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Préface

Des systémes dynamiques au traitement du signal, de 'optimisation a la commande au-
tomatique, des réseaux de communication & ’apprentissage machine, 'algébre linéaire est,
dans tous les domaines scientifiques, essentielle. Souvent pergue comme inutilement abs-
traite ou trop théorique, son utilité concréte n’est pas toujours perceptible de prime abord.
Le but de cet ouvrage est de proposer une approche pragmatique de l'algébre linéaire,
structurée clairement entre fondements théoriques et applications pratiques. La partie Fon-
dements pose un cadre théorique et rigoureux, et définit toutes les notions nécessaires
aux principales utilisations de l'algébre linéaire appliquée, présentées dans la partie Ap-
plications : projections, diagonalisation, inégalités matricielles, décomposition en valeurs
singuliéres, etc.

Le présent ouvrage s’adresse en priorité aux étudiants de premier cycle universitaire
en sciences appliquées, et plus particuliérement en ingénierie, ainsi qu’a toute personne
souhaitant renforcer sa maitrise de l'algébre linéaire en vue d’applications techniques, en
proposant une approche résolument tournée vers 1'utilisateur plutoét que le théoricien, sans
pour autant sacrifier la rigueur ni le formalisme mathématique. Il est congu pour étre lu
en format électronique et non imprimé : la multitude de liens hypertextes et de références
croisées a été pensée pour favoriser la navigation entre les différentes notions et idées.

Les auteurs sont des membres actifs de la communauté scientifique : professeurs et
étudiants au doctorat ou a la maitrise en mathématiques appliquées et ingénierie, tous
utilisent l’algébre linéaire & des fins d’applications et ont a cceur d’en transmettre une
vision pragmatique (et une passion!) directement reliée aux problématiques de recherche
actuelles. Tous les auteurs ont également une expérience d’enseignement universitaire, et

sont donc particuliérement sensibles a la pédagogie et & la transmission, en particulier &
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des scientifiques non spécialistes des mathématiques.

Il ne s’agit pas d’une traduction mais d’une création originale, en langue francaise,
mise & disposition de tous en tant que Ressource Educative Libre (REL). L’écriture de la
premiére version de ce document a été financée par une subvention des Fonds d’Actions
Pédagogiques Stratégiques (FAPS) de Polytechnique Montréal.
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Notations et terminologie

Ce chapitre vise & fournir au lecteur les outils formels nécessaires & la bonne compré-
hension de cet ouvrage. Toutes les notations et conventions utilisées sont détaillées ici. La
plupart sont standard et cohérentes avec le reste de la littérature en algébre linéaire et en
mathématique en général, mais certaines sont moins usuelles. Afin de faciliter la transition
vers ou depuis d’autres ouvrages, des termes et notations alternatifs & ceux utilisés ici, ainsi
que certaines traductions anglaises, sont proposés dans la derniére section de ce chapitre.

° L4 L4 ° L
1 Généralités
> Ensembles de nombres (voir figure 2) : ils sont supposés connus, on rappelle les inclu-
sionsNCZcQcRcC.

FIGURE 2 — Les ensembles de nombres.
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Un astérisque en exposant d’un ensemble de nombres signifie qu’on en exclut 0.
Exemple : R* est 'ensemble des nombres réels non nuls.

Un signe + ou — en indice signifie qu’on ne retient que les nombres du signe prescrit.
Exemples : Ry est 'ensemble des nombres réels positifs ou nuls, et R* est I'ensemble
des réels strictement positifs.

On appelle scalaire un élément de R ou de C.

Produit de scalaires : si p et ¢ sont deux scalaires, leur produit est noté pg sans le
signe “x”. Ce signe est en revanche utilisé en présence de valeurs numériques, par
exemple 2 X 3 = 6. On bannit totalement 1'usage du point “-” pour la multiplication,
car il est trop discret a I’écrit et se confond trop facilement avec une décimale.
Approzimations : = signifie “environ égal” et < signifie “inférieur, a une tolérance
prés”.
On adopte 'usage suivant, non usuel en frangais, pour le point et la virgule dans
I’écriture des chiffres décimaux :

e Les décimales d’'un nombre sont séparées de sa partie entiére par un point.

Exemple : 1/3 ~ 0.33.
e La virgule est utilisée comme séparateur de milliers. Exemple : 3,250, 125.22.

Les intervalles sont décrits avec des crochets ouverts ou fermés, et un point-virgule
sépare les deux bornes. Exemples : [1;2], | — 0.5; 10].

L’ensemble des entiers consécutifs {p,p+1,...,n} avec p < n est noté [p;n].

Ensembles, familles, espaces

Bien qu’ils aient de nombreuses propriétés en commun, on distingue ici soigneusement
ensembles et familles. Voir 'exercice 0.2 aprés avoir lu les deux définitions suivantes.

Un ensemble est une collection non ordonnée d’éléments sans répétition. Ils sont
notés avec des accolades. S'il existe un ordre naturel entre les éléments (un en-
semble de réels, par exemple), ils sont rangés suivant 'ordre croissant. Exemples :
{=2,1/3,7} = {1/3, 7, —2} (présence d’un ordre, donc on retiendra la premiére écri-
ture), {uj,ug,uz} = {ug,u3,u;} (absence d’ordre, donc les deux écritures seraient
valables).

Une famille est une collection ordonnée d’éléments pouvant se répéter. Elles sont
notées avec des parenthéses. Exemples : (7,1/3,—-2,1/3) # (—2,1/3,1/3, ) (ordre
différent), (ug,us,u;) # (ug,us, us, ug) (répétition d’'un élément).

Les ensembles et les familles sont notés avec des majuscules usuelles (sauf les bases,
voir plus bas). Exemples : U, V.

L’appartenance d'un élément u & un ensemble (ou une famille) U est notée u € U, ce
qui signifie que u est I'un des éléments de U. Dans le cas ou U est un espace vectoriel,
u en est alors appelé un vecteur.
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>

On appelle cardinalité d'un ensemble ou d’une famille U le nombre d’éléments qu’il
ou elle contient, et on la note |U|.

Langage des ensembles : si A et B sont deux ensembles (ou familles), on rappelle les
significations des symboles suivants :

e A= B :les ensembles A et B contiennent exactement les mémes éléments (pour
deux familles, cela signifie que répétitions et ordre des éléments sont également
identiques) ;

e AC B: A est un sous-ensemble (ou une sous-famille) de B;

e A C B : A est un sous-ensemble strict (ou une sous-famille stricte) de B, i.e.
A C B mais A # B;

e A\B={x€ A:x¢ B} : différence entre A et B (ou “A privé de B");

e AUB={x:2€ Aouux € B} est l'union des ensembles (ou familles) A et B;

e ANB={x:xz € Aetxe B} est l'intersection des ensembles (ou familles) A et
B.

Ces opérateurs peuvent étre utilisés indifféremment si A et B sont tous deux des
ensembles ou des familles, et produisent un objet de méme nature. Dans le cas ou A et
B ne sont pas de méme nature, on s’autorise tout de méme & utiliser ces opérateurs, en
posant la convention que ’objet produit est systématiquement un ensemble. Exemple :
{-2,1/3,7}U(-1/3,4) = {-2,—-1/3,1/3,m,4}.

Les termes “espace” et “sous-espace” sont utilisés comme raccourcis pour désigner un
espace vectoriel et un sous-espace vectoriel.

Les bases sont des familles particuliéres et sont notées avec des majuscules calligra-
phiques. Exemple : B = (by,ba,...,by,).

On appelle ensemble vide (respectivement famille vide) 1’ensemble (respectivement
la famille) ne contenant aucun élément. Ensemble et famille vides sont notés @) et
vérifient |()) = 0. Le contexte dicte si () désigne I’ensemble ou la famille vide.

Si U est un espace vectoriel, on appelle sous-espace triviaur de U : V'espace {0}
engendré par le vecteur nul, et 'espace U lui-méme (voir les remarques suivant le
théoréme 5.1.1).

Des ensembles (ou familles) de vecteurs peuvent générer des espaces vectoriels. On
parle alors d’ensembles générateurs ou de familles génératrices de ces espaces vecto-
riels. Voir section 5.2.1.

PO

Les “droites”, “plans”, et “hyperplans” de R™ correspondent aux sous-espaces de di-
mensions 1, 2, et n — 1, respectivement.

Si A est une matrice, on appelle les quatre sous-espaces fondamentauzr de A les espaces
suivants :

e Im(A) est l'image de A
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e Ker(A) est le noyau de A
o Im(AT) est ’espace des lignes de A ;
e Ker(AT) est le noyau a gauche de A.

Le chapitre 6 leur est dédié, et ils sont visualisés aux figures 6.3 et 6.4.

Si U est un espace vectoriel, sa dimension est notée dim(U). Voir section 5.2.4 et
définition 5.2.11.

Orthogonalité (voir la section 5.3) : x L y signifie que les vecteurs x et y sont ortho-
gonauz, alors que U 1V signifie que les espaces vectoriels U et V' sont orthogonaux.
UL est le complément orthogonal (ou simplement ’orthogonal) de I'espace vectoriel
U. On dit aussi que U et UL sont des espaces complémentaires.

Une famille orthonormale est une famille de vecteurs orthogonaux entre eux et tous
unitaires. Si U est un espace vectoriel, une base orthonormale de U est une base de
U constituée par une famille orthonormale (voir la section 5.3.2).

Opérateurs : quelles que soient les natures des objets sur lesquels un opérateur agit, on
utilise des parenthéses entre 'opérateur et son ou ses argument(s). Exemple : Im(A).
Cependant, cette notation est parfois trop lourde et on s’autorise donc quelques écarts.
Deux exemples de tels usages acceptables sont :

e Im [:1)) i] au lieu de Im (B Z]) (opérateur agissant sur une matrice donnée

explicitement) ;
e Vect(vy, va,...,Vp) au lieu de Vect((vy,va,...,Vvy)) (opérateur agissant sur une
famille).

Nombres complexes

Les nombres complezes sont le sujet du chapitre 3.

>

>

L’unité imaginaire est notée i. Le i (en italique) désigne souvent les indices d'une
énumération, ou ceux des lignes d’une matrice.

Les parties réelle et imaginaire d’'un nombre complexe z € C sont notées respecti-
vement Re(z) € R et Zm(z) € R. De méme pour une matrice A € C™*" on écrit
Re(A) € R™*™ et Zm(A) € R™*™,

Le conjugué de z € C est Z.

> Le module de z € C est |z|. Si z € R, on I'appelle sa valeur absolue.

> Un argument du nombre complexe non nul z # 0 est noté arg(z) € R, et son argument

principal est unique et noté Arg(z) €] — m; 7).
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1Iv  Vecteurs

Les vecteurs sont introduits a la section 1.1, puis généralisés avec une définition formelle
au chapitre 5.

> R™ (respectivement C") désigne l'ensemble des vecteurs colonne! constitués de n

nombres réels (respectivement n nombres complexes). En utilisant cette notation, on
suppose toujours que n € N*, et on ne le précise donc jamais.

> On comprendra au chapitre 5 que le terme vecteur désigne en fait tout élément d’un
espace vectoriel. Cependant, les éléments de R™ et C™ (n > 2) jouent un role parti-
culier dans cet ouvrage. Sans plus de précision, le terme “vecteur” désigne donc un
élément de R™, et le terme “vecteur complexe” désigne un élément de C". On note de
tels éléments avec des lettres minuscules grasses. Exemple : x € R".

> On prend soin de distinguer les vecteurs colonne des vecteurs ligne, qu’on peut aussi
appeler colonnes et lignes. Pour passer de I'un & 'autre, on utilise “T” 'opérateur de
transposition : si X est un vecteur colonne, x| est appelé son transposé et c’est un
vecteur ligne, et vice-versa. Ainsi :

1

e c = | 2| représente un vecteur colonne;
3

e 1 =1 2 3] représente un vecteur ligne;

e on a, pour ces exemples, ¢ =1;
. . T
e pour une écriture plus compacte, on écrira (1,2,3) = [1 2 3] un vecteur
colonne (voir la définition 1.1.5).
> Six = (z1,22,...,2,) € R" ou C", les éléments z; = x(i) (i € [1;n]) sont appelés
les composantes du vecteur x, et ce sont des scalaires (réels ou complexes). Cette
notation permet également de considérer x comme une famille d’éléments de R ou de

C.

> Le nombre de composantes d’un vecteur est appelé sa taille. On n’emploie pas le terme
“dimension”, qui est réservé aux espaces vectoriels.

> Le wvecteur nul de R™ est noté 0, sa taille est dictée par le contexte. Pour lever une
éventuelle ambiguité, on écrit parfois 0,. Ce vecteur est aussi appelé 1’origine.

> Si x est étudié comme élément d’'un espace vectoriel et que B est une base de cet
espace, alors [x]|p désigne les coordonnées de x dans B (voir théoréme 5.2.1).
> Pour simplifier définitions et calculs, on assimile certains objets de la fagon suivante :

e un vecteur (respectivement un vecteur complexe) a une seule composante est
assimilé & un nombre réel (respectivement un nombre complexe), i.e. R = R!
(respectivement C = C1);

1. Ici “colonne” est bien au singulier, car on parle de vecteurs sous forme de colonne.
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e une matrice réelle (respectivement complexe) a n lignes et une colonne est assi-
milée & un vecteur de R™ (respectivement C"), i.e. R™*! = R" (respectivement
(Cnxl — (Cn)

Il découle de ce qui précéde qu'une matrice & 1 ligne et 1 colonne est assimilée & un
scalaire, i.e. R = R! = R™! et C = C' = C™ . Ainsi, pour un réel z, on considére
que

Exemples : on considére dans cet ouvrage que :

1 1
o (1,2,3)= [2]| = [2] :
e 3 3
~— ~—~
cR3 cR3x1

e l—-i=(1-1)=[1-1i];
M e
eC cCl cClx1
e pour X,y € R, le produit scalaire (x,y) = x|y est bien défini comme le produit

d’une matrice 1 X n et d’une matrice n x 1. Il produit une matrice 1 x 1, qui est
assimilée & un scalaire.

Noter que si cette assimilation est pratique pour le calcul, elle n’est pas exacte du point
de vue théorique. Elle est également considérée illicite par la plupart des langages
de calcul scientifique, qui distinguent par exemple R” de R™*!. Ceux-ci prévoient
cependant des opérations implicites de conversion, et ¢’est dans cet esprit qu’on pose
cette convention.

Une combinaison linéaire (ou simplement combinaison) de vecteurs est une somme
pondérée de ces vecteurs (voir la définition 1.1.9). On appelle combinaison triviale la
combinaison dans laquelle tous les poids sont nuls, et son résultat est O.

La notion d’indépendance linéaire est abordée a la section 5.2.1. On s’attache & em-
ployer les adjectifs appropriés :

e une famille de vecteurs peut étre libre ou liée ;

e un ensemble de vecteurs peut étre (linéairement) indépendant ou (linéairement)
dépendant ;

e des vecteurs eux-mémes peuvent étre (linéairement) dépendants ou (linéaire-
ment) indépendants ;

e deux vecteurs dépendants peuvent étre appelés colinéaires.
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> L’opérateur Vect(-), formellement défini & la définition 1.1.10, s’applique sur une fa-
mille de vecteurs (et non un ensemble), et produit I’ensemble (et non la famille) des
combinaisons linéaires possibles de ces vecteurs. Voir ’exercice 0.4 pour la maitrise
de la notation liée & cet opérateur.

> Le conjugué d’un vecteur x = (z1,x2,...,Ty) est X = (T1, Ta, ..., T,). On note I'équi-
valence x € R" <= X = x. Le conjugué d’une ligne est défini de fagon analogue,
par application du conjugué complexe sur chacune de ses composantes.

T

> Le transconjugué d'un vecteur x = (x1,x2,...,2,) est x* = X' = xT. On note

'équivalence x € R «—= x* =x.

> La notion générale de produit scalaire est introduite a la définition 5.3.1.

e Six et y sont deux éléments d’un espace vectoriel, leur produit scalaire est noté
(x,y).

e Le produit scalaire canonique entre deux vecteurs x,y € R” est (x,y) = x'y
(voir définition 1.1.12). L’usage du point “-” est banni pour écrire le produit
scalaire dans R”, car il est trop discret & I’écrit.

e Le produit scalaire canonique entre deux vecteurs x,y € C" est (x,y) = x*y
(voir définition 3.6.5).

> Le produit vectoriel agit sur deux vecteurs x et y et produit un vecteur x Ay qui leur
est a tous les deux orthogonal. Voir la section 1.1.5.

>> La norme (euclidienne) du vecteur x est notée ||x|| € R. Si ||x|| = 1, on dit que x est
un vecteur unitaire, ou normalisé.

> La distance entre deux vecteurs x et y est dist(x,y) = ||x — y||

> La base canonique de R™ est notée £ = (e1,es,...,e,) ou ; désigne le vecteur de R"
dont toutes les composantes sont nulles, sauf la i-iéme qui est un 1 (autrement dit, la
i-iéme colonne de la matrice identité de taille n).

> L’opérateur de projection orthogonale sur un sous-espace est défini a la section 9.1.
Plusieurs notations sont utilisées pour désigner cette opération. Soit V un espace
vectoriel, alors

e si IV est un sous-espace vectoriel de V' et que x € V', Projy, (x) est la projection
de x sur le sous-espace W ;

e six,y € V, Proj, (x) = Projyec(y) (X) est le projeté de x sur la droite vectorielle
générée par y ;

o si A € R™" est telle que Im(A) C Vet x € V, Proj (x) = Projpya) (%) est
le projeté de x sur I'image de A.

> La moyenne du vecteur x = (z1,2,...,2,) € R" est X = 13" | 2, On s'en sert
pour exprimer facilement la somme des coordonnées d’un vecteur avec y - | z; = nX.
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Matrices

Les matrices sont introduites a la section 1.2.

>

v

R™*™ et, C™*™ désignent respectivement ’ensemble des matrices & m lignes et n
colonnes constituées de nombres réels et complexes. En utilisant cette notation, on
suppose toujours que m,n € N*, et on ne le précise donc jamais.

Les matrices sont notées par des lettres majuscules grasses. Exemple : A € R™*",

Les nombres de lignes et de colonnes d’une matrice sont appelés sa taille. On n’emploie
pas le terme “dimension”, qui est réservé aux espaces vectoriels.

L’expression générique “une matrice m x n” désigne une matrice quelconque de R™*"

ou de C™*", Lorsqu’une précision est nécessaire, on parle d’une “matrice réelle” ou
d’une “matrice complexe”.

