 2008]
- publicly available at https://github.com/bbopt/solar under the GNU Lesser General Public License
- ▶ a relatively simple code in standard C++ (\simeq 15k lines of codes)
- stand-alone: no external library to install
- multi-platform: C++ compilator is the only requirement

Introduction	Simulator	Instances	Features	Some results	References

Ten instances

Instance	#	of variables		# of obj.	#	of constraints		# of stoch. outputs	Static
	cont.	discr. (cat.)	n	p	simu.	a priori (lin.)	m	(obj. or constr.)	surrogate
solar1	8	1 (0)	9	1	2	3 (2)	5	1	no
solar2 ¹	12	2 (0)	14	1	9	4 (2)	13	3	yes
solar3	17	3 (1)	20	1	8	5 (3)	13	5	yes
solar4	22	7 (1)	29	1	9	7 (5)	16	6	yes
solar5	14	6 (1)	20	1	8	4 (3)	12	0	no
solar6	5	0 (0)	5	1	6	0 (0)	6	0	no
solar7	6	1(0)	7	1	4	2 (1)	6	3	yes
solar8	11	2 (0)	13	2	4	5 (3)	9	3	yes
solar9	22	7 (1)	29	2	10	7 (5)	17	6	yes
solar10 ²	5	0 (0)	5	1	0	0 (0)	0	0	yes

¹analytic objective ²unconstrained

Introduction	Simulator	Instances 00000	Features	Some results	References
Types of	variables				
	$\min_{\mathbf{x}\in\mathcal{X}} F(\mathbf{x}) s$	t. $\mathbf{x} \in \Omega = {\mathbf{x} \in Z}$	$\mathcal{X}: c_j(\mathbf{x}) \le 0, j =$	$1, 2, \ldots, m\}$	

- \blacktriangleright The *n* variables are described by the set \mathcal{X} . They can be continuous or discrete
- \blacktriangleright ${\cal X}$ includes bounds on most of the variables
- ▶ There are 29 possible variables. Each instance considers a subset of these variables. solar4 and solar9 consider all n = 29 variables
- \blacktriangleright The solar6 and solar10 instances have no discrete variables. In these cases $\mathcal{X} \subset \mathbb{R}^5$
- One of the discrete variable (the type of turbine) is categorical. solar considers it as an integer in {1,2,...,8}

Introduction	Simulator	Instances ○○○○●	Features	Some results	References
Types of	constraints				

 $\min_{\mathbf{x}\in\mathcal{X}} \quad F(\mathbf{x}) \text{ s.t. } \mathbf{x}\in\Omega = \{\mathbf{x}\in\mathcal{X}: c_j(\mathbf{x})\leq 0, j=1,2,\ldots,m\}$

- X describes bounds on the variables and the discrete nature of some of the variables. These constraints are unrelaxable
- \blacktriangleright The m constraints in Ω may be a priori or simulation constraints
- A priori constraints are also unrelaxable. In case of violation, the solar executable returns a flag to indicate a potential solver not to count the evaluation
- Most of the a priori constraints are linear
- Simulation constraints are relaxable
- Presence of hidden constraints
- All constraints (except the hidden ones) are quantifiable
- There are 18 possible constraints. Each instance considers a subset of these constraints, for a maximum of m = 17 constraints in solar9

Introduction	Simulator	Instances	Features ●○○○○○	Some results	References

The solar simulator

The solar instances

The solar features

Examples of results

Getting started with solar

- Get the code at https://github.com/bbopt/solar and compile
- Command-line program that takes as arguments
 - ▶ a problem id (or instance number) in $\{1, 2, ..., 10\}$
 - \blacktriangleright the name of a file containing the coefficients of a point ${\bf x}$

and displays the values of $F(\mathbf{x})$ and the $c_j(\mathbf{x})$'s

- Example: > solar 7 x.txt displays f c1 c2 ... c6 (objective and six constraints)
- Simply executing > solar will guide the user and display the options, including a complete inline help with > solar -help

Features 00●000 Some results

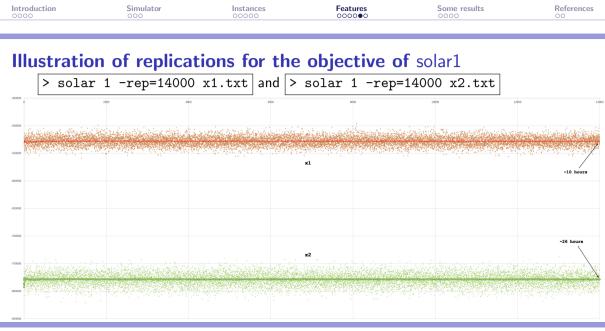
References

Check the solar installation

> solar -check

Mac: Intel Core i9: 659s Apple M1 Pro: 451s Apple M1 Max: 444s Apple M2 Max: 393s

