Direct Search methods

MTH8418

S. Le Digabel, Polytechnique Montréal

Winter 2020

(v3)
Plan

Generalized Pattern Search (GPS)

Mesh Adaptive Direct Search (MADS)

Other direct-search methods

References
Blackbox optimization problems

- We consider the optimization problem

\[
\min_{x \in \Omega} f(x)
\]

where the evaluations of \(f \) and the functions defining \(\Omega \) are usually the result of a computer code (a blackbox)

- Extreme Barrier approach: We focus on the optimization of \(f_{\Omega} \) instead of \(f \), with \(f_{\Omega}(x) = \begin{cases} f(x) & \text{if } x \in \Omega \\ \infty & \text{otherwise} \end{cases} \)

- Better treatments of constraints are studied in Lesson #9
Generalized Pattern Search (GPS)

Mesh Adaptive Direct Search (MADS)

Other direct-search methods

References
Introduction

- **Generalized Pattern Search** (GPS) [Torczon, 1997]
- Generalization of the CS and H&J methods

Mesh at iteration \(k \):

\[
M_k = \bigcup_{x \in V_k} \{ x + \Delta_k Dz : z \in \mathbb{N}^{nD} \}
\]

- **Mesh size parameter**: \(\Delta_k \in \mathbb{R}^+ \)
- **Cache**: Set \(V_k \) of the points already evaluated by the start of iteration \(k \)

- **Directions**:
 - Matrix \(D \) of dimension \(n \times n_D \)
 - One column in \(D = \) One direction in \(\mathbb{R}^n \)
 - Typically \(D \) is taken as \([I_n - I_n]\) (as in CS)
[0] **Initializations** \((x_0, \Delta_0)\)

[1] **Iteration** \(k\)

[1.1] (global) **Search**
- select a finite number of mesh points
- sort these points
- evaluate candidates opportunistically

[1.2] (local) **Poll** (if the Search failed)
- construct poll set \(P_k = \{x_k + \Delta_k d : d \in D_k\}\)
- sort\((P_k)\)
- evaluate candidates opportunistically

[2] **Updates**
- if success
 - \(x_{k+1} \leftarrow\) success point
 - possibly increase \(\Delta_k\)
- else
 - \(x_{k+1} \leftarrow x_k\)
 - decrease \(\Delta_k\)
 - \(k \leftarrow k + 1\), stop or go to [1]
The Poll (1/2)

- **Poll set:**
 \[P_k = \{ x_k + \Delta_k d : d \in D_k \} \]
 where \(x_k \) is the current incumbent, or the poll center

- **Poll directions:** A positive spanning set \(D_k \subset \mathbb{R}^n \) where each direction \(d \in D_k \) is one of the directions of \(D \)

- The directions correspond typically to a **minimal positive basis** \((n + 1 \text{ directions})\) or a **maximal positive basis** \((2n \text{ directions})\)
The trial points in P_k are evaluated following the opportunistic strategy: evaluations are interrupted as soon as a new better solution is found.

Trial points ordering is then crucial in practice. It can be based on:

- Model or surrogate values
- Angle with the gradient of a model
- Angle with the last direction of success
- etc.
The Search

- Flexible and global search strategy
- Is executed prior to the poll step
- Is valid for a finite number of mesh points
- Users can define their own strategy, specific to their problem
- Generic strategies exist (random, LH, speculative, etc.)
Mesh size update

- Update $\Delta_{k+1} \leftarrow \tau^\omega \Delta_k$ with $\tau > 1$ rational and $\omega \in \{\omega^-, \omega^+\}$, with ω^- integer ≤ -1, ω^+ integer ≥ 0

- CS: $\tau = 2$, $\omega^+ = 0$, $\omega^- = -1$

- GPS default: $\tau = 2$, $\omega^+ = 1$, $\omega^- = -1$
Coordinate Search (CS): Polling directions

\[P_k = \{x_k \pm \Delta_k e_i\}; \ 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
Coordinate Search (CS): Polling directions

\[P_k = \{ x_k \pm \Delta_k e_i \}; \text{ } 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
Coordinate Search (CS): Polling directions

\[P_k = \{ x_k \pm \Delta_k e_i \}; \quad 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[
\Delta_k = 1 \\
\Delta_{k+1} = \frac{1}{2}
\]
Coordinate Search (CS): Polling directions

\[P_k = \{ x_k \pm \Delta_k e_i \}; \quad 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]

\[\Delta_{k+1} = \frac{1}{2} \]