La transposée d’une matrice A € R™*" (respectivement A € C™*") est notée AT €
R™™ (respectivement C™*™).

a1 ar2 - Qg
a1 a2 -+ Qg R 4 .

Si A= , o "1, les éléments a;j = A(i,7) (i € [1;m], 5 € [1;n])
am,1 Gm,2 **° Gmpn

sont appelés les composantes de A, et ce sont des scalaires (réels ou complexes). i
désigne l'indice de ligne, et j désigne l'indice de colonne.

Les colonnes et les lignes d’une matrice peuvent étre sujettes & des manipulations. Il

L35 2x3
245]6]R :

e La premiére colonne de A est (1,2) € R?, c’est un vecteur (sous-entendu : un
vecteur colonne).

faut pour cela les désigner correctement. Soit A = [

e La premicére ligne de A est [1 3 5] , ce n’est donc pas un vecteur. Si on souhaite
T 3

] eR:

La matrice identité de taille n est notée I, ou éventuellement I, si le contexte nécessite

un éclaircissement. Elle est toujours carrée.

I’étudier comme un vecteur, on étudiera son transposé [1 3 5

La matrice nulle de taille m x n est notée O (noter la différence avec le vecteur nul
0), ou éventuellement O, , si le contexte nécessite un éclaircissement. Elle n’est pas
forcément carrée. Voir définition 1.2.3.

Une matrice diagonale (donc nécessairement carrée) de taille n peut étre décrite uni-

0 3

Le produit matriciel est introduit & la définition 1.2.14. Si A € R™*P et B € RP*" le
produit de A et B est noté AB € R™*™, On n’utilise pas le signe “x”. Ceci est vrai
également pour les matrices complexes.

. . . 2
quement par sa diagonale grace a 'opérateur Diag(-). Exemple : Diag(2,3) = [ 0] .
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Le produit de Kronecker de deux matrices A € R™*" et B € RP*7 est noté A @B €
RP™X4n Voir étude de cas de la section 1.5.
Le rang de la matrice A est noté rg(A). Voir la définition 6.1.5. Souvent, pour rac-
courcir la notation, on pose r = rg(A). De plus, si A € R™*" on dit que :

e A est de plein rang colonne si rg(A) =n;

e A est de plein rang ligne si rg(A) = m;

e A est de plein rang si A est carrée et que rg(A) =m = n.
Si A est une matrice carrée inversible, on note A~! la matrice inverse de A. On dit
aussi que A est non singuliére. Dans le cas contraire, on dit que A est non inversible,
ou singuliére.
Si A € R™*™ avec m > n est de plein rang colonne, la matrice pseudo-inverse de A
est notée AT = (ATA)"'AT. Voir la section 6.4.
Si A est une matrice carrée symétrique, on note son signe (voir chapitre 12) :

e A > 0si A est définie positive ;

e A > 0ou“A est SDP” si A est semi-définie positive ;

e A < 0si A est définie négative ;

e A <0 (ou“A est SDN”) si A est semi-définie négative.
L’opérateur Col(-) retourne la famille des colonnes d’une matrice (voir définition 1.2.4).
Il ne produit pas un ensemble, puisque les colonnes d’une matrice peuvent étre iden-
tiques.
Si A € R™*" ou A € C"™*" sa norme matricielle est ||A|| (voir section 1.2.8).

Si A € R"" ou A € C"*", le déterminant de A est noté¢ det(A) (voir la section 1.3).
Si on étudie le déterminant d’une matrice donnée explicitement, il est écrit entre

barres simples. Exemple : avec A = [; ij, on a det(A) = ; i

La trace d’une matrice carrée A € R™*" (respectivement A € C"*™) est notée tr(A) €
R (respectivement tr(A) € C). Voir la définition 1.2.12.

Les parties réelle et imaginaire d'une matrice A € C"™*™ sont respectivement notées
Re(A) € R™" et Zm(A) € R™*™. Elles sont définies telles que A = Re(A) +
iZm(A).

La transconjuguée d’une matrice A € C™*" est A* = Al
lence A € R™" «— A*=AT,

Si B et C sont deux bases d’un espace vectoriel de dimension n, la matrice de chan-
gement de base de B a C est notée Pe, g € R,

= AT. On note I’équiva-

Deux matrices A, B € R™*™ ou C™*" sont dites équivalentes s'il existe une matrice P
inversible telle que A = PB. Ceci est noté A ~ B. Cette écriture est particuliérement
utilisée pour pour indiquer que B est obtenue a partir d’une ou plusieurs opération(s)
d’élimination sur A (voir la section 2.1.1).
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> Deux matrices A, B € R™*" (ou C™*") sont dites semblables s’il existe une matrice
P inversible telle que A = PBP~!.

> Il est souvent utile d’étudier une matrice par blocs, de différentes fagons. Si A est de
forme m x n, on peut la voir :
e comme l’ensemble de ses colonnes, on note alors A = [cl cy ... cn] ouc; €
R™ (j € [L;n]);
e comme ’ensemble de ses lignes. On considére alors que la i-iéme ligne de A est
1
1
le transposé du vecteur 1; € R™ (i € [1;m]), et on note A = | “ | ;
L,
e comme un ensemble de blocs appelés sous-matrices, que ’on peut éventuellement
délimiter par des séparations virtuelles. Par exemple, pour décomposer la matrice
A en 2 x 2 sous-matrices, on écrit :

A— [An A12] _ [ A1 | A ]
Asr Ap Ao | Ay |7

oll Ajp € R™>X"™ Ay € R™MX"2 Ay € R™M2X™ of Agy € R™2%"2, Les tailles
doivent étre cohérentes avec celle de A, i.e. m; +mo = m et ny + ny = n.
> Une matrice orthogonale est une matrice carrée dont les colonnes sont orthonormales
(voir la définition 5.3.5). Une matrice non carrée dont les colonnes sont orthonormales
n’admet pas d’appellation particuliére.

> Un vocabulaire varié est & acquérir pour désigner différents types de matrices. On
parle ainsi de matrices diagonales, triangulaires, symétriques, hermitiennes, échelon-
nées, échelonnées réduites, unipotentes, d’élimination, de permutation, de rotation, de
réflexion, etc. Une liste exhaustive est donnée a la section 1.2.3.

L] S o
\ ystemes
Les systemes d’équations linéaires (ou simplement systémes) sont le sujet du chapitre 8.

> Plusieurs éléments sont nécessaires pour définir un systéme. Ces éléments sont appelés
les données du systéme et sont :
e une matrice A € R™*" appelée la matrice des coefficients du systéme ;
e un vecteur b € R™ appelé le membre de droite du systéme;
On peut aussi considérer des systémes avec des données complexes.

> Résoudre le systéme donné par A et b consiste & identifier un vecteur x € R", ou
un ensemble de tels vecteurs, satisfaisant les équations linéaires décrites par I'égalité
Ax =b.
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Dans le systéme donné par Ax = b, le vecteur x = (x1,x9,...,2,) est appelé vecteur
des wvariables (ou des inconnues) et la composante x; est appelée la i-iéme variable
(ou inconnue) du systéme (i € [1;n]).

Si b = 0, le systéme Ax = 0 est un systéme homogéne, et sert a définir le noyau de
A (voir la définition 6.1.1).

L’ensemble de toutes les solutions possibles d’un systéme se nomme sa solution com-
plete, définie a la section 8.4. La solution compléte s’écrit a partir d’une solution
particuliere et de solutions spéciales. Voir les définitions 8.4.1 et 8.3.1.

La matrice N dont les colonnes sont les solutions spéciales d’une matrice A se nomme
la matrice noyau de A définie & la définition 8.3.2. Il ne faut pas confondre “noyau”
(un espace) et “matrice noyau” (une matrice).

On comprendra dans la section 1.2.5 que dans le systéme Ax = b, chaque colonne
de A € R™*™ est associée a une variable tandis que chaque ligne de A est associée a
une équation. On dit donc que le systéme Ax = b est constitué de n variables et m
équations.

Un systéme admettant au moins une solution est appelé réalisable (ou compatible). Un
systéme n’en admettant aucune est appelé irréalisable (ou incompatible). On préfére
le terme de réalisabilité plutdt que compatibilité car le premier est incontournable
dans le domaine de 'optimisation, tandis que le second est ambigu et est réservé dans
ce manuel pour décrire des opérations matricielles valides selon les tailles de matrices.
Voir la définition 8.1.5.

Le chapitre 2 décrit des techniques pour résoudre des systémes, appelées élimination
de Gauss et élimination de Gauss-Jordan. Ces techniques utilisent un vocabulaire axé
sur la notion de pivot.

e Cette notion est introduite a la définition 2.1.6, et précise qu'un pivot est toujours
un scalaire non nul.

e On dit que (7, 7) est une position de pivot de la matrice A si sa composante a;;
est un pivot.

e Toute colonne d’une matrice A contenant un pivot est appelée colonne pivot?
de A, et la variable associée dans un systéme est appelée variable pivot.

e Toute colonne d’une matrice A ne contenant pas de pivot est appelée colonne
libre®, ou colonne non-pivot de A, et la variable associée dans un systéme est
appelée variable libre.

e Attention : Les concepts de “ligne pivot” et de “ligne libre” ne sont pas définis.

e Attention : Les pivots ne se voient pas dans A, mais dans les formes échelonnée
et échelonnée réduite obtenues & partir de A.

2. dont le pluriel est “colonnes pivot”, car chaque colonne est de type pivot.
3. dont le pluriel est “colonnes libres”, car ici ce sont les colonnes elles-mémes qui sont libres.
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> La matrice formée des blocs [A b] e R™* (1) est appelée la matrice augmentée
du systéeme Ax = b. On dit également qu’elle le représente sous forme augmentée.
Attention & la terminologie : ¢’est bien la représentation qui est sous forme augmentée,
on ne parle pas de “systéme sous forme augmentée”’. Cette notion se généralise & une
agrégation de p systémes avec les mémes coefficients dans A mais des membres de
droite différents placés dans une matrice B, qui donne la matrice augmentée [A B].
Voir la définition 8.1.6.

> On appelle opérations élémentaires les opérations sur les lignes d’une matrice effec-
tuées dans la méthode d’élimination de Gauss :

e la combinaison linéaire de deux lignes consiste a ajouter a une ligne un multiple
d’une autre. Par exemple, on peut remplacer la deuxiéme ligne d’une matrice
par cette ligne a laquelle on retranche deux fois la premiére. Ceci est noté Lo <
Ly —2Ls;

e la multiplication d’une ligne par un scalaire. Par exemple, on peut multiplier la
premiére ligne d’'une matrice par 2. Ceci est noté Ly < 2L1;

e la permutation de deux lignes. Par exemple, on peut permuter les lignes 1 et 2
d’une matrice. Ceci est noté L1 <> Lo.

> Une suite d’opérations élémentaires appliquées sur une matrice A produit une ma-
trice équivalente & A. On désigne ceci par le signe ~ entre ces deux matrices, et on
précise sous ce signe les opérations élémentaires qui ont été effectuées. Par exemple,
I'opération suivante remplace la troisiéme ligne par elle-méme & laquelle on retranche
trois fois la deuxiéme :

30 3 0
0 1 ~ 0 1] .
0 3 5 L3(—L3—3L2 O 0

Lorsque des composantes sont encadrées comme ci-dessus, elles désignent les pivots
du systéme. Cet encadrement n’est pas systématique.

>> Une solution au sens des moindres carrés d'un systéme est notée X (voir la sec-
tion 9.1.3).

vil Valeurs propres et valeurs singu-
liéres
Les valeurs propres sont décrites au chapitre 7 et les valeurs singuliéres au chapitre 13.

> Le spectre d’'une matrice A € R"*™ est noté Sp(A). Il correspond a l'ensemble des
valeurs propres de A. En tant qu’ensemble, il n’admet aucune répétition et donc, ne
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contient que les valeurs propres distinctes de A. Par exemple, si A admet pour seule
valeur propre 2, de multiplicité deux, on écrit tout de méme Sp(A) = {2}, et non
Sp(A) = {2,2}.

> Si A € Sp(A), la multiplicité algébrique de X est notée ui () et sa multiplicité algé-
brique est notée ,ui()\).

> Le sous-espace propre associé a la valeur propre A € Sp(A) n’admet aucune notation
particuliére. Il est directement désigné par Ker(A — AI).

> Le polynéme caractéristique de A € R™™ est noté pa. Exprimé en fonction de I'in-
connue A, il s’écrit pa (A) = det(A — AI).

> Les valeurs singuliéres d’'une matrice sont notées avec la lettre . En particulier, la
plus petite valeur singuliére de A est notée omin(A), et la plus grande est notée

Omax(A).

> Le conditionnement d’une matrice A est k(A) = Imax(A)

Omin (A) :

viil  Fonctions

Le chapitre 4 est dédié aux fonctions.

> Une application est décrite par

fi X — Y
x — f(x)
ou X est le domaine de f et Y est I'espace d’arrivée de f. Voir la définition 4.1.1.

> L’écriture raccourcie f : X — Y désigne une application quelconque de domaine X
et d’espace d’arrivée Y.

> On désigne par fonction réelle de plusieurs variables une application ayant pour do-
maine R™ et pour espace d’arrivée R".

> Les ensembles de polyndémes sont définis comme suit :

e P(R) (respectivement P(C)) est I’ensemble des polynémes a coefficients réels
(respectivement complexes).

e Pp(R) C P(R) (respectivement P, (C) C P(C)) est 'ensemble des polynémes a
coefficients réels (respectivement complexes) de degré inférieur ou égal a n.

> Le degré du polynéme p € P(R) ou p € P(C) est noté deg(p).

> Les polynomes considérés dans cet ouvrage sont des fonctions d’une seule variable,
i.e. leur inconnue est un scalaire, et la valeur qu’ils produisent est un scalaire.

> Pour f: R" - R et x € R",
e si f est différentiable en x, Vf(x) € R" est le gradient de f en x;



XXX NOTATIONS ET TERMINOLOGIE

e si f est deux fois différentiable en x, V2 f(x) € R™ ™ est la matrice hessienne de
f en x.

> La notion de fonction conveze est définie a la section 12.5.3.

> Les notions de minimum /mazimum et minima/maxima sont définies a ’étude de cas
de la section 12.5. Y figurent aussi les notions d’optimalité locale et optimalité globales.

Correspondance de termes

Toutes les sections précédentes sont retracées ici pour présenter des termes et notations
alternatifs. Lorsqu’elles peuvent s’avérer utiles, des traductions en anglais sont également
proposées, et signalées par le symbole [m.

i Généralités
> L’ensemble R, est parfois écrit R>g, et I'ensemble R est parfois écrit R-g.

> Le point médian est parfois utilisé pour remplacer le signe “x” dans la multiplication
entre scalaires : p X ¢ =p - q.

> Dans ’écriture des intervalles, des parenthéses peuvent étre utilisées pour indiquer
une borne exclue. Exemple : | — 0.5;10] = (—0.5; 10].

ii Ensembles, familles, espaces

> La cardinalité d’un ensemble U est parfois notée card(U) ou #U.

™ [a littérature anglophone ne fait pas la distinction entre ensemble et famille. Les deux
sont généralement désignés par le terme set.

> Générer un espace vectoriel se dit également engendrer un espace vectoriel.
™ Engendrer un espace vectoriel = to span a vector space, ensemble générateur /famille
génératrice = spanning set.
™ Image d’'une matrice = Range of a matriz ou Column space of a matriz, noté R(A)
ou C(A).
>> Le noyau de A est parfois noté N(A).
™ Noyau = Nullspace, noté parfois Nul(A).
>> L’espace des lignes est parfois noté Lgn(A).
™ Espace des lignes = Row space.
>> Famille/base orthonormale = famille/base orthonormée.
iii Nombres complexes
> L’unité imaginaire est parfois notée en italique 7. En physique, elle est souvent notée
j-
>> Les parties réelle et imaginaire de z € C sont parfois notées R(z) et J(z), respective-
ment.
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iv  Vecteurs

>

i~
i~
i~

Les vecteurs de R™ et C" sont parfois notés avec de simples minuscules (exemple : ),
ou avec une fleche (exemple : ?) La notation avec une fléche n’est plus acceptable
en mathématique de niveau universitaire.

Le transposé dun vecteur est souvent noté ‘x dans la littérature frangaise (qui n’utilise
pas de lettres grasses pour les vecteurs).

Composantes d’'un vecteur = coordonnées, éléments, coefficients, entrées.
™ Vector entries.

Famille libre/ensemble linéairement indépendant = linearly independent set.

Famille liée/ensemble linéairement dépendant = linearly dependent set.

Vect(-) = Span(-).

Le transconjugué d’un vecteur x est parfois appelé son transposé conjugué, son adjoint
ou son conjugué hermitien, et noté x.

Au sens général, un produit scalaire est parfois appelé produit intérieur. Il peut étre
noté (x | y) (notamment en physique quantique).

™ Scalar product, Inner product.

Le produit scalaire canonique de R™ est parfois noté (x,y) = x - y. Cette notation
n’est plus acceptable au niveau universitaire.

™ Dot product.

Le produit vectoriel entre x et y est parfois noté x x y.

En géométrie dans le plan ou dans ’espace, les vecteurs de la base canonique sont
parfois notés difféeremment. La base canonique de R? est notée (i, j) aveci = e; = (1,0)
et j = e; = (0,1). De méme, la base canonique de R3 peut étre notée (i,j, k) avec
i=e =(1,0,0),j=e3=1(0,1,0), et k =(0,0,1).

v Matrices

>

>

Les matrices sont parfois notées avec de simples majuscules non grasses. Exemple :
A e R™*™,
Les ensembles de matrices sont parfois notés différemment. C’est notamment le cas
dans la littérature francaise.
o R™*™ et C™*™ sont respectivement notés M, ,(R) et My, ,(C), ou A, n(R)
et Mpmn(C).
o R™ ™ et C™*™ sont respectivement notés M, (R) et M,,(C), ou 4, (R) et 4, (C).
e Pour désigner ’ensemble des matrices réelles inversibles de taille n x n, on uti-

lise souvent la notation GL,(R). On appelle cet ensemble le groupe linéaire de
degré/d’ordre/d indice n.
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La transposée d’'une matrice est souvent notée ‘A dans la littérature francaise (qui
n’utilise pas de lettres grasses pour les matrices).

