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Blackbox / Derivative-Free Optimization
We consider

min
x∈Ω

f(x)

where the evaluations of f and the functions defining Ω are the result of a computer
simulation (a blackbox)

- -
x ∈ Rn f(x)

x ∈ Ω ?

▶ Each call to the simulation may be expensive

▶ The simulation can fail

▶ Sometimes f(x) ̸= f(x)

▶ Derivatives are not available and cannot be approximated

BBO: Blackbox Optimization 6/49
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Blackboxes as illustrated by a Boeing engineer
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Terms

▶ “Derivative-Free Optimization (DFO) is the mathematical study of
optimization algorithms that do not use
derivatives” [Audet and Hare, 2017]

▶ Optimization without using derivatives
▶ Derivatives may exist but are not available

▶ Obj./constraints may be analytical or given by a blackbox

▶ “Blackbox Optimization (BBO) is the study of design and analysis of algorithms
that assume the objective and/or constraints functions are given by
blackboxes” [Audet and Hare, 2017]

▶ A simulation, or a blackbox, is involved
▶ Obj./constraints may be analytical functions of the outputs
▶ Derivatives may be available (ex.: PDEs)

▶ Sometimes referred as Simulation-Based Optimization (SBO)
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Optimization: Global view
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Aircraft takeoff trajectories

▶ [Torres et al., 2011]

▶ AIRBUS problem involving (among others): O. Babando, C. Bes,
J. Chaptal, J.-B. Hiriart-Urruty, B. Talgorn, B. Tessier, and R. Torres

▶ Biobjective optimization problem

BBO: Blackbox Optimization 11/49
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Definition of the optimization problem

▶ Concept : Optimization of vertical flight path based on procedures designed to
reduce noise emission at departure to protect airport vicinity

▶ Minimization of environmental and economical impact: Noise and fuel
consumption

▶ Variables define the NADP (Noise Abatement Departure Procedure): During
departure phase, the aircraft will target its climb configuration:
▶ Increase the speed up to climb speed (acceleration phase)
▶ Reduce the engine rate to climb thrust (reduction phase)
▶ Gain altitude

BBO: Blackbox Optimization 12/49
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Parametric Trajectory: 5 optimization variables (*)
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The blackbox: Multi-Criteria Departure Procedure

One evaluation ≃ 2 seconds

BBO: Blackbox Optimization 14/49
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Special features

▶ Must execute on different platforms including some old Solaris distributions

▶ The best trajectory parameters are returned to the pilot who enters them in the
aircraft system manually → the less decimals the better

▶ Finite precision on optimization parameters: Discretization of optimization
variables → granular variables [Audet et al., 2019]
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Typical setting

Algorithm

f
(blackbox)

x1,x2,...
f(x1),f(x2),...

x0 x*

Unconstrained case, with one initial starting solution

BBO: Blackbox Optimization 17/49
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Algorithms for blackbox optimization
A method for blackbox optimization should ideally:

▶ Be efficient given a limited budget of evaluations

▶ Be robust to noise and blackbox failures

▶ Natively handle general constraints

▶ Deal with multiobjective optimization

▶ Deal with integer and categorical variables

▶ Easily exploit parallelism

▶ Have a publicly available implementation

▶ Have convergence properties ensuring first-order local optimality in the smooth
case – otherwise why using it on more complicated problems?
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Families of methods

▶ “Computer science” methods:
▶ Heuristics such as genetic algorithms
▶ No convergence properties
▶ Cost a lot of evaluations
▶ Should be used only in last resort for desperate cases

▶ Statistical methods:
▶ Design of experiments
▶ Bayesian optimization: EGO algorithm based on surrogates and expected

improvement
▶ Still limited in terms of dimension
▶ Does not natively handle constraints
▶ Good to use these tools in conjonction with DFO methods

▶ Derivative-Free Optimization methods (DFO)

BBO: Blackbox Optimization 19/49
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DFO methods

▶ Model-based methods:
▶ Derivative-Free Trust-Region methods
▶ Based on quadratic models or radial-basis functions
▶ Use of a trust-region
▶ Better for { DFO \ BBO }
▶ Not resilient to noise and hidden constraints
▶ Not easy to parallelize