Windows: Intel Core i7-7700: 2,684s


Linux: AMD EPYC-7402: 1,284s Intel Core i7-12700: 349s

[[12:34:11] [~/Desktop] > .	/solar -chec	k		
Validation tests (can take	several min	utes):		
		,-		
RNG test (1/2)	Ok	Time: C	PU=8.8e-05	real=0
RNG test (2/ 2)	Ok	Time: C	PU=9e-06	real=0
Eval test (1/26)		Time: C	PU=0.090865	real=0
Eval test (2/26)	Ok	Time: C	CPU=0.164074	real=0
Eval test (3/26)	Ok	Time: C	CPU=8.55466	real=9
Eval test (4/26)	Ok	Time: C	CPU=14.3939	real=14
Eval test (5/26)	Ok	Time: C	CPU=12.444	real=12
Eval test (6/26)	Ok	Time: C	CPU=1.67694	real=2
Eval test (7/26)	Ok	Time: C	CPU=1.714	real=2
Eval test (8/26)	Ok	Time: C	CPU=0.000297	real=0
Eval test (9/26)	Ok	Time: C	CPU=1.8335	real=2
Eval test (10/26)	Ok	Time: C	CPU=16.9975	real=17
Eval test (11/26)	Ok	Time: C	CPU=0.088462	real=0
Eval test (12/26)			CPU=1.76882	real=2
Eval test (13/26)			CPU=2.03457	real=2
Eval test (14/26)			CPU=57.289	real=57
Eval test (15/26)			CPU=76.4028	real=76
Eval test (16/26)			CPU=2.17247	real=2
Eval test (17/26)			CPU=50.1873	real=51
Eval test (18/26)			CPU=50.3843	real=50
Eval test (19/26)			CPU=50.3955	real=50
Eval test (20/26)			CPU=3.31858	real=4
Eval test (21/26)			CPU=3.21749	real=3
Eval test (22/26)			CPU=5.77947	real=6
Eval test (23/26)			CPU=0.003279	real=0
Eval test (24/26)			CPU=3.86108	real=4
Eval test (25/26)			CPU=2.24941	real=2
Eval test (26/26)	Ok	Time: C	CPU=25.7252	real=26
This version of SOLAR is v	alid			
CPU time : 392.748s				
Real time: 393s				

Stochasticity and replications

- Stochasticity is due to the Monte Carlo simulation for the heliostats field
- Random seed is set to the same value by default: This corresponds to a deterministic blackbox
- Use the option -seed to change the random seed
- ► The option -seed=diff makes the blackbox stochastic
- ► The option -rep executes several simulations and outputs average values
- A high number of replications will tend to decrease stochasticity but will lead to expensive evaluations (which is great in BBO benchmarking)

solar: github.com/bbopt/solar

Introduction	Simulator	Instances	Features ○○○○○●	Some results	References

Multi-fidelity

- ▶ The option -fid with a value in]0;1] changes the fidelity of the simulator
- Each different value of this option generates a static surrogate
- -fid=1 corresponds to the "true" blackbox (called the truth)
- This option allows to consider multi-fidelity metamodels or variable precision static surrogates
- Note that using the <u>-rep</u> option also allows to consider such surrogates when the truth is considered to be obtained with high number of replications

Introduction	Simulator	Instances 00000	Features	Some results	References

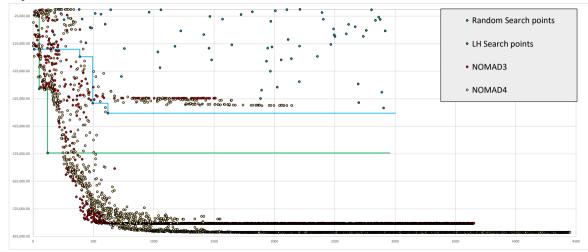
The solar simulator

The solar instances

The solar features

Examples of results

Introduction	Simulator	Instances	Features	Some results	References

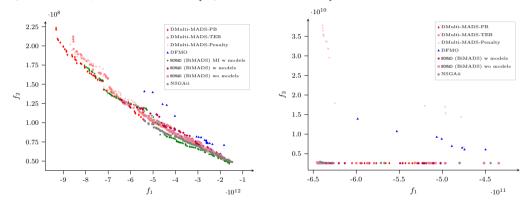

Feasibility with sampling and NOMAD

Instance	LH search (10k points)		NOMAD3		
	satisf. ap constr.	feas. pts	satisf. ap constr.	feas. pts	number of eval.
solar1	30%	0.35%	96%	74%	3,792
solar2	0%	0%	97%	0%	1,635
solar3	0.49%	0%	99%	9%	30,525
solar4	0%	0%	83%	0%	44,303
solar5	0%	0%	83%	59%	3,405
solar6	90%	5%	99%	0%	3,539
solar7	2%	1%	74%	72%	2,224
solar8	1%	0.03%			
solar9	1%	0%			

there has been no violation of hidden constraints during the construction of this table

Introduction	Simulator	Instances 00000	Features	Some results	References

Optimization on solar1


Instances

Features

Some results

References

Biobjective optimization (by L. Salomon)

Pareto front approximations for solar8 (left) and solar9 (right) with different solvers with a budget of 5K evaluations. Taken from [Bigeon et al., 2022]

Introduction	Simulator	Instances	Features	Some results	References ●○

The solar simulator

The solar instances

The solar features

Examples of results

Introduction	Simulator	Instances	Features	Some results	References ○●

References I

Audet, C., Béchard, V., and Le Digabel, S. (2008). Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization, 41(2):299-318. Bigeon, J., Le Digabel, S., and Salomon, L. (2022). Handling of constraints in multiobjective blackbox optimization. Technical Report G-2022-10, Les cahiers du GERAD. Le Digabel, S. and Wild, S. (2015). A Taxonomy of Constraints in Simulation-Based Optimization. Technical Report G-2015-57. Les cahiers du GERAD. Lemvre Garneau, M. (2015). Modelling of a solar thermal power plant for benchmarking blackbox optimization solvers. Master's thesis. Polytechnique Montréal.