Les composantes d’une matrice sont parfois appelés ses coefficients, ses termes ou ses
entrées.
™ Matriz entries.
La pseudo-inverse de A est parfois notée A™T.
Le signe d’une matrice est parfois noté A > 0 au lieu de A > 0. De méme pour A > 0,
A<Oet A<O0,aulieude A >0, A<0et A=<0.
™ Les traductions anglaises peuvent préter a confusion :
> définie-positive = positive-definite, parfois on précise symmetric positive-
definite et on l'abrége SPD. “SPD” signifie donc : semi-définie positive en
francais, mais définie-positive en anglais ;
> semi-définie positive = positive-semidefinite, souvent abrégé PSD. Celui-ci
n’existe pas en francais.
Il faut garder en téte que méme sans la mention de symétrique ou symmetric, la notion
de signe d’une matrice ne s’applique qu’aux matrices symétriques.
Pour parler d’'une matrice de plein rang, on ne précise pas toujours “plein rang ligne”
ou “plein rang colonne”, méme si elle n’est pas carrée. Si A € R™*" rg(A) <
min{m,n} donc “A est de plein rang” peut aussi signifier :
o rg(A)=msim<mn;
e rg(A)=nsin<m.
Le déterminant de A est parfois directement noté |A].
La transconjuguée de A est parfois appelée sa transposée conjuguée, son adjoint ou
son conjugué hermitien, et noté A,
Une matrice hermitienne (voir la définition 3.6.7) est parfois appelée matrice auto-
adjointe.
™ Self-adjoint matriz.
Matrice de changement de base = matrice de passage.
™ Change-of-coordinates matriz, Change-of-basis matriz.
Systémes
Si deux matrices sont équivalentes parce que I'une a été obtenue aprés des opérations

d’élimination sur l'autre, elles sont parfois dites équivalentes selon les lignes, puisque
les opérations élémentaires ne concernent que les lignes.

™ Row equivalent matrices.
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Valeurs propres et valeurs singuliéres

Le spectre de A est parfois noté o(A).

La multiplicité algébrique de A € Sp(A) est parfois notée MA()N), et sa multiplicité
géométrique MG(A). Il arrive que ’on n’utilise pas le terme “multiplicité géométrique”,
mais que 1’on parle directement de “dimension du sous-espace propre associé a \”.
Le sous-espace propre associé & A € Sp(A) est parfois noté E) (cette notation ne fait
pas mention de la matrice A, qui est rendue claire par le contexte).

Le polynoéme caractéristique de A est parfois noté ya (A) = det(A — \I).
Fonctions
On confond ici les trois termes de fonction, application et transformation.

Espace d’arrivée d’une fonction = Codomain. Ce terme a donné lieu a utilisation de
codomaine en francais, parfois.

L’ensemble des polynomes a coefficients réels est parfois noté Rlz], ou R[X]. Cette
seconde notation fait intervenir la “grande indéterminée” X et est surtout pertinente
dans I’étude algébrique des polynémes, en dehors du cadre de cet ouvrage. De méme,
I'ensemble des polynomes & coefficients complexes est parfois noté C[z] ou C[X].

Le gradient de f en x est parfois noté grad f(x), et sa hessienne peut étre notée Hy(x),
H(x) (quand f est claire par le contexte) ou Hessf(x).
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1X Exercices sur les notations

Solutions disponibles & ’annexe A.
Série d’exercices 0: Notations

Exercice 0.1: valide ou invalide ? (x)
Soient A un ensemble de vecteurs, F' une famille de vecteurs, et x et y deux vecteurs. Parmi
les expressions suivantes, déterminer lesquelles sont valides.

1xeA; 9 x C R? 17 x=[12];
2 x€F; 10 x = R?

3xCA; 11 x = (12); 18 x=[12]";
4 xCF, 12x=(127T; 1

5 {x,y}=4; 13 x=(1,2); 19 x = [2};

6 {x,y}eA; 14 x=(1,2)T;

7 {x,y} C A; 15 x =1,2]; T

8 x € R?; 16 x = [1,2]; 20":[2} :

Exercice 0.2: ensembles et familles : repérage et réécriture (x)

1. Pour chacune des écritures suivantes, préciser si elle désigne un ensemble ou une
famille, puis la réécrire en respectant les conventions :

> (5,2,5);
> {e,ei,e3};
> {p,p+1,...,n}.

2. Noter sous forme compacte 'ensemble des entiers de —3 a 4 (bornes incluses) en
utilisant la notation [-].

3. Dire si la base canonique £ = (e, ez, e3) est un ensemble ou une famille.

Exercice 0.3: opérations sur ensembles et familles (%)
Soient A ={1,3,5} et B =(1,3,3,4).

1. Préciser pour chacun s’il s’agit d’un ensemble ou d’une famille.
2. Déterminer :

(a) AUB;
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(b) ANB;
(c) B\ A;
(d) A\ B.

Exercice 0.4: bon usage de 'opérateur Vect(-) (%)
Soient A et B deux ensembles, F' et G deux familles, et x et y deux vecteurs. Parmi les
expressions suivantes, déterminer lesquelles sont valides.

1 Vect(B) = A;

Exercice 0.5: appartenance et inclusion — ensembles (%)
Soient les ensembles A = {1,2,4,6} et B = {2,4}. Indiquer a l'aide des opérateurs d’ap-
partenance et d’inclusion si un lien existe entre chacune des paires d’éléments suivantes :

1. 2 et B;
{2} et A;
6et B,
{1,6} et A;
{1,3} et A;
Aet B.

SR

Exercice 0.6: appartenance et inclusion — familles (%)
Soient les familles F' = (1,2,4,6) et G = (2,4). Indiquer a l'aide des opérateurs d’apparte-
nance et d’inclusion si un lien existe entre chacune des paires d’éléments suivantes.

1. 2 et G;

(2) et F,
{2} et F';
FetG;

(4,2) et F';
(1,2,2,4,6) et F.

SRRSO
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Exercice 0.7: appartenance et inclusion — familles de vecteurs (**)
Soient les vecteurs uy = (—1,0,1), ug = (1,0, —1), et ug = (2,0,0), et les deux familles
F = (u,u2,u3) et G = (ug, u3).

Indiquer a l’aide des opérateurs d’appartenance et d’inclusion si un lien existe entre
chacune des paires d’éléments suivantes.

1. uz et G;
—letuy;
(ug) et F';
{ug} et F';
FetG;

(u3, up) et F;

No o e W

(U1,UQ,UQ,U3) et F.



Premiére partie

Algeébre linéaire : Fondements



Chapitre

Vecteurs et matrices

Ce chapitre est consacré a ’étude des vecteurs et matrices, qui sont des outils fonda-
mentaux en algébre linéaire Il sert d’introduction & leur manipulation, alors que leur vraie
nature est formalisée et étudiée au chapitre 5.

Plus précisément, on manipule dans ce chapitre les vecteurs colonne! de R, et les
matrices réelles. Ces deux structures sont en fait des tableaux de réels desquels découlent
des définitions, propriétés et méthodes fondamentales en algébre linéaire. Les manipulations
présentées ici sont simples, mais & la base du reste de 'ouvrage.

Les vecteurs colonne de C™ et les matrices complexes sont définis & la section 3.6.
Cependant, tout au long de ce chapitre, il est mentionné lorsqu’il est possible de travailler
avec C". Dans ce cas, les subtilités inhérentes a leur nature sont explicitées.

Par ailleurs, le mot “scalaire” apparaitra souvent : ce terme désigne, selon le contexte,
soit un réel, soit un complexe. Si on choisit un k& € C, c’est une généralisation du cas réel.
En effet, rien n’empéche un complexe k d’étre dans R (figure 2).

On précise enfin que les premiéres applications de ces concepts, telles que la résolution
de systémes et l'inversion matricielle, sont vus plus tard dans cet ouvrage, au chapitre 8.
De facon générale, les applications des concepts fondamentaux de la partie I sont vues a la
partie II.

1. On ne met pas de “s” & “colonne” car on manipule la notion de vecteurs de type colonne.
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1.1 Vecteurs colonne

Cette section est consacrée a la présentation des vecteurs colonne. Ces vecteurs peuvent
étre additionnés et multipliés par un scalaire pour donner de nouveaux vecteurs colonne
grace a des combinaisons linéaires présentées a la définition 1.1.9. Enfin, la notion de produit
scalaire est introduite afin de définir le concept de norme pour un vecteur colonne.

1.1.1 Définitions

Tel qu’indiqué dans I'introduction du chapitre, un vecteur est un tableau de scalaires. Ce
tableau est, par convention, représenté sous forme d’une colonne 2, d’ott le nom de “vecteur
colonne”.

Le nombre de lignes de ce tableau détermine la taille du vecteur, tel que vu dans
I'exemple 1.1.1. Les éléments d'un vecteur colonne (ce qui apparait sur chaque ligne) sont
appelés les composantes. Ce sont ces composantes qui sont des scalaires. On utilise des
parenthéses pour y accéder. L’exemple 1.1.1 clarifie cette notion de composante.

Définition 1.1.1 (vecteur colonne)

Un wvecteur colonne est un tableau constitué d’une colonne de scalaires. Les scalaires
sur chacune des lignes sont appelés les composantes du vecteur.

Il convient de noter qu’au chapitre 5, consacré aux bases, le terme “coordonnées” est
préféré a celui de “composantes”’. Le théoréeme 5.2.1 énonce 'emploi correct de ce terme.

Bien que les vecteurs colonne soient souvent représentés en 2D ou 3D par une fléche,
comme dans la figure 1.1, leur notation avec une fléche au dessus de la minuscule n’est
pas appropriée au niveau universitaire. En effet, pour de plus grandes dimensions, cette
représentation perd son sens, et on préfére donc la notation en minuscules grasses.

I existe trois fagons d’écrire une colonne pour représenter un vecteur colonne. Celles-ci
sont détaillées a la section iv. Tous les autres usages liés aux notations sont explicités dans
cette section.

Les vecteurs colonne ayant le méme nombre de lignes (composantes) forment un en-
semble introduit & la définition 1.1.2.

Définition 1.1.2 (R")

R™ désigne I'’ensemble des vecteurs colonne & n composantes réelles.

2. C’est la convention usuelle mais, on aurait pu les laisser sous forme de lignes. Cependant, cette
configuration facilite la compréhension des opérations présentées par la suite.
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Pour C", la définition reste la méme, mais, les composantes sont cette fois-ci des com-
plexes. L’ensemble C™ est donc une extension de R™ puisque R™ C C". On utilise également
le terme de “vecteur” (sans le terme “colonne”) pour les éléments de R™ ou C™ ainsi que
pour les éléments de certains sous-ensembles de R™ ou C".

La définition formelle des vecteurs est donnée au chapitre 5, et I’ensemble V' de ces
vecteurs est alors appelé un espace vectoriel.

Remarque

Si n = 1, on assimile le vecteur a un scalaire : R = R! et C = C'. Par exemple,

3] = 3.

Exemple 1.1.1

> u= E] est un vecteur (de R?) a deux composantes réelles, et u(2) = 4 est la

seconde composante du vecteur u.
2

est un vecteur de R% & cinq composantes réelles, et v(5) = 7 est la

\Y
<
Il
NG )

u
cinquiéme composante du vecteur v;

> Pour x = (1, 22,...,T,), un vecteur colonne & n composantes réelles ou com-
plexes, x(i) = x; est la i-iéme composante de x : c’est donc un scalaire, ce qui
explique pourquoi cette composante n’est pas écrite en gras comme le vecteur.

Pour un n donné, les vecteurs les plus connus et utiles dans de nombreux cas sont les
colonnes de la matrice identité, tel que décrit & la définition 1.1.3. Le concept de “matrice
identité” sera expliqué de maniére formelle & la définition 1.2.16.

Définition 1.1.3 (j-iéme colonnes de la matrice identité)

Pour un n donné, on définit n vecteurs e; € R™ pour j € [1;7n] tels que e;(i) = 0 si
i # j pour i€ [1;n] et ej(j) = 1.

Exemple 1.1.2

Dans R3, les trois colonnes de la matrice identité sont e; = (1,0,0) (souvent noté i),
ez = (0,1,0) (souvent noté j), et e3 = (0,0, 1) (souvent noté k).
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Pour un vecteur colonne donné, il est utile de définir son transposé dans lequel une
colonne (un vecteur) devient une ligne et donc une matrice (ce terme est défini a la sec-
tion suivante). La transposée est notamment utile dans la notion de produit scalaire vue
ultérieurement & la section 1.1.4.

Définition 1.1.4 (transposé d’un vecteur)

. v . Lo . :
Le transposé d'un vecteur x € R™, noté x ', est une matrice a une ligne et n colonnes

I
Z2

Tn

Pour les vecteurs complexes, transposer n’est souvent pas suffisant. On fait alors appel
a la transconjuguée sur les complexes (la définition 3.6.4 donne plus de détails).

Remarque

> Il est important de noter qu'une matrice composée d’une ligne n’est pas un
vecteur mais une matrice 1 X n;

> On n’assimile pas R'™ a4 R™ pour n > 1. C’est R™*! qui est assimilé a R™ (il
en est de méme pour les complexes).

On conclut cette sous-section en décrivant trois fagons différentes d’écrire les vecteurs
colonne.

Définition 1.1.5 (les trois différentes écritures d’un vecteur colonne)

Soit x un vecteur (colonne) de n composantes notées x1, xo, ..., T,. On utilise les
trois facons suivantes d’écrire x et ses composantes :

X = (x1,22,...,Zp)
T
= [-751 .:62 o e xn]
T
)

In
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1.1.2 Opérations vectorielles simples

Dans cette section, deux opérations simples sur les vecteurs sont abordées : ’addition
et la multiplication par un scalaire. Ces deux types d’opérations sont combinés dans la
section 1.1.3 portant sur les combinaisons linéaires. Ces opérations se font dans un ensemble
R™, ot n est un entier naturel supérieur & un, mais, pour des questions de visualisation, les
exemples sont donnés avec des vecteurs de R?. Un vecteur de R? a donc deux composantes
que I'on note z et y par la suite. On peut donc représenter un vecteur x = (z,y) € R? comme
un point dans un repére avec deux axes perpendiculaires, chacun des axes représentant une
dimension. C’est ce que l'on appelle le repére “2D”. L’origine de ce repére représente le
vecteur nul noté 0 = (0,0). Les propriétés de ce vecteur sont vues au chapitre 5 et dans
la section 1.1.3. Le repére 2D, le vecteur nul 0 = (0,0) et le vecteur v = (v, v2) sont
représentés dans la figure 1.1. Bien que le vecteur v corresponde au point de coordonnées
(v1,v2), la coutume est d’ajouter une (bleue dans la figure), de maniére symbolique, pour
expliciter ce vecteur. Ici, le mot vecteur prend une signification plus générale : Pour n
quelconque, un vecteur n’a pas de “direction”, ni d*‘origine”, et ni d*‘extrémité”, méme si
ces termes peuvent étre utiles pour n < 3.

V) pmmmm e e e e e e e e = o

FIGURE 1.1 — Représentation d'un repére de R?, du vecteur nul 0 et du vecteur v = (v, va).

La premiére opération étudiée dans cette section est l'addition de deux vecteurs, soit
l'opération qui consiste & additionner chacune des composantes une & une.

Définition 1.1.6 (addition de deux vecteurs)

Soient x,y € R™. Le vecteur z = x+y correspond a ’addition de x et y. Il est calculé
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en additionnant les composantes des deux vecteurs. Plus précisément :

1 Y1 1+
T2 Y2 T2 + Y2
z=x+y=|.|+]|.|= :

La soustraction de deux vecteurs, formalisée a la définition 1.1.7, se fait de maniére
similaire en soustrayant les composantes une a une. Il convient de souligner que ’ordre des
vecteurs dans une soustraction est important.

Définition 1.1.7 (soustraction de deux vecteurs)

Soient x,y € R"™. Le vecteur z = x — y correspond & la soustraction de x et y. Il est
calculé en soustrayant les composantes des deux vecteurs. Plus précisément :

X1 1 1 — U

x2 Y2 T2 — Y2
Z=X—-y= — =

Tn Yn Tn — Yn

La figure 1.2 illustre ces notions d’addition et de soustraction dans R?. On peut remar-
quer que le vecteur v — w est différent du vecteur w — v.

Le deuxiéme type d’opération vu dans cette section est la multiplication d’un vecteur
par un scalaire. La définition 1.1.8 formalise cette opération.

Définition 1.1.8 (multiplication d’un vecteur par un scalaire)

Soit x € R™ et soit k£ un scalaire. Le vecteur y = kx correspond a la multiplication
de x par le scalaire k. Il est calculé en multipliant par k£ les composantes de x. Plus
précisément, :

T kxq
i) kxg
Tn kx,

Le scalaire k est également appelé poids.
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-
-
-

FIGURE 1.2 — Représentation de deux vecteurs v et w dans R? ainsi que de leur addition
et de leur soustraction.

Remarque

Selon les valeurs du scalaire k, le vecteur résultant a des propriétés :
> Si k < 0, les fléches qui relient 0 & x et 4 kx sont de sens opposé;
> Si0< k<1, kx est “rétréci” par rapport a x;
> Sik > 1, kx est “agrandi” par rapport a x.

Ces notions de “rétréci” et “agrandi” prendront leur sens lorsque la norme d’un vecteur
sera définie & la définition 1.1.13.

La figure 1.3 illustre cette opération de multiplication par un scalaire dans R? pour
différentes valeurs de k.
Si deux vecteurs x et y sont tels que x = ky, ol k est un scalaire?, alors on dit

3. Ce scalaire peut étre nul : Comme 0 = 0x pour tout vecteur x, le vecteur nul 0 est colinéaire & tous
les vecteurs.
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kv (k>1)

kv (0 <k <1)

]\'V (]\ < ())

FIGURE 1.3 — Représentation de x et kx pour différentes valeurs de k dans R2.

que x et y sont colinéaires, ou dépendants. La notion d’indépendance lincaire est vue a la
section 5.2.1. En combinant les opérations d’addition et de multiplication par un scalaire,
on fait intervenir la notion de combinaison linéaire qui est introduite & la définition 1.1.9
de la section suivante.

1.1.3 Combinaisons linéaires

Une combinaison linéaire de vecteurs est une somme de ces vecteurs qui sont chacun
pondérés par un scalaire. Le résultat est lui aussi un vecteur. La définition 1.1.9 formalise
cecl.

Définition 1.1.9 (combinaison linéaire)

Soit V' un ensemble de vecteurs. Une combinaison (linéaire) de vecteurs de V' est une
opération qui consiste & multiplier ces vecteurs par des scalaires (appelés des poids),
puis a les additionner. On parle aussi de somme pondérée.

Plus précisément, avec les p vecteurs vi,va,...,v, de V et avec les p poids

a1, 2, ..., qp associés a ces vecteurs, la combinaison linéaire de ces vecteurs pondérés
.

s’écrit

P
a1V +aove + ...+ apvy, = g OEVE -
k=1
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2u v W

FIGURE 1.4 — Illustration de I'exemple 1.1.3.