▶ Direct-search methods:
▶ Classical methods: Coordinate search, Nelder-Mead – the other simplex method
▶ Modern methods: Generalized Pattern Search, Generating Set Search, Mesh

Adaptive Direct Search (MADS)

So far, the size of the instances (variables and constraints) is typically limited to ≃ 50,
and we target local optimization

BBO: Blackbox Optimization 20/49
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MADS illustration with n = 2: Poll step
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[0] Initializations (x0, δ
0 )

[1] Iteration k
[1.1] Search (flexible part)

select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed) (“rigid” part)
construct poll set Pk = {xk + δkd : d ∈ Dk}
sort(Pk)
evaluate candidates opportunistically

[2] Updates
if success

xk+1 ← success point
increase δk

else
xk+1 ← xk

decrease δk

k ← k + 1, stop or go to [1]

The MADS algorithm [Audet and Dennis, Jr., 2006]
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Special features of MADS
▶ Constraints handling with the Progressive Barrier

technique [Audet and Dennis, Jr., 2009]

▶ Surrogates [Talgorn et al., 2015]

▶ Categorical/Meta variables [Audet et al., 2023]

▶ Granular and discrete variables [Audet et al., 2019]

▶ Global optimization [Audet et al., 2008a]

▶ Parallelism [Le Digabel et al., 2010, Audet et al., 2008b]

▶ Multiobjective optimization [Audet et al., 2008c, Bigeon et al., 2021]

▶ Sensitivity analysis [Audet et al., 2012]

▶ Handling of stochastic blackboxes [Alarie et al., 2021, Audet et al., 2021]

BBO: Blackbox Optimization 23/49
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Some MADS features

In the following slides, we focus on these MADS features:

▶ Constraints handling

▶ Use of surrogates

BBO: Blackbox Optimization 24/49
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Constraints – with taxonomy of [Le Digabel and Wild, 2015]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

Cannot be violated;

Example: x > 0 when log x is used inside the simulation

BBO: Blackbox Optimization 25/49
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Constraints – with taxonomy of [Le Digabel and Wild, 2015]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

May be violated at intermediate designs

cj(x) measures the violation

Example: cost ≤ budget

BBO: Blackbox Optimization 25/49
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Constraints – with taxonomy of [Le Digabel and Wild, 2015]

Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

▶ Hidden constraints

when the simulation fails, even for points in Ω

Example:
Segmentation fault

Bus error

ERROR 42

DIVISION BY ZERO

BBO: Blackbox Optimization 25/49



Introduction App1: Aircraft trajectories MADS App2: SOLAR NOMAD References

Constraints – with taxonomy of [Le Digabel and Wild, 2015]
Domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

▶ X corresponds to unrelaxable constraints

▶ cj(x) ≤ 0: Relaxable and quantifiable constraints

▶ Hidden constraints

Example: Chemical process:

 

7 variables, 4 constraints. The ASPEN software fails on 43% of the calls

BBO: Blackbox Optimization 25/49
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

Treats the problem as being unconstrained,
by replacing the objective function f(x) by

fΩ(x) :=

{
f(x) if x ∈ Ω
∞ otherwise

The problem
min
x∈Rn

fΩ(x)

is then solved.
Remark: this strategy can also be applied to a priori constraints in order to avoid the
costly evaluation of f(x)
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

▶ Progressive barrier (PB)

Defined for relaxable and quantifiable constraints.
As in the filter methods of Fletcher and Leyffer, it uses the non-negative constraint
violation function h : Rn → R ∪ {∞}

h(x) :=


∑
j∈J

(max(cj(x), 0))
2 if x ∈ X

∞ otherwise

At iteration k, points with h(x) > hmax
k are rejected by the algorithm, and hmax

k

decreases toward 0 as k →∞

BBO: Blackbox Optimization 26/49
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
s
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points
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s

This trial point is dominated by the incumbent
↘
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
s