Always the same 2 directions
Coordinate Search (CS): Polling directions

\[P_k = \{x_k \pm \Delta_k e_i\}; \text{ } 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \] \hspace{1cm} \[\Delta_{k+1} = \frac{1}{2} \] \hspace{1cm} \[\Delta_{k+2} = \frac{1}{4} \]
Coordinate Search (CS): Polling directions

\[P_k = \{ x_k \pm \Delta_k e_i \}; \ 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \quad \Delta_{k+1} = \frac{1}{2} \quad \Delta_{k+2} = \frac{1}{4} \]
Coordinate Search (CS): Polling directions

\[P_k = \{ x_k \pm \Delta_k e_i \}; \quad 2n \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \quad \quad \quad \quad \quad \quad \Delta_{k+1} = \frac{1}{2} \quad \quad \quad \quad \quad \Delta_{k+2} = \frac{1}{4} \]

Always the same \(2n = 4\) directions
GPS: Example of poll directions

\[P_k = \{ x_k + \Delta_k d : d \in D_k \}; \ n + 1 \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
GPS: Example of poll directions

\[P_k = \{ x_k + \Delta_k d : d \in D_k \} ; \ n + 1 \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
GPS: Example of poll directions

\[P_k = \{ x_k + \Delta_k d : d \in D_k \} ; \quad n + 1 \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \quad \Delta_{k+1} = \frac{1}{2} \]
GPS: Example of poll directions

\[P_k = \{x_k + \Delta_k d : d \in D_k\}; \ n + 1 \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
\[\Delta_{k+1} = \frac{1}{2} \]
GPS: Example of poll directions

\[P_k = \{ x_k + \Delta_k d : d \in D_k \} \]; \(n + 1 \) mesh points at distance \(\Delta_k \) from \(x_k \)

\[\Delta_k = 1 \quad \Delta_{k+1} = \frac{1}{2} \quad \Delta_{k+2} = \frac{1}{4} \]
GPS: Example of poll directions

\[P_k = \{ x_k + \Delta_k d : d \in D_k \}; \; n + 1 \text{ mesh points at distance } \Delta_k \text{ from } x_k \]

\[\Delta_k = 1 \]
\[\Delta_{k+1} = \frac{1}{2} \]
\[\Delta_{k+2} = \frac{1}{4} \]

14 different ways of defining \(D_k \) on this mesh
GPS: Poll and Search
GPS: Poll and Search

Search points
GPS: Poll and Search

Search points

Poll points
GPS: Poll and Search

Search points
Poll points

Success

$x_{k+1} = p^2$
GPS: Poll and Search

Search points

Poll points

Success

\[x_{k+1} = p^2 \]
GPS: Poll and Search

Search points

Poll points

Failure

\[x_{k+1} = x_k \]
GPS: Poll and Search

Search points

Poll points

Failure

\[x_{k+1} = x_k \]
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

- \(\lim_{k} \Delta_k = 0 \) for any infinite subset of indices
- There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \to \hat{x} \), with \(f(x_k + \Delta_k d) \geq f(x_k) \) for all \(d \in D_k \), and \(k \in K \)
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

1. \(\lim_{k} \Delta_k = 0 \) for any infinite subset of indices
2. There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \to \hat{x} \), with \(f(x_k + \Delta_k d) \geq f(x_k) \) for all \(d \in D_k \), and \(k \in K \)

Theorem

If \(f \) Lipschitz near \(\hat{x} \), then \(f^\circ(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

- \(\lim_{k} \Delta_k = 0 \) for any infinite subset of indices
- There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \to \hat{x} \), with \(f(x_k + \Delta_k d) \geq f(x_k) \) for all \(d \in D_k \), and \(k \in K \)

Theorem

If \(f \) Lipschitz near \(\hat{x} \), then \(f^\circ(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times