Cette notion de combinaison linéaire s’applique non seulement a V' = R" ou C", mais
également & des sous-ensembles de ces ensembles.

Dans le chapitre 5, 'ensemble V' est généralisé et appelé espace vectoriel. Grace a cer-
taines propriétés, on peut montrer qu’une combinaison linéaire de vecteurs d’un espace
vectoriel appartient également a cet espace.

Dans I'exemple 1.1.3, la combinaison linéaire de trois vecteurs de R? est étudiée.

Exemple 1.1.3

: -1 3] 6
Soient u = { 2] ,V = [4_ et w = [4

est par exemple : 2u — v + %w. Dans ce cas,

v deea 4[4[ (B[

} . Une combinaison linéaire de ces trois vecteurs

Le vecteur résultant est bien un vecteur de R?. Les différentes étapes de la somme
sont représentées a la figure 1.4.

Ainsi, si on considére un ensemble {x1,X2,...,X,} de p vecteurs de V' et un ensemble
{ag,ag,. .. ,ap} de p scalaires, alors ayxq + aoXg + ... + a;pX,;, est une combinaison linéaire
des p vecteurs, qui est elle-méme un vecteur de V. Cette appartenance & V' est formellement
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démontrée a la proposition 5.1.1.

Remarque (combinaisons linéaires particuliéres de deuz vecteurs)

Soient x et y deux vecteurs, et soit ax + [y leur combinaison linéaire avec deux
scalaires v et § :

> Si « = B =1 : la combinaison est la somme des deux vecteurs : x +y;
> Sia =1, 5= —1:lacombinaison est la soustraction des deux vecteurs : x —y;
> Si 8 =0 : la combinaison est la multiplication de x par le scalaire «;

> Si = =0: cette combinaison donne 0x + Oy = 0, c’est-a-dire le vecteur nul.
Cette combinaison linéaire est appelée triviale.

Il existe une infinité de combinaisons linéaires d’un sous-ensemble de vecteurs avec des
scalaires quelconque. L’opérateur Vect(-) traduit se phénoméne. Il permet d’écrire d’une
fagon condensée ’ensemble des combinaisons linéaires d’une famille de vecteurs. La dé-
finition 1.1.10 explicite ceci. Pour maitriser cette notation, il est recommandé de faire
I’exercice 0.4.

Définition 1.1.10 (opérateur Vect(-))

Soit (v1,Vva,...,Vp) une famille de p vecteurs de R™. L’opérateur Vect(-) est défini
comme
Vect(vi,va,...,vp) = {x € R" : x = c1vi+cava+...+¢pvy avec ¢, ¢, ..., ¢, € R} .

Remarque (entrées et sorties de Vect(-))
L’opérateur Vect(-) :
>> prend une famille (et non un ensemble) de vecteurs en entrée;

> retourne l’ensemble (et non une famille) de toutes les combinaisons linéaires
possibles de ces vecteurs.

I1 est montré au corollaire 5.1.1 que la sortie de Vect(-) est un espace vectoriel. L’exemple 1.1.4
donne une intuition de ce résultat ainsi que plusieurs exemples d’ensembles retournés par
Popérateur Vect(-).

Exemple 1.1.4

> Pour u € R™ et u # 0, 'ensemble Vect(u) est une droite. En 2D (n = 2), on
peut visualiser ceci sur la figure 1.3;
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> Etant donnés deux vecteurs u et v non nuls de R? qui ne sont pas colinéaires,
I’ensemble Vect(u,v) est un plan.

Ces différents cas de figures sont étudiés a la section 5.2.4.

1.1.4 Produit scalaire réel

Cette section introduit la notion de produit scalaire, une opération qui permet d’ef-
fectuer la “multiplication” de deux vecteurs colonne afin, notamment, de définir dans la
section 1.2.6 non seulement la norme d’un vecteur, mais aussi le produit de deux matrices.

Pour multiplier deux vecteurs colonne, on introduit la notion de produit ligne-colonne
a la définition 1.1.11. Le terme ligne vient du fait que I’on transpose un vecteur colonne et
qu’il devient donc une ligne.

Définition 1.1.11 (produit ligne-colonne)

Etant donnés x,y € R, le produit ligne-colonne de x avec y, noté x 'y, est défini

par :
n
Ty =
=1

Il s’agit de la somme des produits des composantes des deux vecteurs.

Remarque

> Cette opération est généralisée par le produit matriciel vu a la définition 1.2.14 ;

> Formellement, I'opération x 'y est un produit de matrices, car il a été vu plus tot
qu’un vecteur transposé est une matrice. Il n’est pas nécessaire ici de maitriser
ce concept car la formule donnée dans la définition 1.1.11 permet de facilement
faire ce calcul ;

> x|y =y x: peu importe le vecteur qui est transposé, le résultat est le méme.

Ce produit ligne-colonne représente en fait un produit scalaire dans R™. Un produit
scalaire est une fonction qui prend en entrée deux vecteurs et qui donne un scalaire en
sortie.

La définition 1.1.12 donne la définition du produit scalaire dans R™ qui est utilisée dans
ce document.

Définition 1.1.12 (produit scalaire dans R™)
Soient x = (z1,x2,...,2y) E R" et y = (y1,92,...,yn) € R™. Le produit scalaire de x
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et y, noté (x,y), est égal a

n
(x,y)=> zyi=x'y.
=1

Remarque

\%

(x,y) = (v,%);

> Dans certains ouvrages, le produit scalaire est noté avec un point entre les vec-
teurs a la place de la notation utilisée ici. Cela crée de la confusion et est donc
proscrit dans cet ouvrage;

> Dans la définition 1.1.12, il faut que les vecteurs soient dans R™. Pour C™, une
autre définition est nécessaire : voir la définition 3.6.5 pour plus de détails;

> La notion de produit scalaire est généralisée & la définition 5.3.1;

> Un produit scalaire peut étre positif ou négatif.

Le produit scalaire permet de définir la norme d’un vecteur. Dans R? ou R3, c’est la
“longueur” de la fleche qui représente symboliquement le vecteur.

Définition 1.1.13 (norme d’un vecteur)

Etant donné x € R, la norme de x, notée ||x||, est définie par

[ = v/ (x, %) =

Remarque

> La norme est bien définie car c’est la racine d’une somme d’éléments positifs ou
nuls;

> Cette définition étend la notion de valeur absolue. En effet, pour n = 1, x = (1)

et on retrouve |[x|| = /{x,x) = /321, 22 = /27 = |z1].

Dans les sections précédentes, la facon de multiplier un vecteur par un scalaire a été
étudiée. Le résultat de cette opération est aussi un vecteur et posséde donc une norme.
Tel qu’indiqué dans la proposition 1.1.1, il n’est pas nécessaire de refaire le calcul de la
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norme de ce nouveau vecteur si 'on connait la norme du vecteur initial. Cette propriété
n’est présentée ici que pour les réels, mais elle est généralisée & la proposition 3.6.1 pour les
complexes.

Proposition 1.1.1 (norme et multiplication par un scalaire)

Etant donnés k € R et x € R", on a ||kx|| = |k| ||x]|.

Preuve. Soit k € R et soit x = (x1,z2,...,2,) € R". On a kx = (kx1, kza, ..., kxy) et

done [[kx| = v/{kx, kx) = /3T (kai)? = VE2\ /300 af = [K] [x])- O

Les vecteurs qui ont une norme égale a 1 (définition 1.1.14) sont trés utilisés en pratique
et notamment dans la section 5.3 et le chapitre 13.

Définition 1.1.14 (vecteur normalisé)

Un vecteur est normalisé (ou unitaire) si sa norme est égale a 1.

Remarque

Ceci est valide également pour les complexes avec la norme de la définition 3.6.6.

Une fagon trés simple d’obtenir un vecteur normalisé (non nul) est de le diviser par sa
norme tel que vu a la proposition 1.1.2.

Proposition 1.1.2 (normalisation d’un vecteur)

. X .
Si x € R™ est un vecteur autre que le vecteur nul 0, alors —— est normalisé.

]
. X 1 1
Preuve. D’aprés la proposition 1.1.1, on a ||[—=|| = |—|||x]|. De plus, |—:| x| =
1] Il x|

1
— |Ix|| car ||x|| > 0. Il s’ensuit que XH = Il =1. O
] [l [l

Remarque

Cette technique de normalisation fonctionne pour les complexes : voir la proposi-
tion 3.6.2.

Il existe une relation trés connue qui relie le produit scalaire de deux vecteurs et leur
norme : c¢’est 'inégalité de Cauchy-Schwarz. Elle est trés utile dans de nombreuses démons-
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trations et notamment celle du théoréeme 1.1.2. Le théoréme 1.1.1 est aussi valide pour les
complexes grace aux définitions de norme et de produit scalaire adéquates vues dans le
chapitre 3.

Théoréme 1.1.1 (inégalité Cauchy-Schwarz)

Etant donnés x,y € R” ou C", on a
|yl < I lyll -

La compréhension de la preuve repose sur la connaissance des propriétés des fonctions
du second degré (section 4.3.2) et des normes.
Preuve. Soient x,y € R™ ou C" et soit f une fonction réelle & une variable définie par
fla) = |Ix+ay|* = ||x]|* + 20 (x,y) + o?|ly[|*>. Si y = 0, Dinégalité est vraie puisque
l(x,y)] =0 = |x|||lyll- Si y # 0, sa norme est aussi différente de 0 (tel que vu dans le
chapitre 5) et f est une fonction du second degré positive car elle est définie grace a une
norme au carré. Le discriminant associé a cette fonction est donc négatif ou nul car elle
posséde au plus une racine réelle (voir chapitre 4). On a donc

(2(x.y))* = 4x/* ly[* < 0

c’est a dire :
2 2 2
)" < I lylI™ -
En prenant la racine de chaque coté de 'inégalité, on déduit le résultat car une telle opé-

ration ne change pas le sens de I'inégalité (puisque la fonction racine est croissante et que
les termes |(x,y)|, ||x]|| et ||y]| sont positifs). O

Comme la notion de norme étend la valeur absolue définie sur R, I'inégalité triangulaire
reste valide. Cette inégalité demeure vraie quelle que soit la norme considérée, qu’il s’agisse
de celle définie ici ou de celle sur les complexes (définition 3.6.6) car les deux normes
s’appuient sur les propriétés du produit scalaire.

Théoréme 1.1.2 (inégalité triangulaire)

Etant donnés x,y € R” ou C"*, on a ||x +y|| < ||x]| + [|¥]|-

Preuve. Soient x,y € R"™ ou C". En utilisant la distributivité du produit scalaire vue
dans la définition 5.3.1, on obtient

Ix+yl> = (x+y.x+y)=(xx+y)+{y,x+y) = X% +xy) +{¥x+{y,y)
= |1x[|* + 2 (x,y) + [ly]|*-
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I1 découle du théoréme 1.1.1 que (x,y) < [(x,y)| < |||/ |ly||- On a donc
I+ yII* < Il + 2 1] iyl + llyl® = (] + [y ).

En prenant la racine de chaque coté de I'inégalité, on déduit le résultat car une telle opé-
ration ne change pas le sens de I'inégalité (puisque la fonction racine est croissante et que
les termes ||x + y||, ||x|| et ||y|| sont positifs. O

Le cas d’égalité de I'inégalité triangulaire est traité dans ’exercice 1.7. Il est aussi pos-
sible de dériver d’autres égalités comme 1’égalité du parallélogramme ou méme le théoréme
de Pythagore vus dans I'exercice 1.6. Pour résoudre cet exercice, la notion d’orthogonalité
doit étre explicitée. Ici encore, cela étend une notion vue dans R? : la perpendicularité. On
dit que deux vecteurs sont orthogonaux si leur produit scalaire est nul (définition 1.1.15).
Si de plus, il sont normalisés, on dit qu’ils sont orthonormaux (définition 1.1.16).

Définition 1.1.15 (vecteurs orthogonauz)

Deux vecteurs x et y de R™ ou C" sont dits orthogonaux si (x,y) = 0.

Remarque

La définition s’applique aussi au vecteur nul qui est donc orthogonal a tous les autres.

Définition 1.1.16 (vecteurs orthonormaux)

Deux vecteurs x et y de R” ou C" sont dits orthonormaux s’ils sont orthogonaux et
normalisés, c’est-a-dire que ||x]| = ||y|| =1 et (x,y) = 0.

La notion d’orthogonalité est généralisée & la section 5.3.

En plus, de la “taille” d’'un vecteur, on voudrait étre capable d’évaluer a quel point
des vecteurs sont “éloignés” I'un de 'autre, la notion de distance est introduite a la défini-
tion 1.1.17.

Définition 1.1.17 (distance entre deux vecteurs)

La distance entre deux vecteurs x et y de R™ est la norme du vecteur x —y, autrement
dit ||x — y]|.

Remarque

> La norme d’un vecteur représente donc sa distance au vecteur nul ;

> Comme ||x —y| = ||y — x||, la distance entre deux vecteurs est unique;



1.1. VECTEURS COLONNE 19

Dans R?, le signe du produit scalaire posséde une interprétation géométrique. En effet,
si 'angle entre deux vecteurs est inférieur a 7 /2, la produit scalaire est positif. Cela vient
du fait que 'on peut exprimer le produit scalaire de x et y de R? grace au cosinus de 'angle
formé par ces deux vecteurs.

Proposition 1.1.3 (produit scalaire dans R?)

Soient x et y deux vecteurs non nuls de R? et soit § € [0;n] I’angle formé par les
droites d’origine 0 et qui passent par x et y, respectivement, dans le repére 2D. On a

(¢, y) = x|l ly [l cos(8) -

Preuve. La distributivité du produit scalaire donne

2
[x—yl"=&x-y.x-y)=(xx-y) - (y.x—y) = (x%) - (xy) - ¥.x)+{y,y)
2 2
= [x[" =2 y) +yl” -
Considérons le triangle formé par les vecteurs 0, x et y. La longueur de I'aréte opposée a
I'angle 6 est égale a la distance ||x — y|| (définition 1.1.17) et la loi des cosinus appliquée a
. 2 _ 2 2

ce triangle donne [x — [ = [x] + [y = 2 x| ] cos(0).

On a donc ||Ix[|” —2(x,y) + [[y[I” = [x[" + [lylI” = 2|Ix[ [ly[| cos(8), ce qui implique
(x,y) = llz[ [lyll cos(8). O

Remarque

L’angle 6 € [0; 7] entre deux vecteurs x et y non nuls vérifie

_ (xy)
<0s(6) = o1

ce qui, par le théoréme 1.1.1, donne bien un nombre dans 'intervalle [—1; 1]. De plus,

(x et y sont orthogonaux) ;

[;

;7.

> si (x,y) =0, alors 6 =

o N
vl 3

> si(x,y) >0, alors 0 € |

)

> si (x,y) <0, alors 6 €]

| N

L’exemple 1.1.5 illustre ce propos.

Exemple 1.1.5
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: -1 3 6
Smentu—[ 3],v— L],etw— [1] :

> (u,v)=—-1x3+3x4=09;
> (u,w) =—-1x6+3x1=-3.
Tel qu’illustré a la figure 1.5 l'angle 61 entre u et w est donc supérieur a g (car

—3 < 0) alors que 'angle 6, entre u et v est inférieur a g (car 9 > 0).

FiGURE 1.5 — Illustration de I’exemple 1.1.5.

1.1.5 Produit vectoriel

Comme le produit scalaire, le produit vectoriel prend en entrée deux vecteurs, mais
y différe en produisant un vecteur a la place d’'un scalaire. Ce produit est défini pour les
vecteurs & composantes réelles appartenant a R3. Il permet, pour deux vecteurs linéairement
indépendants, d’en créer un troisiéme qui leur est orthogonal.

Définition 1.1.18 (produit vectoriel dans R?)

Soient x = (1, 22, 73) et y = (y1, %2, y3) deux vecteurs de R3. Le produit vectoriel de

x ety est
T2Y3 — T3Y2
XNy = |T3y1 — T1Y3
T1Y2 — T2Y1

Proposition 1.1.4 (propriétés du produit vectoriel dans R?)
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Soient X, y et z trois vecteurs de R3, ainsi que a un réel. Le produit vectoriel respecte
les propriétés suivantes.

1. Anti-commutativité : x ANy = —(y A X);

2. Distributivité par rapport a addition : x A (y +2z) = (xAy) + (x A z);

3. Compatibilité avec la multiplication par un scalaire : a(x Ay) = (ax) ANy =
XA (ay);

Respect de l'identité de Jacobi : x A (y Az)+zA (xAy)+yA(zAx)=0;
Orthogonalité des vecteurs en entrée : (x Ay),x) = ((xAy),y)=0;

Donne le vecteur nul pour deux vecteurs linéairement dépendants : xA(ax) = 0;

Regle de I'échange : (x Ay),z) = (x,(y A2));

® N o

Formule du double produit : x A (y Az) = (x,2)y — (X,y) 2.

Les propriétés 7 et 8 sont démontrées ci-dessous. Le reste des propriétés est facilement
démontrable et laissé en exercice.

X1 U1 Z1
Preuve de la régle de I’échange. Soit x = |z2|,y = |y2| et z= [2z2|. D’une part
3 Y3 23

on a

(xAy),z) = 21(72y3 — 23Y2) + 22(T391 — 21Y3) + 23(T1Y2 — T2Y1)
T1Y223 — T1Y322 + TaY321 — TaY123 + T3Y122 — T3Y221 .

D’une autre part, on a

(x,(y AN 2)) = 21(y223 — y322) + 22(ys21 — y123) + 73(y122 — Y221)
= T1Y223 — T1Y322 + T2Y321 — TaY123 + T3Y122 — T3Y221 -

Dot ((x Ay),z) = (x,(y Az)) pour tous X y et z de R3. O

Preuve de la formule du double produit.
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x1 U1 21
Soit x = |xa|,y= |yo| et 2= |29
x3 Y3 Z3
Y223 — Ysz2
AN(yANz)=xAN |ysz1 —y123
Y122 — Y221
[22(y122 — y2z1) — @3(ysz1 — Y123)
= 563(?4223 - y3z2) - 371(1/122 - yQZl)
_36‘1(1/321 —y123) — T2(Y223 — Y322)
[y1 (2323 + 220) — 21 (22y2 + 23Y3)
= |y2(z323 + 2121) — 22(W3Y3 + T1Y1)
Ly3(z121 + 2222) — 23(561@/1 + Z2y2)
[y1 (2323 + x222) + (Y1121 — Z1$1y22—21 (w2yo + x3y3)]
0
_ y2(xszg + x121) + (Y2waze — 22w2y2) —22(x3y3 + x1y1)
0
ys(z121 + x222) + (ysw323 — 2323Y3) —23(21y1 + T2y2)
L 0 J

[y1 (2323 + o220 + 2121) — 21(@2y2 + T3Y3 + T121)
= |y2(w323 + w121 + T222) — 22(23Yy3 + T1Y1 + T2Y2)
|y3(z121 + 220 + 2323) — 23(71Y1 + T2y2 + T3Y3)

=(x,2)y — (x,y) 2

O

Il est a noter que le produit vectoriel de deux vecteurs n’est pas associatif. C’est-a-dire
qu’en général (x ANy) Az #xA(y Az).