This trial point improves h but worsens f
↘
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Three strategies to deal with constraints
▶ Extreme barrier (EB)
▶ Progressive barrier (PB)

6f

-
h

hmax
0

s

Image of trial points

ss
sNew incumbent solution

↘

hmax
1
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Three strategies to deal with constraints

▶ Extreme barrier (EB)

▶ Progressive barrier (PB)

▶ Progressive-to-Extreme Barrier (PEB)

Initially treats a relaxable+quantifiable constraint by the progressive barrier.
Then, if polling around the infeasible poll center generates a new infeasible
incumbent that satisfies a constraint violated by the poll center, then that constraint
moves from being treated by the progressive barrier to the extreme barrier

BBO: Blackbox Optimization 26/49
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Static versus dynamic surrogates

▶ Static surrogate: A cheaper model defined a priori by the user. It is used as a
blackbox. Typically a simplified physics model. Variable fidelity may be
considered.

▶ Dynamic surrogate: Model managed by the algorithm, based on past evaluations.
It can be periodically updated.

In the remaining, we focus on dynamic surrogates

BBO: Blackbox Optimization 27/49
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Surrogate-assisted optimization

1. Use [X, f(X)] to build a surrogate f̂ of the function f

2. Find xS ∈ argmin
x

f̂(x) (or minimize another criteria such as the EI)

3. Evaluate f(xS)

4. X← X ∪ {xS}

5. Go back to Step 1.

For constrained problems the same method can be used for constrained problems:

▶ Build the models of the constraints

▶ xS ← minimizer of f̂ subject to the constraints ĉj ≤ 0, j = 1, 2, . . . ,m

BBO: Blackbox Optimization 28/49
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Surrogate-assisted optimization in MADS

1. Initialization:
▶ Initial design (x0)
▶ Initial mesh and poll sizes (δ0, ∆0)

2. Search
▶ Build the surrogates f̂ and {ĉj}j=1,2,...,m

▶ xS ← solution of the surrogate problem, projected on the current mesh

▶ If xS is a success, repeat the search

3. Poll
▶ Construct the poll candidates

▶ Use the surrogates to order the poll candidates

▶ Evaluate the poll candidates opportunistically

4. If no stopping criteria is met, go back to Step 2.

BBO: Blackbox Optimization 30/49
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What is a good model for surrogate-assisted optimization

▶ Good model of the objective f : respects the order between two candidates:

f(x) ≤ f(x′)⇔ f̂(x) ≤ f̂(x′) for all x,x′ ∈ X

▶ Good model of a constraint cj : respects the sign of the function:

cj(x) ≤ 0⇔ ĉj(x) ≤ 0 for all x ∈ X

BBO: Blackbox Optimization 31/49



Introduction App1: Aircraft trajectories MADS App2: SOLAR NOMAD References

Introduction

Example 1: Aircraft takeoff trajectories

The MADS algorithm

Example 2: Solar thermal power plant

The NOMAD software package

References

BBO: Blackbox Optimization 32/49



Introduction App1: Aircraft trajectories MADS App2: SOLAR NOMAD References

CSP power plant with molten salt thermal energy storage

▶ A large number of mirrors (heliostats) reflects solar
radiation on a receiver at the top of a tower

▶ The heat collected from the concentrated solar flux
is removed from the receiver by a stream of molten
salt

▶ Hot molten salt is then used to feed thermal power
to a conventional power block

▶ The photo shows the Thémis CSP power plant, the
first built with this design
Source: https://commons.wikimedia.org/wiki/File:Themis 2.jpg

BBO: Blackbox Optimization 33/49
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System dynamics

Receiver Hot
storage

Cold
storage

Turbine

Condenser

PumpPump

Steam
generator

Electrical
power

Molten salt cycle Steam cycle

Heliostats

Pump

Heat
rejection
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Ten instances