Proof:

\[
f^\circ(\hat{x}; d) := \limsup_{y \to \hat{x}, \ t \downarrow 0} \frac{f(y + td) - f(y)}{t}
\]
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

\[\lim_{k} \Delta_k = 0 \]

for any infinite subset of indices

There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \rightarrow \hat{x} \), with

\[f(x_k + \Delta_k d) \geq f(x_k) \]

for all \(d \in D_k \), and \(k \in K \)

Theorem

If \(f \) Lipschitz near \(\hat{x} \), then \(f^\circ(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times

Proof:

\[f^\circ(\hat{x}; d) := \limsup_{y \rightarrow \hat{x}, \ t \downarrow 0} \frac{f(y + td) - f(y)}{t} \geq \limsup_{k \in K} \frac{f(x_k + \Delta_k d) - f(x_k)}{\Delta_k} \]
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

1. \(\lim_{k} \Delta_k = 0 \) for any infinite subset of indices

2. There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \to \hat{x} \), with \(f(x_k + \Delta_k d) \geq f(x_k) \) for all \(d \in D_k \), and \(k \in K \)

Theorem

If \(f \) Lipschitz near \(\hat{x} \), then \(f^\circ(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times

Proof:

\[
\begin{align*}
 f^\circ(\hat{x}; d) := \limsup_{y \to \hat{x}, \ t \downarrow 0} \frac{f(y + td) - f(y)}{t} \\
 \geq \limsup_{k \in K} \frac{f(x_k + \Delta_k d) - f(x_k)}{\Delta_k} \geq 0
\end{align*}
\]

Note: These directions form a positive spanning set
Convergence analysis

If the series of iterates \(\{x_k\} \) belongs to a bounded set, then

- \(\lim_{k} \Delta_k = 0 \) for any infinite subset of indices
- There exists \(\hat{x} \in \mathbb{R}^n \) the limit of a subsequence of mesh local minimizers for meshes that get infinitely fine: \(x_k \to \hat{x} \), with \(f(x_k + \Delta_k d) \geq f(x_k) \) for all \(d \in D_k \), and \(k \in K \)

Theorem

- If \(f \) Lipschitz near \(\hat{x} \), then \(f^\circ(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times
- If \(f \) regular near \(\hat{x} \), then \(f'(\hat{x}; d) \geq 0 \) for all directions \(d \in D \) used infinitely many times
- If \(f \) strictly differentiable near \(\hat{x} \), then \(\nabla f(\hat{x}) = 0 \)
Limitations

- In order to move from a non-optimal point, the poll step has to generate descent directions inside the tangent cone.

- With general constraints, it is impossible to identify all the tangent cone generators.

- The biggest limitation is then the fixed and limited number of possible directions.
Generalized Pattern Search (GPS)

Mesh Adaptive Direct Search (MADS)

Other direct-search methods

References
The MADS acronyms

- **MADS** (Mesh Adaptive Direct Search)
 → The algorithmic framework without the definition of the polling directions

- **LT-MADS**: Original MADS implementation

- **OrthoMADS**: Second MADS implementation

- **QR-MADS**: Van Dyke and Asaki MADS implementation

- **NOMAD** (Nonlinear Optimization with the MADS algorithm):
 → The software package. Includes LT-MADS and OrthoMADS

- NOMADS does not exist
Mesh Adaptive Direct Search (MADS)

- [Audet and Dennis, Jr., 2006]
- Generalization of GPS
- Better convergence result: If f Lipschitz near \hat{x}, it is a Clarke stationary point:

$$f^\circ(\hat{x}; d) \geq 0 \text{ for all } d \in T^C_\Omega(\hat{x})$$

(T^C_Ω is a generalization of the tangent cone)
Directions

- The directions $D_k \subset \mathbb{R}^n$ are not taken in D. But each direction $d \in D_k$ can be written as a nonnegative integer combination of directions of D.

- The set of normalized directions grows dense in the unit sphere, i.e.:

 For all $\varepsilon > 0$, and for all $d \in \mathbb{R}^n$, there exists one MADS direction d_k such that $\left\| \frac{d_k}{\|d_k\|} - \frac{d}{\|d\|} \right\| < \varepsilon$.
Mesh

- The GPS mesh size parameter Δ_k is replaced by the MADS mesh size parameter Δ^m_k, and the new poll size parameter Δ^p_k is introduced.