Exemple 1.1.6 (non-associativité du produit vectoriel)

Voici un exemple qui montre que le produit vectoriel n’est pas associatif en général.
1 2 3

Soitx=|2|,y=|1| etz= |4].
3 2 4
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D’une part on a
1 [2 3 2x2—-3x1 3
(xAy)ANz=| |2| AN |1]| | A 4] = [3x2—-1%x2]| A |4
3 |2 4 1x1—-2x2 4
[ 1 3 4 x4 —4(-3) 28
=] 4| A4 =]-3x3—-4x1| =|-13
|—3 |4 1x4—-4x%x3 —8
D’un autre part, on a
[1] 2 3 1 1x4—-2x4
xAN(yAz)= 2| A |1 A 4] | = (2| N |2x3-2x4
3] 2 4 3 2x4—-1x3
[1] [—4 2x5—-3(-2) 16
= |2 A |-2]|=]3(-4)—-1x5|=|-17
3] | 5 1(—2) — 2(—4) 6
Dou (xAy)ANz#xA(yAz).

La propriété du point 5 indique que le vecteur produit par deux autres vecteurs sera
toujours orthogonal & ceux-ci. Ceci implique qu’il sera aussi orthogonal au plan généré par
les deux vecteurs en entrée. En effet, les vecteurs générés par deux vecteurs linéairement
indépendants v et w de R3 sont donnés par une combinaison linéaire de v et w. C’est-a-dire
qu’ils sont représentables par

T(a, ) = av + fw, pour tout « et § dans R.

En imaginant les composantes de chaque vecteur T'(«, ) comme étant des coordonnées
de points (z,y, z) dans R?, on remarque que ces vecteurs se retrouvent dans un plan de R3
passant par l'origine.

Définition 1.1.19 (représentation paramétrique d’un plan passant par l'origine dans
R.i)

Un plan passant par I'origine dans R? peut étre représenté par
T(a, ) = av + fw, pour tout v et 5 dans R,

oll v et w sont des vecteurs linéairement indépendants de R3. C’est une représentation
paramétrique d’un plan passant par l'origine généré par v et w, de paramétres « et

3.
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V1 w1
Pour v = |vg| et w = |w2 |, la représentation est
V3 w3
avi + Bw
T(a,B) =av+ fw = | avy + Pws| , pour tout a et B dans R.
avs + Pfws
x
Autrement dit, n’importe quel vecteur b = |y | qui appartient & ce plan est tel que
z

r = avy + fwy,
y = oy + Pws et

z = avs + pfws.

pour certains scalaires réels a et 5. C’est I’équation paramétrique du plan généré par
v et w.

L’ensemble des vecteurs qui font partie d’un plan généré par deux vecteurs linéairement

indépendants v et w dans R3 sont tous orthogonaux a v x w, car pour toutes valeurs de o
et 8 dans R,

(vxw,T(a,B)) = (v xw,av+ fw)
= (vxw,av)+ (v x w,fw), distributivité du produit scalaire
=a(vxw,v)+ (v xw,w), propriétés de multiplication par un scalaire
=a0+50=0.

En trois dimensions, le vecteur v A w produit a partir de deux vecteurs linéairement
indépendants d’un plan est un vecteur qu’on dit normal & ce plan. Pour chaque plan dans
R3, il existe une infinité de vecteurs normaux qui sont tous colinéaires a v A w. C'est-a-dire
qu’ils s’expriment comme v A w multiplié par une valeur réelle.

On peut montrer quun plan dans R? passant par 'origine qui contient deux vecteurs
linéairement indépendants v et w admet exactement tout les vecteurs dans R qui sont
orthogonaux & v A w.

Définition 1.1.20 (équation cartésienne d’un plan passant par ’origine)

Le plan passant par 'origine et contenant deux vecteurs v et w linéairement indépen-
dants peut s’écrire sous la forme
<Il, X> =0
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ol n est un vecteur normal au plan généré par v et w et o x = (z, y, z) est un vecteur
appartenant au plan. L’ensemble des vecteurs x qui respectent cette équation forme
un plan qui passe par l'origine. Peut importe le vecteur normal n choisi, I’équation
représentera toujours le méme plan. Ces équations sont les équations cartésiennes d’un
plan.

Exemple 1.1.7 (équation cartésienne d’un plan)

On cherche I’équation d’un plan passant par l'origine dans R? contenant les vecteurs
indépendants v = (1,—2,4) et w = (3,7,5). Il est possible d’utiliser le produit vecto-
riel suivant pour trouver un vecteur normal qui permettra de décrire le plan comme
une équation cartésienne :

1 3 —2x5—4xT7 —-38
n=vAw= |[-2[A[7] = 4x3—-1x5| = 7
4 5 1x7—(-2)x3 13

Donc x = (z,y, 2) € Vect(v,w) (le plan généré par v et w) s’il respecte
x
n,x)=0 < [-38 7 13| |y| =0 < 38+ Ty+132=0
z

qui est une équation cartésienne du plan généré par les deux vecteurs v et w.

Que faire lorsqu’on cherche & obtenir une équation d’un plan qui ne passe pas par
Porigine 7 Dans ce cas, les vecteurs appartenant & ce plan sont générés en partant d’un
vecteur r appartenant au plan et en se déplacant dans les directions de deux vecteurs v, w
tangents au plan. Les vecteurs qui appartiennent & ce plan sont donnés par

T(a,8) =r + av + fw, pour tout o et § dans R.

Définition 1.1.21 (représentation paramétrique d’un plan passant par un point quel-
conque dans R?)

™

Un plan passant par un vecteur quelconque r = |r5| dans R3, oil v et w sont deux
T3

vecteurs linéairement indépendants tangents a ce plan, peut étre représenté paramé-
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triquement par
T(a,B) =r+ av + fw, pour tout « et 5 dans R.

Les paramétres de cette représentation sont « et .

x1 Y1
Six = |xo| et y = |y2]|, la représentation paramétrique devient
3 Y3

1 + avy + Pws
T(o,B) =r+av+pw= | ry+ avy + fws| , pour tout « et § dans R.
r3 + avs + fws

x
On remarque que pour n’importe quel vecteur b = [y | appartenant a ce plan, il
z
existe un scalaire « et un scalaire 8 tel que

T =711+ avy + Pw,
Yy = T9 + avg + Pfws et
z =r3 + avg + fws.

C’est I’équation paramétrique du plan passant par r, généré par v et w.

Alors, n’importe quel vecteur v appartenant a ce plan est aussi tel que b —r appartient
au plan passant par l'origine et généré par v et w. Le prochain exemple montre comment
utiliser ce fait pour obtenir une équation cartésienne d’un plan ne passant pas par l'origine.

Définition 1.1.22 (équation cartésienne d’un plan passant par un point quelconque)

Soit v, w, n et r, quatre vecteurs de R3 oti n est un vecteur normal au plan généré
par v et w. Si un plan de R? est généré par

T(a,p) =r + av + fw, pour tout a et 5 dans R,
alors n'importe quel vecteur b de R? appartenant & ce plan est tel que
(n,b—r) =0,

ou de maniére équivalente
(n,b) = (n,r).
C’est une équation cartésienne du plan contenant ’ensemble des vecteurs générés par

T (e, ).
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Exemple 1.1.8 (équation cartésienne d’un plan ne passant pas par l’origine)

-1
Soit un plan qui contient le vecteur r = | —2| dont deux vecteurs tangents & celui-ci
3
4 -1
sont v= |3 etw= 5. Pour trouver une équation cartésienne de ce plan, il faut
2 6
d’abord calculer un vecteur normal au plan généré par v et w. On utilise le produit
vectoriel
4 -1 3x6—-2x%x5 8
n=vAw= [3[A]| 5| =] (-2x1)—4x6|=[-26
2 6 4x5—(3x(-1)) 23

Ainsi, un vecteur b = (x,y, z) appartenant a ce plan doit étre tel que

(n,b) = (n,r)
T -1
<« [8 —26 23] =[8 —26 23] -2
z 3

— 8z — 26y + 232 = 113.

Est-il possible de partir d’une équation cartésienne pour obtenir une représentation
paramétrique d'un plan dans R3? Cest effectivement possible en trouvant deux vecteurs
linéairement indépendants entre eux et orthogonaux a n.

Exemple 1.1.9 (d’une équation cartésienne d’un plan dans R? & une représentation
paramétrique)

Prenons 'équation cartésienne d’un plan dans R?
204+ 5y + 82 =8 .

Pour obtenir une représentation paramétrique, il faut d’abord trouver un vecteur qui

appartient a ce plan. Puisque cette équation posséde trois inconnues, il suffit d’en fixer

deux pour obtenir la troisiéme. On pose x = 0 et y = 0 pour obtenir 8z = 8 ce qui
0

implique z = 1. Alors le vecteur r = | 0| appartient au plan. Il faut maintenant obtenir
1
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2
deux vecteurs qui sont orthogonaux a n = [5| et qui sont linéairement indépendants
8
entre eux.
U1
Soit un vecteur v = |wvs |, alors
U3
(n,v) =0

< 201 4+ 512 +8v3 =0
En posant v; = 1, alors I’équation devient
24502+ 8v3 =0

1
et on peut prendre vo = —2 et v3 = 1 pour obtenir un vecteur v = | —2| orthogonal a
1
n. De plus, on pourrait continuer & chercher un autre vecteur w orthogonal & n qui est
linéairement indépendant a v. Une astuce rapide est de prendre le produit vectoriel
de v avec n. On a

w=vAn
1 2 —-16 -5 —21
=|-2|A|B|=| 2—-8 | =| -6
1 8 5+4 9

Ainsi, une représentation paramétrique du plan d’équation cartésienne 2x+5y+8z = 8
est

0 1 —21 a—218
T(a,p) =r+av+pw = |0|+a |-2|+8 | -6 | = | —2a— 68 | , avec «, 3 dans R.
1 1 9 1+a+958

Proposition 1.1.5 (formule équivalente du produit vectoriel)

Soit § € [0, 7], 'angle entre x et y dans le plan qui les contient, alors le produit
vectoriel de deux vecteurs x et y est aussi

x Ny = [[x[{ly[lsin fu

ol u est le vecteur unitaire orthogonal au plan généré par x et y tel que ((x X y),u) >
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0. Attention, ici il faut quand méme utiliser la formule de la définition du produit
vectoriel pour trouver le sens du vecteur normal unitaire u.

Preuve. Montrons que pour deux vecteurs X et y de R3 et 6 € [0;7] I'angle entre ces
deux vecteurs, alors
Ix Ayl =[xyl siné.

En effet, on a

ANY,XN\Y)

e A yl* = (x
=(x,y A(xAy)), par la régle de I’échange
= (x

Ay, y)x — (x,y)y), par la formule du double produit sur y A (x Ay)
=(y,y) (x,x) — (X,y) (X,¥), par distributivité du produit scalaire

= |Ix|]*|ly||* = (x,y)?, par définition du produit scalaire
= [xI* iy lI* = (Il [lyl| cos 6)*, par la proposition 1.1.3
= [IxI* iy I1* = 1[I Iy [I* cos™ 6

= [Ix[I* ly I (1 = cos® 6)

= ||x||*|ly||*sin? 0, par I'identité trigonométrique

2 2 .
— eyl =/ Ixl? ly ] sin?6
= [[x| ly[| |sin 6|
= ||x|| ||y sin®, car 6 € [0, x].
Ainsi, si u est le vecteur unitaire orthogonal & x et y dans le méme sens que x Ay, alors

XAy
xAyll

x Ay = [xAyl || = |xAyllu= x| |y sin6u.
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1.2 Matrices

Cette section est consacrée & la présentation des matrices. Elles peuvent étre addition-
nées et multipliées par un scalaire pour donner de nouvelles matrices griace a des combi-
naisons linéaires. Ces matrices peuvent aussi étre multipliées entre elles. Enfin, un produit
scalaire est introduit afin de permettre la définition rigoureuse d’'une norme associée & une
matrice.

1.2.1 Définitions

Dans la section précédente, un vecteur colonne était un tableau de scalaires & une
colonne. Les matrices sont des extensions de ce concept, en considérant plusieurs colonnes.
Les éléments du tableau qui définissent la matrice sont aussi appelés des composantes.

Une matrice est donc un tableau de scalaires qui posséde m lignes et n colonnes. Le
couple (m, n) indique la taille de la matrice que I’on note m x n. Il convient de noter que 1'on
parle ici de la “taille” d’une matrice et surtout pas de sa dimension. Le terme “dimension”
est réservé pour les espaces vectoriels. Voir la section 5.2.4 pour une définition plus précise.

Définition 1.2.1 (matrice)

Une matrice A est un tableau de taille m x n. Ses éléments sont ses composantes qui
sont des scalaires notés A(i, ), avec ¢ € [1;m] l'indice de ligne et j € [1;n] l'indice
de colonne. La forme générale d’une matrice est donc :

A(1,1) A(1,2) A(1l,n)

A(2,1) A(2,2) A(2,n)
A= :

A(m,1) A(m,2) A(m,n)

Remarque

Utiliser les expressions “la ligne ¢ de A” et “la colonne j de A” revient & mentionner
la ¢-iéme ligne de A et sa j-iéme colonne.

Remarque

Les noms attribués aux indices revétent une importance particuliére, dans la mesure
ou ce sont systématiquement les mémes qui sont repris, par convention, ce qui facilite
la compréhension de la suite. Ansi,

> Les notations 4, j, m, n sont réservées tout au long de 'ouvrage, avec la signifi-
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cation suivante :
> ¢ est indice d’une ligne;
> 7 est 'indice d’une colonne;
> m est le nombre de lignes;
> n est le nombre de colonnes.

D> Par convention, lorsque I'on accéde & une composante, on donne toujours la ligne
en premier, et la colonne en second.

Si on dit que deux matrices ont la méme taille, cela signifie qu’elles ont le méme nombre
de lignes et le méme nombre de colonnes. Les matrices qui sont d’une certaine taille et dont
les scalaires sont de méme nature forment également un ensemble usuel de ’algébre tel que
mentionné & la définition 1.2.2. Si toutes les composantes sont réelles alors A € R™*"™,

Définition 1.2.2 (R™*")

R™*™ est un ensemble d’éléments, appelés matrices, écrits sous forme de m lignes et

n colonnes et & composantes réelles.

Remarque

> Lorsque les composantes sont des complexes, les matrices appartiennent a C™*".
On a bien évidement R™*™ C C™*™,

> Si A € R™*" on dit que A est une matrice réelle.
> Si A € C™*" on dit que A est une matrice complexe.

> Une matrice A € C™*™ peut éventuellement étre une matrice réelle.

Il est expliqué au chapitre 5 que ces ensembles sont également des espaces vectoriels.
Cette connaissance n’est pas nécessaire dans le présent chapitre.

Tout comme avec les vecteurs colonne, certains ensembles peuvent étre assimilés :
R™*l = R™ et R = R! = R'¥!, (c’est également vrai avec les ensembles complexes si-
milaires). En effet, un vecteur colonne & m composantes peut étre vu comme une matrice
a m lignes et n = 1 colonne.

Tel que déja mentionné a la suite de la définition 1.1.4, il convient de noter qu’une ligne
n’est pas un vecteur mais une matrice (sauf si elle a une seule composante et que c’est un
scalaire). Tout ceci est illustré dans exemple 1.2.1.
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Exemple 1.2.1 (R"™X! = R™ ¢t R = R! = R¥1)

1
> x=(1,2,3)= (2| =[123]T #[123].
3

>ax=1=(1)=[1]=[1]".

La matrice nulle (définition 1.2.3), notée O, est aussi un élément central de ’ensemble
des matrices. Sa définition sert surtout & la justification que I’ensemble des matrices est un
espace vectoriel (tel que vu a l'exercice 5.3). Il est essentiel de ne pas confondre la matrice
nulle O avec le vecteur nul 0 : leur taille est différente (sauf, bien stir, si on considére la
matrice nulle & une seule colonne).

Définition 1.2.3 (matrice nulle)

La matrice nulle est la matrice dont toutes les composantes sont égales au scalaire nul
(réel ou complexe). Elle n’est pas forcément carrée et est notée O ou (O, en cas
d’ambiguité).

Une autre matrice trés utile en pratique est la matrice identité. Elle sert surtout pour
les produits de matrices et est introduite dans la section 1.2.6.

Une maniére courante de représenter une matrice consiste a la considérer comme un
ensemble de vecteurs colonne. Cette représentation s’avére utile pour introduire la notion
de produit matriciel. Il est ainsi intéressant d’introduire un nouvel opérateur Col(.) a la
définition 1.2.4 qui permet d’accéder aux colonnes d’une matrice d’'une facon plus aisée.

Définition 1.2.4 (opérateur Col(.))

Soit A = [a; ag --- a,] une matrice de taille m x n dont les colonnes a; sont des
vecteurs réels ou complexes de taille m, pour j € [1;n]. L’opération Col(A) donne la
famille des colonnes de A :

Col(A) = (aj,ag,...,a,) .

La section v donne d’autres détails de notations.
1.2.2 Transposée de matrices

La transposée d’une matrice, tel qu'indiqué dans la définition 1.2.5, est similaire a la
transposée d’un vecteur. Le principe est le méme, en considérant les colonnes d’une matrice
comme des vecteurs colonne : les colonnes deviennent des lignes et les lignes deviennent des
colonnes.
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Définition 1.2.5 (transposée d’une matrice)

Soit A une matrice de taille m x n. La transposée de A, notée AT, est la matrice de
taille n x m telle que
T,. - ..
A (i,5) = A(4,9)

pour i € [1;m] et j € [1;n].

Les propriétés de la transposée sont regroupées dans la proposition 1.2.1. Les notions
nécessaires pour comprendre certaines de ces propriétés sont vues plus loin dans 'ouvrage.
Les liens vers les sections pertinentes sont donnés dans la preuve de cette proposition.

Proposition 1.2.1 (propriétés de la transposée)
Soient A et B deux matrices.