Instance # of variables # of obj. # of constraints # of stoch. outputs Static
cont. discr. (cat.) n p simu. a priori (lin.) m (obj. or constr.) surrogate

solar1 8 1 (0) 9 1 2 3 (2) 5 1 no
solar21 12 2 (0) 14 1 9 4 (2) 13 3 yes
solar3 17 3 (1) 20 1 8 5 (3) 13 5 yes
solar4 22 7 (1) 29 1 9 7 (5) 16 6 yes
solar5 14 6 (1) 20 1 8 4 (3) 12 0 no
solar6 5 0 (0) 5 1 6 0 (0) 6 0 no
solar7 6 1 (0) 7 1 4 2 (1) 6 3 yes
solar8 11 2 (0) 13 2 4 5 (3) 9 3 yes
solar9 22 7 (1) 29 2 10 7 (5) 17 6 yes
solar102 5 0 (0) 5 1 0 0 (0) 0 0 yes

1analytic objective
2unconstrained

BBO: Blackbox Optimization 35/49
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Features for BBO benchmarking

▶ Several numerical methods: real-world blackbox

▶ Reproducibility accros all platforms

▶ Continuous and discrete variables

▶ Different types of constraints (quantifiable, relaxable, a priori, hidden)

▶ Stochastic and deterministic outputs

▶ Static surrogates with variable fidelity

▶ Number of replications is controlable

BBO: Blackbox Optimization 36/49
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Feasibility with sampling and NOMAD

Instance
LH search (10k points) NOMAD3

satisf. ap constr. feas. pts satisf. ap constr. feas. pts number of eval.

solar1 30% 0.35% 96% 74% 3,792
solar2 0% 0% 97% 0% 1,635
solar3 0.49% 0% 99% 9% 30,525
solar4 0% 0% 83% 0% 44,303
solar5 0% 0% 83% 59% 3,405
solar6 90% 5% 99% 0% 3,539
solar7 2% 1% 74% 72% 2,224
solar8 1% 0.03%
solar9 1% 0%

there has been no violation of hidden constraints during the construction of this table

BBO: Blackbox Optimization 37/49
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Optimization on solar1
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NOMAD (Nonlinear Optimization with MADS)
▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

▶ Standard C++. Runs on Linux, Mac OS X and Windows

▶ Parallel versions

▶ MATLAB versions; Multiple interfaces (Python, Julia, etc.)

▶ Open and free – LGPL license

▶ Download at https://www.gerad.ca/nomad

▶ Support at nomad@gerad.ca

▶ Related articles in TOMS [Le Digabel, 2011]
and [Audet et al., 2022]

BBO: Blackbox Optimization 40/49
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Main functionalities (1/2)

▶ Single or biobjective optimization

▶ Variables:
▶ Continuous, integer, binary, categorical, granular
▶ Periodic
▶ Fixed
▶ Groups of variables

▶ Searches:
▶ Latin-Hypercube
▶ Variable Neighborhood Search
▶ Nelder-Mead Search
▶ Quadratic models
▶ Statistical surrogates
▶ User search

BBO: Blackbox Optimization 41/49
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Main functionalities (2/2)

▶ Constraints treated with 4 different methods:
▶ Progressive Barrier (default)
▶ Extreme Barrier
▶ Progressive-to-Extreme Barrier
▶ Filter method

▶ Several direction types:
▶ Coordinate directions
▶ LT-MADS
▶ OrthoMADS
▶ Hybrid combinations

▶ Sensitivity analysis

→ default values for all parameters

→ all items correspond to published or submitted papers
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Blackbox conception (batch mode)

▶ Command-line program that takes in argument a file containing x, and displays
the values of f(x) and the cj(x)’s

▶ Can be coded in any language

▶ Typically: > bb.exe x.txt displays f c1 c2 (objective and two constraints)
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Run NOMAD
> nomad parameters.txt
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Summary

▶ Blackbox optimization motivated by industrial applications

▶ Algorithmic features backed by mathematical convergence analyses and published
in optimization journals

▶ NOMAD: Software package implementing MADS

▶ Open source; LGPL license

▶ Features: Constraints, biobjective, global optimization, surrogates, several types
of variables, parallelism

▶ Fast support at nomad@gerad.ca

▶ NOMAD has become a baseline for benchmarking DFO algorithms
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