- The mesh and the poll set remain the same with

 $M_k = \bigcup_{x \in V_k} \{ x + \Delta^m_k D z : z \in \mathbb{N}^{nD} \}$ and

 $P_k = \{ x_k + \Delta^m_k d : d \in D_k \}$, but now we have $\|\Delta^m_k d\| \approx \Delta^p_k$.

- $\Delta^m_k \leq \Delta^p_k$ at each iteration k, and Δ^m_k is reduced faster than Δ^p_k.

- Typically:

 - $\Delta^m_{k+1} \leftarrow 4 \Delta^m_k$ or $\Delta^m_k / 4$

 - $\Delta^p_{k+1} \leftarrow 2 \Delta^p_k$ or $\Delta^p_k / 2$

 - $\Delta^p_k = \sqrt{\Delta^m_k}$, with $\Delta^m_k, \Delta^p_k \leq 1$
Poll illustration (successive fails and mesh shrinks)

\[\Delta^m_k = \Delta^p_k = 1 \]

poll trial points = \{t_1, t_2, t_3\}
Poll illustration (successive fails and mesh shrinks)

\[\Delta^m_k = \Delta^p_k = 1 \]

\[\Delta^m_{k+1} = \frac{1}{4} \]
\[\Delta^p_{k+1} = \frac{1}{2} \]

poll trial points = \{t_1, t_2, t_3\} = \{t_4, t_5, t_6\}
Poll illustration (successive fails and mesh shrinks)

\[\Delta_{k}^{m} = \Delta_{k}^{p} = 1 \]
\[\Delta_{k+1}^{m} = \frac{1}{4} \]
\[\Delta_{k+1}^{p} = \frac{1}{2} \]
\[\Delta_{k+2}^{m} = \frac{1}{16} \]
\[\Delta_{k+2}^{p} = \frac{1}{4} \]

Poll trial points:
\[\{t_1, t_2, t_3\} \]
\[\{t_4, t_5, t_6\} \]
\[\{t_7, t_8, t_9\} \]
MADS implementations

- MADS is a general framework. It defines the conditions on the directions, but do not define the direction themselves.

- There are several implementations:
 - LT-MADS: Based on Lower-Triangular random matrices [Audet and Dennis, Jr., 2006]
 - QR-MADS: Based on the QR decomposition and on normally distributed directions [Van Dyke and Asaki, 2013]
 - OrthoMADS: Quasi-random, deterministic, and orthogonal directions. Current default in NOMAD [Abramson et al., 2009]
OrthoMADS

x_k
OrthoMADS
OrthoMADS

\[x_k \]
OrthoMADS
OrthoMADS
OrthoMADS
OrthoMADS

Set of normalized directions is dense in the unit sphere

infinite number of directions
OrthoMADS

Set of normalized directions is dense in the unit sphere

- OrthoMADS is deterministic
- At each iteration, directions are orthogonal

infinite number of directions
OrthoMADS is based on the quasi-random Halton sequence [Halton, 1960] in order to generate a sequence of vectors \(\{u_t\}_{t=1}^{\infty} \) dense in \([0; 1]^n\).

- \(u_t \) is transformed into \(\frac{2u_t - e}{\|2u_t - e\|} \) on the unit sphere, with \(e = (1, 1, \ldots, 1) \), and scaled.

- The latter is projected to the current mesh (\(\rightarrow q_{t,\ell} \)).
The Householder transformation is applied:

\[H = \| q_{t,\ell} \|^2 I_n - 2q_{t,\ell}q_{t,\ell}^\top \]

By construction, \(H \) is an integer orthogonal basis of \(\mathbb{R}^n \).