1. si A et B sont de méme taille, alors (A + B)T = AT + BT (la somme des
transposées est la transposée de la somme) ;

2. (kA)T = kAT,

3. (AT) = A;

4. Si A est triangulaire inférieure (supérieure), alors AT est triangulaire supérieure
(inférieure) ;

5. Si le produit matriciel AB est possible, alors (AB)T = BTAT;

6. Si A est inversible, alors (AT)_1 = (A_l)T;

7. det(AT) = det(A).

Preuve.

1 Les composantes de A+ B sont A(i,7)+ B(i,7). Lorsqu’on transpose A + B les com-
posantes deviennent A(7,7) + B(j,4), ce qui correspond a la somme des composantes
de AT et BT;

2 Les composantes restent toutes multipliées par k, d’ou le résultat ;

3 Comme les lignes et les colonnes sont échangées deux fois, elles reviennent a leur place
initiale ;

4 Voir la section 1.2.3 pour la définition des matrices triangulaires; la preuve découle
alors directement de cette derniére et de la définition de la transposée;

5 Voir le point 1 du théoréme 1.2.2 pour la propriété du produit matriciel ;

6 Voir la proposition 1.4.3 pour la transposée de 'inverse ;

7 Voir le théoréme 1.3.1 pour le déterminant de la transposée.
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La notion de transposée constitue le fondement des matrices symétriques qui sont défi-
nies a la section 1.2.3. Il convient également de noter que cette définition de la transposée
est vraie pour les matrices réelles et complexes. Toutefois, pour faire des manipulations sur
les matrices complexes, la plupart du temps cela ne suffit pas. Cette définition de transposée
est donc étendue via la notion de transconjuguée (définition 3.6.4).

On note finalement que la section 4.4 du chapitre 4 montre que la transposée est une
application linéaire.

1.2.3 Formes de matrices

Les matrices peuvent avoir une forme particuliére desquelles découlent des propriétés
intéressantes. Par exemple, il sera établi au chapitre 7 que les matrices symétriques ont
toujours des valeurs propres réelles.

Formes usuelles

Les formes les plus usuelles des matrices sont les suivantes :

> matrice rectangulaire : une telle matrice a un nombre de lignes différent du nombre
de colonnes, c’est-a-dire qu’une matrice A de taille m x n est rectangulaire si m # n;

> matrice carrée : une telle matrice a autant de lignes que de colonnes. On distingue
plusieurs types particuliers de ces matrices. Ainsi, une matrice carrée peut étre :

> Triangulaire : cette notion est évoquée a la section 1.2.2. Il existe deux types de
matrices triangulaires :

> Triangulaire supérieure : la matrice est constituée de zéros sous sa diagonale.
En d’autres termes, A est triangulaire supérieure si A(i,j) = 0 pour tous
1 > j. Les autres composantes peuvent aussi étre nulles;

> Triangulaire inférieure : la matrice est constituée de zéros au-dessus de sa
diagonale. En d’autres termes, A est triangulaire inférieure si A(i,j) = 0
pour tous i < j. Les autres composantes peuvent aussi étre nulles.

Grace a cette définition, il est facile de prouver le point 4 de la proposition 1.2.1.
En effet, si A(i,j) = 0 pour tout i < j, alors AT (4,4) = 0 pour tout j > i;

> Diagonale : une matrice A est diagonale si A(i,7) = 0 pour tout i # j. Les
seuls éléments non nuls sont sur la diagonale. Il peut également y avoir des 0 sur
la diagonale. Une matrice diagonale est donc a la fois triangulaire supérieure et
inférieure ; 4

> Unipotente : une matrice A est unipotente si on peut trouver un entier k tel que

(I-A)F=0;

4. la notation Diag(a,b) = {8 2] simplifie ’écriture d’une matrice diagonale.
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> Symétrique : une matrice A est symétrique si elle est égale & sa transposée, c’est-
a-dire A = AT. Ainsi, toute matrice diagonale est symétrique car les termes
échangés lors de la transposition sont des zéros;

> Antisymétrique : une matrice A est antisymétrique si AT = —A. Tel qu’indiqué
a l'exercice 1.29, il s’ensuit que les termes sur la diagonale de telles matrices sont
nuls;

> Hermitienne : Voir définition 3.6.7;
> Orthogonale : Voir définition 5.3.5.

Il se peut, bien siir, qu'une matrice soit de plusieurs des formes décrites ci-dessus. Les
exemples 1.2.2 et 1.2.3 illustrent cela.

Exemple 1.2.2

O est a la fois triangulaire supérieure, triangulaire inférieure, diagonale, unipotente,
symétrique, antisymétrique et hermitienne.

Exemple 1.2.3

Toute matrice diagonale est triangulaire (inférieure et supérieure).

D’autres formes sont étudiées dans d’autres sections, par exemple les matrices échelon-
nées et échelonnées réduites (voir pour cela les définitions 2.1.4 et 2.1.5).

Matrices par blocs

Pour démontrer certaines propriétés ou pour faciliter certains calculs, on peut “découper”
une matrice en blocs. Ce découpage permet également de paralléliser certaines taches lors
de calculs de grande taille. Dans ce qui suit, les matrices peuvent étre réelles ou complexes.

Définition 1.2.6 (sous-matrice)

Une sous-matrice d’une matrice A de taille m x n est une matrice de taille m’ x n’
avec m’ < m et n’ < n dont on a gardé seulement certaines lignes ou colonnes de A.

Une matrice définie par blocs est une matrice que 'on définit en fonction de certaines
sous-matrices qu’on appelle “blocs” de A. Chacun des blocs d’une telle matrice A est une
sous-matrice de A pour laquelle on a gardé des lignes et des colonnes consécutives. Les
tailles de ces blocs doivent étre cohérentes avec la taille de A, i.e., le nombre total de
colonnes des sous-matrices, doit étre égal au nombre total de colonnes de la matrice A, et
il en est de méme pour les lignes.



36 CHAPITRE 1. VECTEURS ET MATRICES

Définition 1.2.7 (matrice blocs)

Soit A une matrice de taille m x n. On peut définir A grace a des sous-matrices
appelées blocs de telle sorte que

Ain Ap - Ay
Agi Az - Ay,
A= ) . .
Apl Ap2 T qu

ol A;; est une sous-matrice de A pour tout ¢ € [1;p] et pour tout j € [1;¢], p étant
le nombre de divisions des m lignes de A, et ¢ le nombre de divisions des n colonnes
de A.

Les blocs peuvent, par exemple, étre les colonnes d’une matrice, dans quel cas on a
A =[aj; a3 --- a,] avec a; € R™ ou C™ pour j € [1;n] (pour rappel, I'indice j est réservé
pour les colonnes).

Les blocs peuvent aussi étre les lignes d’une matrice, dans quel cas, pour une matrice
B dont les lignes sont b{ ,by,...,b} ona

avec b; € R™ ou C” pour i € [1;m] (pour rappel, 'indice ¢ est réservé pour les lignes). Il
convient de noter 1'utilisation du symbole de la transposée pour les lignes de B, car chaque
ligne de B est un vecteur colonne transposé.

On peut éventuellement délimiter les blocs par des séparations virtuelles pour des ques-
tions de visualisation, comme cela est fait dans 'exemple 1.2.4.

Exemple 1.2.4

> Lorsqu’une matrice A € R*** est décomposée en blocs de taille 2 x 2, on écrira :

A Al A | An |Ap
Ay Ay Ag | Ay |

ou Aq; € R2X2, Ao € R2X2, Ay € R2X2 et Agy € R2X2;

> Considérons le découpage ci-dessous de la matrice B en 4 blocs

g_ |l 23 4] _[123|4]_ [Bu|Bp
" 56 78 |56 78] | By By
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OnaByp=[1 2 3] eRY? Bia=[4] e R By =[5 6 7] e RI*3 et
By = [8] e R

Certains découpages par blocs sont intéressants de par leur structure. C’est le cas, par
exemple, des matrices diagonales par blocs et des matrices triangulaires par blocs décrites
dans les définitions suivantes. L’exemple 1.2.5 illustre ces définitions alors que I'exercice 1.20
en démontre 1'utilité.

Définition 1.2.8 (matrice diagonale par blocs)

Soit A une matrice définie par blocs selon la définition 1.2.7. Elle est diagonale par
blocs si p = q, Aj; = 0 pour tout i # j, et Ay; est quelconque (pas nécessairement une
matrice diagonale classique) pour tout i € [1;p].

Définition 1.2.9 (matrice triangulaire par blocs)
Soit A une matrice définie par blocs selon la définition 1.2.7. Elle est triangulaire par
blocs si p = q et

> A;; =0 pour tout ¢ > j (triangulaire supérieure) ;

> A;; =0 pour tout i < j (triangulaire inférieure).

Exemple 1.2.5

123 000 1 2 3/0]0 0
000 800 00 0(8]0 0 :
> A= 000011 =100 0l0l1 1 est diagonale par blocs.
000011 00 0(0]1 1
12 30 1 2 3|0 . e
> B = [5 6 7 8] = [ F 6 7% ] est triangulaire inférieure par blocs.

Les matrices définies par blocs sont aussi utilisées & la section 8.1.4 pour la résolution
de systémes d’équations linéaires.

1.2.4 Opérations matricielles simples

Comme pour les vecteurs, il est possible de définir deux opérations matricielles, & savoir
le produit par un scalaire et l'addition. Ces deux opérations sont utiles pour démontrer
la structure d’espace vectoriel de R™*™ (voir par exemple l’exercice 5.3). Dans les deux
définitions qui suivent, les matrices peuvent étre réelles ou complexes.
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Définition 1.2.10 (addition matricielle)

Etant données deux matrices A, B € R™*" (ou C™*"), leur addition matricielle est

la matrice C notée
C=A+B

et ses composantes sont définies par

C(Zaj) = A(Za.]) +B(Za3)

Remarque

A et B doivent étre de méme taille pour pouvoir étre additionnées!

Définition 1.2.11 (produit scalaire-matrice)

Etant donnés une matrice A € R™ ™ (ou C™*") et un scalaire k, le produit scalaire-

matrice est la matrice C notée
C=kA

et ses composantes sont celles de A multipliées par le scalaire k, c’est-a-dire

C(i,j) = kA(i, ).

Remarque

Il est possible de combiner ces différentes opérations pour faire des combinaisons
linéaires de matrices.

La proposition 1.2.2 donne quelques propriétés de base de ces deux opérations matri-
cielles.

Proposition 1.2.2 (propriétés de ’addition matricielle et du produit scalaire-matrice)

1. A+B=B+A;
2. k(A +B)=kA +kB;
3. A+(B+C)=(A+B)+C.

Preuve. Pour prouver ces trois propriétés, il suffit d’étudier les composantes de chacune
de ces matrices, en tenant compte des définitions précédentes. Les propriétés découlent alors
directement du fait qu’elles sont vraies pour des scalaires alors que les composantes de ces
matrices sont toutes des scalaires. [l
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Les exercices 1.9 et 1.11 permettent de se familiariser avec ces opérations et la notion
de transposée.

Chaque matrice carrée (réelle ou complexe) posséde une trace qui, telle que définie
ci-dessous, est la somme de ses éléments diagonaux.

Définition 1.2.12 (trace d’une matrice)

Si A est une matrice carrée n x n réelle ou complexe, alors sa trace est définie comme
la somme de ses éléments diagonaux. Elle est notée tr(A), ce qui donne

tr(A) =) A(i,i) .
=1

La proposition 1.2.3 regroupe les propriétés importantes portant sur la trace des ma-
trices.

Proposition 1.2.3 (propriétés de la trace)

Soient A, B deux matrices réelles ou complexes et soit k un scalaire. On a
1. tr(A+B) =tr(A) + tr(B), oit A et B sont deux matrices carrées;
2. tr(kA) = ktr(A), ol A est une matrice carrée;

3. tr(AT) = tr(A), ott A est une matrice carrée

4

. tr(AB) = tr(BA), ou AB et BA sont des matrices carrées, alors que A et B
ne le sont pas forcément ;

Preuve.

1 En supposant que A et B sont de taille n x n, étant donné que les coefficients diago-
naux de A + B sont A(i,7) + B(i, 1), il s’ensuit que

n

tr(A+B) =Y (A(i,i))+B(i,i) = > A(i,i)+ Y _B(i,i) = tr(A) + tx(B);
=1 =1

i=1
2 En supposant que A est de taille n x n, étant donné que les coefficients diagonaux de

kA sont kA(i,1), il s’ensuit que

n

tr(kA) = (kA(i,9) =k Y A(i,i) = tr(A);

i=1 i=1

3 Cette propriété découle du fait que les coefficients diagonaux ne changent pas lors
d’une transposition ;
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4 La démonstration de ce point est faite a la section 1.2.6 (voir la proposition 1.2.6).

O

I convient de noter qu’on n’a pas nécessairement tr(AB) = tr(A) tr(B), tel qu'illustré
dans 'exemple 1.2.6. On peut également remarquer que tr(AB) est défini méme si la trace
de A et la trace de B n’existent pas, lorsque A et B ne sont pas des matrices carrées. La
section 1.2.6 traite de ces problématiques de taille.

Exemple 1.2.6 (contre-exemple pour la trace du produit de matrices)

En général, on a tr(AB) # tr(A) tr(B). Par exemple, si A = [(1) é] B [8 ﬂ

0 0

alors AB = [0 0

], tr(A) =tr(B) =1, tr(AB) =0, et donc 0 # 1 x 1.

1.2.5 Produit matrice-vecteur

Avant de multiplier des matrice entre-elles, il est essentiel de maitriser la notion de pro-
duit matrice-vecteur de la définition 1.2.13. Elle est basée sur une opération de type produit
ligne-colonne (définition 1.1.11). Le produit matrice-vecteur est illustré a la figure 1.6.

Définition 1.2.13 (produit matrice-vecteur)

Soient
> A une matrice réelle ou complexe de taille m xn dont les lignes sont
T T T.
a;,a9,...,8,,;

> x € R" ou C" un vecteur & n composantes réelles ou complexes.

Le produit matrice-vecteur qu’on prononce “A fois x” est le vecteur Ax € R™ ou C™
et défini par :
(Ax)(i) = a/ x pour i € [1;m].

Remarque

> Il est important d’observer que le produit matrice-vecteur Ax n’est possible que
si le vecteur x a autant de composantes que le nombre de colonnes de la matrice
A. L’exercice 1.9 s’attarde sur ce point ;

> Si A € R™*" alors (Ax)(i) = a, x = (a;,x) pour i € [1;m]. C’est un produit
scalaire. Pour les complexes, ce n’est pas le cas (voir la définition 3.6.5).

Le produit matrice-vecteur constitue le fondement des systémes d’équations linéaires,
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1
>
X = n
— ai— aix
Ag A
m| A= ) Ax = ] m
T T
—a,— a,,x
>
n 1

FIGURE 1.6 — Produit matrice-vecteur Ax de la matrice A et du vecteur x vu comme des
produits ligne-colonne (définitions 1.1.11 et 1.2.13).

dans lesquels on cherche & déterminer un certain x tel que Ax = b avec A une matrice et
b un vecteur colonne. La définition formelle se trouve & la définition 8.1.2 et les méthodes
de résolution sont vues dans le chapitre 8.

On montre & la définition 4.4.1 que le produit matrice-vecteur est la le résultat d’une
application linéaire.

Le théoréme 1.2.1 qui suit permet d’envisager le produit matrice-vecteur sous un angle
différent : Ax est une combinaison linéaire des colonnes de A. Ce point de vue est illustré
a la figure 1.7.

Théoréme 1.2.1 (le produit matrice-vecteur est une combinaison de colonnes)
Soient

> A =[ci ca -+ ] une matrice réelle ou complexe de taille m x n ou chaque c;
est donc un vecteur colonne réel ou complexe & m composantes ;

> x = (z1,22,...,Ty) un vecteur réel ou complexe & n composantes.

Ona:Ax=uxc1 +29C2+ ...+ TpCy .

Preuve. 1l suffit de vérifier que les composantes de Ax sont les mémes que celles de
x1€1 + x2C2 + -+ - + Tpcy. Par définition du produit matrice—vecteur (définition 1.2.13), la
i-iéme composante de Ax est
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FIGURE 1.7 — Produit matrice-vecteur Ax vu comme une combinaison des colonnes de A.
Lien avec le théoréme 1.2.1.

D’autre part, la i-iéme composante de la combinaison linéaire zi1cq + - - - + z,¢,, est

n n
(@114 -+ ancn)i = > _wj(c))i= > x; AL, j) .
j=1 J=1

Les deux sommes étant égales pour tout ¢ € [1;m], il s’ensuit que Ax = >"""_| xjcp. O

=1

En fait, le théoréme 1.2.1 est central pour la compréhension de la majeure partie de cet
ouvrage, ce qui justifie son statut de théoréme plutot que de simple proposition.

La définition 1.2.13 et le théoréme 1.2.1 offrent donc deux points de vue du produit
matrice-vecteur qui sont illustrés dans ’exemple 1.2.7.

Exemple 1.2.7 (deux points de vue du produit matrice-vecteur)

1 0 -1 2
Soient A= |0 -1 1 3|etx=(1,2,2,—-1).
3 0 -2 0
> Point de vue de la définition 1.2.13 :
<a1>X>
Ax = |(ag,x)| avec a; = (1,0,—1,2), ag = (0,—1,1,3) et a3 = (3,0,—2,0)
| (a3,%)
I1x140x2+(-1)x2+2x(-1) -3
dot: Ax= |[O0x14+(-1)x2+1x2+3x(-1)| = [-3].
3x14+0x24(-2)x2+0x(-1) -1

> Point de vue du théoréme 1.2.1 :
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1 0 -1 2 -3
Ax=1 |0 +2|-1|+2| 1| -1|3| =|-3
3 0 -2 0 -1

Tel qu’énoncé dans la proposition 1.2.4, le cas particulier du produit d’une matrice A
par une colonne de la matrice identité (définition 1.1.3) donne une colonne de la matrice
A.

Proposition 1.2.4 (produit matrice-colonne de l’identité)

Si A=la;ay - a,] € R™*" ou C"™*" alors Aej = a; pour j € [1;n] .

Preuve. Une conséquence directe du théoréme 1.2.1 et de la définition 1.1.3 est que

Aej = ej(l)al + ej(2)a2 + ...+ ej(n)an = ej(j)aj =a; .

1.2.6 Produit matriciel

Maintenant que le produit matrice-vecteur est défini, on peut introduire le produit AB?
de deux matrices A et B.

Définition 1.2.14 (produit matriciel)

Soient
> A une matrice réelle ou complexe de taille m x p dont les lignes sont
T .7 T.
a;,a9,...,8,,;

> B une matrice réelle ou complexe de taille p x n dont les colonnes sont
bi,bs, ..., by,.
Le produit matriciel AB qu’on prononce “A fois B” est une matrice de taille m x n
définie par
AB(i,j) = a/ b, pour i € [1;m] et j € [1;n].

Remarque

> Il est important de noter que le produit matriciel AB n’est possible que si le
nombre de colonnes de A est égale au nombre de lignes de B. Les exercices 1.9
et 1.11 traitent de cette problématique.

5. On n’utilise pas I'opérateur “x” qu’on réserve pour décrire la taille des matrices comme “m x n” et
pour multiplier des valeurs numériques, comme “2 X 3 = 6”.
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> Si A et B sont deux matrices réelles, les composantes du produit AB sont
obtenues pas produit scalaire puisque AB(i,j) = a, b; = (a;,b;) pour i €
[1;m] et j € [1;n]. Ce n’est pas le cas pour les matrices complexes (voir la
définition 3.6.5).

Les notions de produit intérieur et de produit extérieur, liése au produit matriciel, sont
explicitées dans la remarque suivante.

Remarque

Etant donnés deux vecteurs x et y de R" :

> Le produit scalaire (x,y) = x 'y est le produit matriciel d’'une matrice de taille
1 x n (une ligne) par une matrice de taille n x 1 (une colonne), et le résultat est
donc une matrice de taille 1 x 1 qu’on assimile & un scalaire. Cette opération est
également appelée produit intérieur.

> Le produit matriciel xy ", est le produit d’une matrice de taille n x 1 (une
colonne) par une matrice de taille 1 X n (une ligne), et le résultat est donc une
matrice de taille n x n. Cette opération est également appelée produit extérieur.
Les colonnes de xy | sont toutes des multiples de x, ce qui implique que xy "
est de de rang 1 (voir section 6.1.5). Les matrices de rang 1 sont formellement
introduites & la définition 6.1.6.

On peut étendre le produit & plus de deux matrices, tel qu’illustré dans I'exemple 1.2.8
ou il est question de multiplier trois matrices entre elles.

Exemple 1.2.8 (produit de plus de deux matrices)

19 1 311 1
Soient A = [2 1 2},B: -1 0 1|l etC=1|1 —1|.0na
01 1 1

[\

o

12 4 43
ABC_(AB)C_[5 | 5]0_[14 6}

Lorsque 'on multiplie une matrice par elle-méme plusieurs fois, on parle de puissance
de matrice. On ne peut pas diviser A par une matrice B, mais on peut parfois multiplier
A par l'inverse de B, tel qu'indiqué a la section 1.4. Ces notions de puissance et d’inverse
d’une matrice sont introduites dans la définition 1.2.15, et une illustration est donnée a
I’'exemple 1.2.9 avec une matrice carrée de taille 2 x 2.
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Définition 1.2.15 (puissances de matrices)

Etant donnés une matrice carrée A et un entier p € NU {—1}, la matrice AP qu’on
prononce “A & la puissance p” est la matrice définie comme suit :

> Sip=—1, A=l est I'inverse de A, si elle existe (voir section 1.4).
> Si p =0, par convention, A = I, la matrice identité (voir définition 1.2.16).
> Sip>1, AP=AA--- A,

—

p termes

Exemple 1.2.9 (produits de matrices)

AveCA:[(l) i,o

R A I B P [ B

Le produit matriciel constitue une notion essentielle de cet ouvrage. Il est donc important
de maitriser les quatre fagons de le représenter, tel qu'indiqué a la proposition 1.2.5.

n a

Proposition 1.2.5 (les quatre points de vue du produit matriciel)

Soient
> A une matrice de taille m x p dont les lignes sont alT, a;, . ,ajn et les colonnes
sont c1,C2,...,Cp;
> B une matrice de taille p x n dont les colonnes sont by, bo, ..., b, et les lignes
sont d| ,dJ,..., d;.

Le produit AB est donc une matrice m xn qui peut étre interprété des quatre maniéres
suivantes :

1. Produits intérieurs. La composante AB(i, j) est le produit intérieur de la i-iéme
ligne de A avec la j-iéme colonne de B :

AB(i,j) = a/ b; pour i € [1;m] et j € [1;n] .

2. Matrice fois colonnes. Chaque colonne de AB est le produit de A par une
colonne de B, c’est-a dire que la j-iéme colonne de AB est Ab; :

AB = [Ab; Ab, --- Ab,].
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3. Lignes fois matrice. Chaque ligne de AB est le produit d’une ligne de A par B,
c’est-a-dire que la ¢-iéme ligne de AB est aZTB :
a/B
a, B
AB =

a, B

4. Produits extérieurs. Le produit AB est une somme de p matrices m X n, chaque
terme de la somme étant un produit extérieur :

p
AB=cid| +cod; +...+cpd) =) cpd) .
k=1

Preuve.

1 C’est la définition 1.2.14.

2 Les composantes de la j-iéme colonne de AB sont AB(i,5) = a/ b; avec i € [1;m].
I1 découle de la définition 1.2.13 que la j-iéme colonne de AB est Ab;.

3 Les composantes de la i-iéme ligne de AB sont AB(i,5) = a/ b; avec j € [1;n].
La i-iéme ligne de AB est donc la matrice [a;rbl ag—bg ag—bn] de taille 1 x n,
c’est-a-dire a; B.

4 Il suffit de démontrer I’égalité pour chacune des composantes. La i-iéme compo-
sante de la j-iéme colonne du produit extérieur cxd; est le scalaire ci(i)dg(j) =
A(i,k)B(k,j). La i-itme composante de la j-iéme colonne de Y F_, cxd; est donc

ko1 AG,B)B(k, ) = AB(, j).
O

Les quatre points de vue de la proposition 1.2.5 sont illustrés dans les figures 1.8, 1.9, 1.10
et 1.11 ainsi que dans 'exemple 1.2.10 ot A et B sont de taille 2 x 2. L’exercice 1.10 permet
de s’entrainer au calcul de ce produit matriciel.

Remarque

> Le point de vue 1 est le plus pratique pour calculer un produit matriciel a la
main. Il généralise aussi la définition 1.2.13;

> Les points de vue 2 et 3 sont essentiels pour de nombreuses preuves ;

> Le point de vue 2 permet de réaliser que chaque colonne de AB est une combi-
naison linéaire particuliére des colonnes de A ;
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n
B=| by ba e b, p
T T T Th ]
—a]— asb; ajby ... ajb,
m| A= . AB = ) ) m
T T T T
—a,,—— a,b; a,bs ... a,b,]
D n

FIGURE 1.8 — Produits intérieurs. Point 1 de la proposition 1.2.5.

n

\ \ \
1 2

I |
I |

m| A= AB= |Ab; Ab, ... Ab,||m
I |

p n

FIGURE 1.9 — Matrice fois colonnes. Point 2 de la proposition 1.2.5.

- "
B = P
—alT— [ alTB—_
A — a]B—
m| A= ) AB = ) m
a,,Tn | — a;B—_
P n

FIGURE 1.10 — Lignes fois matrice. Point 3 de la proposition 1.2.5.
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n
_ d; .
7d _
B-— 2 P
T
— d,—
| | [ ]
m| A= |c c2 ... ¢ AB = clle + ch; + -+ cpd;
| | i |
P n n n

FIGURE 1.11 — Produits extérieurs. Point 4 de la proposition 1.2.5.

> Le point de vue 3 permet de réaliser que chaque ligne de AB est une combinaison
linéaire particuliére de lignes de B ;

> Le point de vue 4 peut paraitre moins intuitif, mais il permet de mieux com-
prendre certaines décompositions vues dans des chapitres ultérieurs. Il étend le
point de vue essentiel présenté dans le théoréme 1.2.1.

Exemple 1.2.10 (quatre points de vue du produit matriciel)

. 14 3 2 .
SmentA—{1 5] etB—[1 O}OHadonc.

O o P

a]—bl a]—bg
a;bl a;bg
ajby=1x2+4x0=2ajb; =1x3+5x1=8etajby=1x2+5x0=2.

Do AB = |{ 3.

> AB avecle point de vue 1 : AB = [ ].Onaa?bl =1x34+4x1=7,

8 2

-
> AB avec le point de vue 2 : AB = [Ab; Ab,|. On a Aby = [al bl] = [q

aQTbl 8

-

et Aby = [ZITEz] = [ﬂ Dot : AB = [; g]
2

-
a; B

> AB avec le point de vue 3: AB = [ T
a, B

].OnaalTB:[alTbl albs] = [7 2]
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. 7T 2
etajB=[a]b; a,by] =8 2].Dou:AB:[8 2].

> AB avec le point de vue 4 : AB = c;d{ + cadg . On a les produits extérieurs

3 2 4 0 72
T_ T_ Ton - —
cid; = [3 2] et cody = [5 0]. D’ou: AB = [8 2].

Le produit matriciel posséde plusieurs propriétés énoncées au théoréme 1.2.2.

Théoréme 1.2.2 (propriétés du produit matriciel)

Soient A, B, C des matrices réelles ou complexes. On suppose que les tailles des
matrices sont telles que les opérations existent.

1. (AB)T =BTAT.

(AB)"! = B 'A~! (si les matrices A et B sont inversibles).
AB+C)=AB+ AC.

(B+ C)A =BA + CA.

A(BC) = (AB)C.

(AP)(A?) = APT? avec p et g des entiers naturels.

Le produit de matrices triangulaires supérieures (inférieures) donne une matrice

NS et 0N

triangulaire supérieure (inférieure).

Preuve.

1 Supposons A de taille m x p et B est de taille p x n. Il suffit de vérifier que les
matrices des deux cotés de 1'égalité ont les mémes composantes, c’est-a-dire que
((AB)")(i,7) = (BTAT)(4,7) pour tout i € [1;m] et j € [1;n]. On a

> (AB)T)(0.1) = (AB)(.i) = 3= AG.K)B(k.1)
> (BTAT)(i,j) = é(BT)(i,k)(AT)(k,j) - élB(k,z‘)A(j, k) = éA(j’ B)B(k, ).

Les deux matrices ont donc bien les mémes composantes.

2 Comme l'inverse d’une matrice n’a pas encore été introduite, ce résultat est prouvé a
la section section 1.4 (voir la proposition 1.4.1).

3 Supposons A de taille m x p et B et C de taille p x n. Il suffit de vérifier que
les matrices des deux cotés de ’égalité ont les mémes composantes, c’est-a-dire que
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(A(B+C))(1,)) = (AB)(i, 7) + (AC)(i, ). On a

(AB+C))(i,5) =

M*@

A, k) B+ C)(k,j) =Y _ A(i, k)(B(k, ) + C)(k, )
k=1

B
Il
—

I
M*@

A(i,k)B(k,j) + > A(i,k)C(k, j))
=1

k
AB)(i,j) + (AC)(i, j)-

I
_

—

On déduit des points 1 et 3 de ce théoréme, ainsi que des points 1 et 3 de la proposi-
tion 1.2.1 que

B+C)A= (BN +(HHANH =B +CcH(ANT =(ATB'+C")’
=(ATBT+ATCT) = (BA) +(CA)") =(BA)") +((CA)")’
=BA + CA.

Soient A de taille m x p, B de taille p x ¢ et C de taille ¢ x n. Les deux produits
A(BC) et (AB)C sont bien définis et ont une taille m x n. Il suffit de vérifier que
les matrices des deux cotés de ’égalité ont les mémes composantes, c’est-a-dire que
(A(BC))(4,5) = ((AB)C) (i, §) pour tout i € [1;m] et j € [1;¢q]] Pour tout i € [1;m]
et j € [1;n]. Ceci découle de I'associativité et de la commutativité d’une somme finie.
En effet, on a :

(A(BC))(i.j) = Y A@k)(BC)(k,j) = Y _A(i.k) (Z B(k, O)C(¢, J))

k=1 k=1 /=1

=> D A, k)B(EOCE,5) =) <Z A(i, k:)B(k:,é)) C(,4)
k=1 (=1 (=1 \k=1

= (AB)(i,0)C(¢, j) = ((AB)C)(i, j)
/=1

Voici une preuve par induction sur p, qui s’appuie sur le point 5 de ce théoréme.
> Sip=0,ona AP =1et donc (AP)(A7) =TA7 = A7 = APt
> Soit p > 0, et supposons le résultat valide pour p — 1. On a
(AP)(AY) = (AP~ IA)(A‘]) (AP~ 1)(AA‘1) (AP~ 1)(Aq+1) — Al—D+(g+1D)
= APt

La preuve est faite tout d’abord pour les matrices triangulaires supérieures. Soient
donc A et B deux matrices de taille n x n et triangulaires supérieures. Par définition,
ona A(i,j) =0et B(i,7) = 0 pour tout 4 > j. Soit C = AB. Il suffit de montrer que
C(i,j) = 0 pour tout ¢ > j. Soit donc i > j. On a C(i,5) = > p_; A4, k)B(k, j) :
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> sik<i, A(i,k) =0;
> si k>4, alors k > j (car i > j), et on a donc B(k, j) = 0.
Donc, quel que soit k € [1;n], on a A(i, k)B(k,j) = 0, ce qui prouve que C(7,j) = 0.

Si A et B sont deux matrices triangulaires inférieures, alors AT et BT sont triangu-
laires supérieures, et on vient de voir que ceci implique que le produit BTAT = (AB)"
est également une matrice triangulaire supérieure, ce qui implique que AB est une
matrice triangulaire inférieure.

O

Remarque
Concernant les tailles des matrices :

> Pour le point 1 : B doit avoir le méme nombre de lignes que le nombre de
colonnes de A.

> Pour le point 3 : B et C doivent étre de méme taille et doivent avoir le méme
nombre de lignes que le nombre de colonnes de A.

> Pour le point 4 : B et C doivent étre de méme taille et doivent avoir le méme
nombre de colonnes que le nombre de lignes de A.

> Pour le point 5 : B doit avoir le méme nombre de lignes que le nombre de
colonnes de A et le méme nombre de colonnes que le nombre de lignes de C.

> Pour le point 6 : A doit étre carrée.

Les propriétés du théoréme 1.2.2 peuvent étre utilisées pour ’exercice 1.11. L’exemple 1.2.11
traite du point 1 pour une matrice complexe.

Exemple 1.2.11 (transposé d’un produit de matrices complexes)
3i —1 1 4

(AB)' =BTAT.

> D’une part, on a :

1+1 2 2 —i
Soient A = —H ] et B = [ 1} deux matrices complexes. Montrons que

(I+i)x24+2x1 (141) x (—i)+2x (4i)

AB = [(31) K24 (—1) x 1 (30) x (—i) + (1) x (4i)

La simplification des quatre composantes donne :
> (14+1)x2+2x1=242i+2=4+ 2i;
> (14i) x (=) +2x (4i)=—i—i2+8i=—-14+1+8 =1+Ti;




52 CHAPITRE 1. VECTEURS ET MATRICES

> (3i) x 24 (=1) x 1 = -1 + 6i;

> (3i) x (—i) + (—1) x (4i) = —3i® — 4i = 3 — 4i.
Donc ;
442 147

AB = [—1+6i 3 — 4i

et (AB)! = [4+21 -l “ﬂ .

1+7  3-—-4

> D’autre part, on a :

- 21 T+ [1+i 3
B—[..etA— 9 1|

Leur produit donne :

TAT 2x (14+i)+1x2 2% (3i) +1x(=1)
B A _[(—i)x(1+i)+(4i)x2 (—i)x(31)+(4i)><(—1)}

La simplification des quatre composantes donne :
> 2x (14+i)4+1x2=24+21+2=4+2i;
> 2x (3i) +1x(—1) =—-146i;
> (i) x (141) +(4i) x2=—i—i2+8i=—-i+1+8=1+Ti;
> (—i) x (3i) + (4i) x (1) = (=3i%) — 4i = 3 — 4i.

Donc :
4+2i —14+6i1
TAT
B A _[1—1—71 3—41]'

On obtient bien
(AB)' =BTAT.

Il convient de noter que AB n’est en général pas égal & BA. Si le nombre de colonnes
de A est égal au nombre de lignes de B alors que le nombre de lignes de A n’est pas
égal au nombre de colonnes de B, le produit AB est défini alors que BA ne 'est pas.
Mais méme si les deux produits sont définis, ils peuvent étre différents, tel qu’illustré dans
I’exemple 1.2.12.

Exemple 1.2.12 (le produit matriciel n’est pas commutatif)
: 11 11 1 2 2 1
S1A—[1 O] etB—[O 1},onaAB—[l 1] alorsqueBA—[1 0}

Il est intéressant cependant d’observer que si les deux produits AB et BA sont définis,
alors leur trace est la méme, tel qu’établi dans la proposition 1.2.6 (cette propriété ayant
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déja été énoncée au point 4 de la proposition 1.2.3).

Proposition 1.2.6 (trace du produit matriciel)

Si A est une matrice de taille m x n et B une matrice de taille n x m, alors

tr(AB) = tr(BA).

Preuve. Etant donné que (AB)(i,i) = Y 7_; A(i,k)B(k,i), on a

tr(AB) = > (AB)ii=> Y A(i,k)B(k,i) .
=1 =1 k=1

On peut échanger 'ordre des sommes (car elles sont finies) ainsi que celui des produits, ce

qui donne
tr(AB) = > > B(k,i) A(i, k) = Y _(BA)(k, k) = tr(BA) .
k=1 i=1 k=1

O

La matrice identité introduite a la définition 1.2.16 est ce qu’on appelle ’élément neutre
de la multiplication, tel qu’expliqué a la proposition 1.2.7. Elle intervient, notamment,
lors de l'inversion d’une matrice (section 1.4) ou dans la définition d’une base canonique
(proposition 5.2.4).

Définition 1.2.16 (matrice identité)

La matrice identité, ou simplement 1’l’identité, est une matrice carrée de taille n x n,
notée I, telle que :

I=I,=[e1e -+ e,] =

a. on utilise I,, plutoét que I pour éviter des ambiguités.

Remarque

On remarque que I est symétrique, la i-iéme colonne étant égale a la transposée de la
i-iéme ligne, pour tout i € [1;n].
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Proposition 1.2.7 (élément neutre du produit matriciel)

L’identité I est I’élément neutre du produit matriciel, ce qui signifie que :
> AI = A pour toute matrice A de taille p x n;
> ITA = A pour toute matrice A de taille n x p.

Preuve. Soit A une matrice de taille p x n dont les colonnes sont c1,co,...,c,. En
utilisant le point de vue 2 de la proposition 1.2.5 ainsi que la proposition 1.2.4, on obtient :

Al =[Ae; Aey---Ae,|=[cica---Cp] = A .