The poll directions are the columns of \(H \) and \(-H\).
OrthoMADS: Dense directions
OrthoMADS $n + 1$

- [Audet et al., 2014]

- For various reasons, OrthoMADS is preferred to LT-MADS. LT-MADS defines $n + 1$ and $2n$ types of directions, and OrthoMADS had only the $2n$ variant

<table>
<thead>
<tr>
<th></th>
<th>LT-MADS</th>
<th>OrthoMADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n + 1$</td>
<td>2006</td>
<td>2014</td>
</tr>
<tr>
<td>$2n$</td>
<td>2006</td>
<td>2009</td>
</tr>
</tbody>
</table>

- Some tests suggested that the LT-MADS implementation was more efficient with $n + 1$ directions

- This more recent OrthoMADS variant uses $n + 1$ directions as well
General framework #1

Idea: Given a poll set of $2n$ trial points, prune it to n points and add a direction to obtain $n + 1$ points

Poll at iteration k

\[
P_k^o = \{x_k + \Delta_k d : d \in D_k^o\} \text{ (original poll set)}
\]

extract $D'_k \subset D_k^o$

compute new direction d_k

\[
D_k = D'_k \cup \{d_k\}
\]

construct $P_k = \{x_k + \Delta_k d : d \in D_k\} \text{ (reduced poll set)}$

sort(P_k)

evaluate(P_k) (opportunistically)
OrthoMads $n + 1$ with framework #1

- $D_k^o = [H_k - H_k]$ is the original OrthoMADS spanning set with $2n$ directions and $H_k \in \mathbb{Z}^{n \times n}$ an orthogonal basis with integer coefficients.

- The selection of n columns of D_k^o to obtain D_k' is based on a target direction $w \in \mathbb{R}^n$.

- The target direction is taken as the last direction of success.

- The $(n + 1)^{th}$ direction is $d_k = - \sum_{d \in D_k'} d$.

\[D_k^o = [H_k - H_k] \]
OrthoMads $n + 1$ with framework #1: Idea

2n directions D_k^0

$n + 1$ directions $D_k = D'_k \cup \{d_k\}$
OrthoMads $n + 1$ with framework #1: Idea

2n directions D_k^0

$n + 1$ directions $D_k = D_k' \cup \{d_k\}$
Completion using function values

- Second and more general framework

- This version is not limited to OrthoMADS and may be applied to any poll sets. For example hybrid versions with more than $2n$ points

- The first framework is decomposed allowing to evaluate n trial points in a first step and possibly one last $(n + 1)^{th}$ point

\[y_k = x_k + d_k \Delta_k \]

- y_k is constructed by exploiting the function values at the first n points

- y_k must lie on the mesh and d_k must be inside the cone of the negative directions of D'_k so that the poll directions remain a positive spanning set
General framework #2

Poll at iteration k

\[P_k^o = \{ x_k + \Delta_k d : d \in D_k^o \} \] (original poll set)

extract $D_k' \subset D_k^o$ and construct P_k'

sort (P_k')

evaluate (P_k') (opportunistically)

Success

interrupt iteration

Failure

compute new direction d_k

evaluate $(x_k + \Delta_k d_k)$
Use of quadratic models

Quadratic models may be used at two different levels:

1. In Framework #1: The simplex gradient is taken as the target direction w

2. In Framework #2: Optimize a model to determine the last trial point $y_k = x_k + \Delta_k d_k$
Generalized Pattern Search (GPS)

Mesh Adaptive Direct Search (MADS)

Other direct-search methods

References
Other direct-search methods (1/2)

- **Hooke and Jeeves:**
 - [Hooke and Jeeves, 1961]
 - Original Pattern Search method
 - CS directions
 - Precursor of the Search step: “Exploratory moves”
 - Introduced the term “Direct-Search”

- **Implicit filtering:**
 - [Winslow et al., 1991]
 - Simplex gradients using second-order approximations
 - Line search
 - Quasi-Newton update
 - IFFCO, IMFIL software packages
Other direct-search methods (2/2)

- **DIRECT:**
 - [Jones et al., 1993]
 - DIviding RECTangles
 - Global optimization
 - The space is divided into hyperrectangles, and the most promising ones are divided again into smaller hyperrectangles
 - The blackbox is evaluated at the center of the hyperrectangles
 - DIRECT software

- **GSS:**
 - [Kolda et al., 2003]
 - Generating Set Search
 - GPS with Search and Poll steps
 - Additional directions conforming to bounds and linear constraints
 - HOPSPACK software
Generalized Pattern Search (GPS)

Mesh Adaptive Direct Search (MADS)

Other direct-search methods

References
References I

References II

References III