Si A est une matrice de taille n X p, sa transposée est de taille p x n, et tel qu’on vient de
le voir, cela signifie que ATI = AT. En utilisant le point 1 du théoréme 1.2.2 et le point 3
de la proposition 1.2.1, on a donc :

IA=(ATIHT=(ATDHT =(AT)T = A.
O

L’exemple 1.2.13 met en évidence certains piéges a éviter qui vont & ’encontre de I'in-
tuition.

Exemple 1.2.13 (piéges de la multiplication matricielle)

> Si AB = O, cela n’implique pas nécessairement que A = O ou B = O.

Par exemple, si A = [_(1) (1)] et B = E ﬂ,onaA#O,B#OetAB:O.

> Si AB = B avec B # O, cela n’implique pas nécessairement que A = L.

Par exemple, si A = [8 ﬂ et B = E i}onaAB:BetA;ﬁI.

1.2.7 Multiplication par blocs

11 est parfois utile d’effectuer la multiplication de matrices par blocs (telles que définies
dans la section 1.2.3), comme dans I'exemple 1.2.14. La plupart des régles de la section
précédente s’appliquent naturellement aux matrices par blocs .

Il faut prendre garde a ne pas confondre A;; qui est un bloc de A et A(4,j) qui est une
composante de la matrice A. Notons que A11(1,1) = A(1,1) est la premiére composante
de la premiére ligne (ou colonne) de A.

Lorsqu’on effectue une multiplication par blocs, il est important de vérifier la compa-
tibilité des tailles des blocs. Dans 'exemple 1.2.14, pour que la multiplication par blocs
puisse étre réalisée, il faut donc, entre autres, que le nombre de colonnes de A1y soit égal
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au nombre de lignes de B1; et que le nombre de colonnes de Ao soit égal au nombre de
lignes de Boy. Il faut aussi que les sommes soient bien définies ce qui implique, par exemple,
que A1 et Ajs doivent avoir le méme nombre de lignes et que B1; et Boy doivent avoir le
méme nombre de colonnes.

Exemple 1.2.14

AB - [A11A12][311312313

A | Ap By | By | Bas

_ [ A11B1i + A1sBy | A11Big + A1oBys | A11Bis + A1pBas
A3Bi1 + ApByt | AyBio + ApBay | AgiBis + ApBas

1.2.8 Produit scalaire et norme matricielle

Pour bien comprendre le contenu de cette section, il est préférable (mais pas néces-
saire) de connaitre les définitions des vecteurs et matrices complexes (section 3.6). Ainsi,
par exemple, A* est la transconjuguée de la matrice complexe A, et on a A* = AT si
A est réelle. Il est également utile de connaitre la définition d’un produit scalaire (voir
définition 5.3.1) ainsi que la définition d’un espace vectoriel (voir définition 5.1.1).

Tel qu’indiqué dans la définition 1.2.17, le produit scalaire matriciel considéré dans cet
ouvrage est défini grace a la trace.

Définition 1.2.17 (produit scalaire matriciel)
Soient A et B deux matrices complexes ou réelles de taille m x n, . Le produit scalaire

matriciel, noté (A, B), est défini par

(A,B) = tr(A*B) = tr(BA®).

Remarque

> Si les matrices A et B sont réelles, on a (A, B) = tr(A"B) = tr(BA").

> Le produit scalaire matriciel n’est défini que pour deux matrices de méme taille.
En effet, si A et B sont toutes les deux de taille m x n, alors A*B est de taille
n x n et BA* est de taille m x m. Dans les deux cas, la matrice résultante est
carrée et on peut donc calculer sa trace.

Il conviendrait de vérifier toutes les propriétés de la définition 5.3.1 pour s’assurer que
la définition 1.2.17 correspond bien & un produit scalaire. Une preuve formelle n’est pas



56 CHAPITRE 1. VECTEURS ET MATRICES

donnée ici car elle repose sur des notions introduites ultérieurement dans cet 'ouvrage. Elle
découle de la définition 1.2.14 du produit matriciel ainsi que de la définition 1.2.12 et des
propriétés de la proposition 1.2.6 portant sur la trace.

Exemple 1.2.15 (produit scalaire matriciel)

Soient A = B ;] et B = B ﬂ . De simples calculs donnent :

T [403 T 404 . [0 8 e [2 1
AB_[42,BA_32,AA_ e g| o BB=[] |

On a donc bien (A,B) =6 = (B,A), (A,A)=18>0c¢t (B,B) =3> 0.

On pourrait étendre le concept d’orthogonalité & autre chose que des vecteurs colonnes.
Cette notion sera approfondie dans le chapitre 5. Il faut prendre garde cependant & ne pas
confondre la notion de matrice orthogonale vue a la définition 5.3.5 avec le fait que deux
matrices soient orthogonales entre elles.

L’introduction d’un produit scalaire sert souvent & définir une norme spécifique. On
peut donc maintenant définir une norme pour les matrices : le produit scalaire de la défi-
nition 1.2.17 donne la norme de Frobenius tel qu’indiqué ci-dessous a la définition 1.2.18.
L’exercice 1.29 traite de cette norme.

Définition 1.2.18 (norme de Frobenius)

La norme de Frobenius d’une matrice réelle ou complexe A de taille m x n est notée
||All, et est définie par

1Al = V(A A) = Vir(A*A) = Vir(AA9) = |3 |AG ).

i=1 j=1

Remarque

> Si A est une matrice réelle de taille m x n, la formule se simplifie puisque
|A(i, )| = A(i,j)%. Dans ce cas, on a donc

JAlL = VA A) = \Jir(ATA) = Jir(AAT) = | ST S T AGL))? .

i=1 j=1

> La formule de la définition 1.2.18 est trés intuitive. En effet, le carré de cette
norme pour une matrice réelle est égal a la somme des carrés de ses composantes,
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exactement comme pour les vecteurs. De plus, Sin =1 (A est donc un vecteur
colonne réel ou complexe), on a la norme euclidienne définie en définition 1.1.13
pour les réels, et en définition 3.6.6 pour les complexes.

Exemple 1.2.16 (normes de matrices réelles et complexes)

1 2
> Si A= |3 1], les calculs donnent (A, A) =tr(ATA) = tr <[1; g]) = 20.
1 3

On a donc ||All, = V20 = 2V/5

. 12 L1 I 2 2-1]
DSlB—[i 1],onaB —[2 1] et (B,B) = tr(B B)_tr[Q—i—i 5}—7.

On déduit que ||BJ|, = v/7. C’est bien un réel !

D’autres produits scalaires et donc d’autres normes existent pour les matrices, mais cela
sort du cadre de cet ouvrage. Chaque norme a son utilité pour prouver certaines propriétés
utiles pour résoudre des problémes. Un exemple d’utilisation de la norme de Frobenius se
retrouve dans ’étude de cas de la section 9.3. L’'intérét de minimiser la norme de Frobenius
de la hessienne d’un modéle quadratique est de pouvoir déterminer le modéle quadratique
de courbure minimale.
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1.3 Déterminant d’'une matrice

Tout comme la trace, le déterminant d’une matrice est une des propriétés des matrices
utiles dans de nombreuses applications, notamment pour montrer qu’'une matrice est inver-
sible (section 1.4). Le déterminant n’est défini que pour des matrices carrées.

Les matrices de cette section ne sont pas limitées aux réelles. Elle peuvent donc étre
complexes. Pour un formalisme complet du déterminant des matrices complexes, le lecteur
est invité & consulter la section 3.6.4.

1.3.1 Définitions

Tel qu’indiqué dans la définition 1.3.1, le déterminant d’une matrice de taille 1 x 1
est la valeur de son unique composante. Cette notion de déterminant est étendue dans la
définition 1.3.2 aux matrices de taille 2 x 2 . En 2D, le déterminant d’une matrice peut
s’interpréter comme I’aire du parallélogramme engendré par les colonnes de la matrice. Plus
précisément, si A est une matrice de taille 2 x 2 dont les colonnes sont c; et co, alors le
déterminant de A est ’aire du parallélogramme dont les extrémités sont 0, ¢, co et ¢ + co.

Le déterminant d’une matrice carrée quelconque peut étre déterminé de maniére récur-
sive, tel qu'indiqué dans la définition 1.3.4.

Définition 1.3.1 (déterminant d’une matrice de taille 1 x 1)

Soit A = [a} une matrice n’ayant qu'une composante qui peut étre réelle ou complexe.
Le déterminant det(A) de A est défini par det(A) = a.

La notion de déterminant d’une matrice de taille 2 x 2, telle que décrite dans la défini-
tion 1.3.2, a d’abord été introduite par Cardan pour résoudre des systémes d’équations &
deux inconnues et déterminer si le systéme considéré a une solution unique. La notion de
résolution de systémes d’équations est abordée dans le chapitre 8.

Définition 1.3.2 (déterminant d’une matrice de taille 2 x 2)

Soit A = {(z cﬂ une matrice réelle ou complexe de taille 2 x 2.

Le déterminant det(A) de A est défini par det(A) = ad — be.

Exemple 1.3.1 (déterminant d’une matrice 2 X 2)

Le déterminant det(A) de A = [2 ﬂ est égal 42 x 1 —(—-3) x 6 =—15.
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La définition précédente peut étre généralisée a tout type de matrice en utilisant le
concept de récursivité. Pour cette définition plus générale, il est nécessaire d’introduire
d’abord la notion de cofacteur décrite dans la définition 1.3.3 et illustrée dans ’exemple 1.3.2.

Définition 1.3.3 (cofacteur)

Les cofacteurs d’une matrice A de taille n x n sont les termes
cij = (1) A, 7) det(A; ;)

avec i € [1;n], j € [1;n] et ot A;; est la sous-matrice de A obtenue en supprimant
la i-iéme ligne et la j-iéme colonne de A.

Remarque

Une matrice posséde autant de cofacteurs que de composantes.

Exemple 1.3.2

2 31
Les neuf cofacteurs de A = |1 2 3| sont :
3 2 1
ci1 = (=M1 x 2 x det 2 31\ -8 1o = (=1)2 x 3 x det L 31 _ o4
’ 2 1] ) 3 1]
1 2] 3 1]
crs = (1)1 x 1 x det <_3 2_> = 4 ey = (—1)2 %1 x det (_2 1_) _
22 = (—1)2+2 X 2 x det 2 1 = -9 Cog = (_1)2+3 % 3 % det 2 3 _ 15
| 3 1] | 3 2]
c31 = (—1)3" x 3 x det 311 _ 21 c32 = (—=1)%2 x 2 x det 2 1]\ _ 10
) _2 3_ ) —1 3_
cz33 = (—1)*T3 x 1 x det ( i g > - 1.

Tel que décrit dans la définition 1.3.4, on peut maintenant introduire la notion de
déterminant d’une matrice de taille quelconque.
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Définition 1.3.4 (déterminant d’une matrice)

Le déterminant det(A) d’une matrice A réelle ou complexe de taille n x n peut se
calculer de maniére récursive, a ’aide des cofacteurs ¢; ;, de deux facons différentes :

n
> en développant selon la ligne ¢ : det(A) = 3" ¢ ;;
j=1

n
> en développant selon la colonne j : det(A) = > ¢ ;.
i=1

Remarque

Les définitions 1.3.2 et 1.3.4 coincident pour les matrices de taille 2 x 2. En effet, les
sous-matrices sont ici les composantes de la matrice. Par exemple, A1 = A(2,2) et
donc ¢11 = A(1,1)A(2,2).

L’exemple 1.3.3 illustre le calcul de déterminant & ’aide des cofacteurs pour deux ma-
trices.

Exemple 1.3.3

-1 1
> Soit A = 1 4
5 0

— =N

Pour simplifier les calculs, puisque la deuxiéme colonne contient un zéro, on peut
déterminer det(A) en développant selon cette colonne, ce qui donne :

3
det(A) =) (1) A(4,2) det(Aq 2)

=1

=(—1)"? x 1 x det <[§ ﬂ)
b (-2 x 4 x det <[_; 2])
1
1

+(—1)3+2><0><det<[ ])

=—(1x1-5x1)4+4x(-1x1—-5x2)=-40.

—_

== N

On peut également faire le calcul en développant selon la derniére ligne qui a
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aussi un zéro, ce qui donne :

3
det(A) = (~1)*"7A(3, ) det(Asz;)

J=1

=(=1)3" x 5 x det (E ﬂ)
+ (=1)372 % 0 x det ([_1 2})
—1

4+ (=1)%7 x 1 x det ([ ﬂ)

1
=5(1x1—-4%x2)+(—1x4—1x1)=—40.

—_

Les deux calculs donnent bien des résultats identiques!

> Pour la matrice de 'exemple 1.3.2, on remarque que peu importe le développe-
ment, le résultat est identique :

> selon la premiére ligne, on a det(A) =ci1+cio+ci3=—-8+24—-4=12;
selon la deuxiéme ligne, on a det(A) = ca1+co2+co3 = —1—-2415 =12;
selon la troisiéme ligne, on a det(A) = c31+c32+c33 =21—-10+1 =12;

>
>
> selon la premiére colonne, on a det(A) = ¢1,1+c21+¢31 = —8—1+421 = 12;
> selon la deuxiéme colonne, on a det(A) = ¢y 2+co2+c32 = 24—2-10 = 12;
>

selon la troisiéme colonne, on a det(A) = ¢ 3+c23+c33 = —4+15+1 = 12.

1.3.2 Propriétés du déterminant

La connaissance du déterminant d’'une matrice peut étre utile pour déterminer le dé-
terminant d’autres matrices qui lui sont reliées d’une quelconque fagon. Ceci fait I'objet de
cette section.

Le théoréme 1.3.1 énonce la propriété importante que le déterminant d’une matrice est
invariant par transposition.

Théoréme 1.3.1 (déterminant de la transposée d’une matrice)

Le déterminant d’'une matrice carrée A est égal au déterminant de sa transposée, ce
qui veut dire que

det(A") = det(A) .

Preuve. Soit A une matrice carrée de taille n x n. La preuve se fait par induction sur n.

> Initialisation. Sin = 1, on a A = AT = [a] et la définition 1.3.1) indique que
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det(A) = det(AT) = a.

> Induction. Soit n > 1 et supposons que le théoréme est valide pour les matrices
carrées de taille (n — 1) x (n — 1). Le développement selon la derniére ligne donne :

det(AT) = z”: D" AT (n,5)det ((A )n]) .
7j=1

Pour tout j € [1;n], on a (A;,)" = (A7), ;, et comme la sous-matrice A, est de
taille (n — 1) x (n — 1), on a det(A,) = det ((AT),;). De plus, AT(n,j) = A(j,n),

ce qui implique
n

det(AT) =Y (=1)7*"A(j,n) det(Aj,).

j=1
Le terme de droite de cette derniére égalité est la formule du déterminant de A

développé selon sa derniére colonne. La propriété est donc démontrée.

O

Pour certaines matrices, comme les matrices triangulaires ou diagonales, le calcul du
déterminant est simplifié. En effet, il suffit de considérer les éléments diagonaux. C’est
l'objet de la proposition 1.3.1 pour les matrices triangulaires qui donne le corollaire 1.3.1
pour les matrices diagonales.

Proposition 1.3.1 (déterminant d’une matrice triangulaire)

Le déterminant d’une matrice triangulaire A de taille n x n est égal au produit des
composantes sur sa diagonale :

n

det(A) = JJ AG,14) .

=1

Preuve. Soit A une matrice triangulaire supérieure de taille n x n. La preuve est pas
induction sur n.

> Initialisation. Sin =1, on a A = [a] et la définition 1.3.1 indique que det(A) =
= A(1,1).

> Induction. Soit n > 1 et supposons que la proposition est valide pour les matrices
triangulaires supérieures de taille (n—1) x (n—1). Le développement selon la derniére

ligne donne :
n

det(A Z )" A(n, ) det(A,, ;) .
7j=1
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Comme A est triangulaire supérieure, le seul indice de colonne j tel que A(n,j) # 0
est 7 =n, et on a donc :

det(A) = A(n,n) det(A, ).

Mais A, ,, est également triangulaire supérieure et de taille (n — 1) x (n — 1), ce qui

n—1 n—1
implique que det(A,, ) = [[ Ann(i,7) = [[ A(4,7). On a donc
i=1 i=1

n—1 n
det(A) = A(n,n) [ AG,i) =[] AG, ).
i=1 =1

Si A st triangulaire inférieure, le théoréme 1.3.1 indique que det(A) = det(AT), et
n
comme AT est triangulaire supérieure, on vient de démontrer que det(AT) = [T AT (4,4).
i=1
Pour conclure, il suffit d’observer que AT (i,i) = A(4,4), ce qui donne

det(A) = det(AT) = ﬁAT(z’,i) = ﬁA(z’, P).
=1 i=1

O

L’exemple 1.3.4 illustre I'utilité de la proposition 1.3.1 dans le cas d’une matrice trian-
gulaire inférieure de taille 4 x 4.

Exemple 1.3.4

3 000

Le déterminant de la matrice triangulaire inférieure A w100 est
34 22 1 0
12 14 3 1

det(A) =3 x1x1x1=3.

Remarque

La matrice identité étant une matrice triangulaire avec uniquement des 1 sur la dia-
gonale, on a det(I) = 1.

Corollaire 1.3.1 (déterminant d’une matrice diagonale)

Le déterminant d’'une matrice diagonale A de taille n x n est égal au produit des
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composantes sur sa diagonale :

Preuve. Etant donné qu’une matrice diagonale est triangulaire, le résultat est une consé-
quence directe de la proposition 1.3.1. O

Une autre propriété fondamentale relie le déterminant & la multiplication d’une matrice
par un scalaire : multiplier une matrice n X n par un facteur k£ revient & multiplier son
déterminant par k dans chacune des n dimensions, ce qui conduit a la proposition 1.3.2 et
a lexemple 1.3.5

Proposition 1.3.2 (déterminant du produit d’une matrice par un scalaire)

Soit A une matrice carrée de taille n x n et soit k un scalaire. On a :

det(kA) = k™ det(A) .

Preuve. Soit A une matrice carrée de taille n x n. Soient ¢; ; les cofacteurs de A et d; ;
ceux de kA, avec i € [1;n] et j € [1;n]. La preuve est par induction sur n.

>> Initialisation. Sin =1, on a A = [a] et kA = [ka]. La définition 1.3.1 indique que
det(kA) = ka = kdet(A).

> Induction. Soit n > 1 et supposons que la proposition est valide pour les matrices
carrées de taille (n — 1) x (n — 1), La définition 1.3.3 indique que le cofacteur d; ; a
la valeur

dij = (1) (kA)(i, ) det (kA)i ;)

Comme (kA); ; est de taille (n — 1) x (n — 1), on a det ((kA); ;) = k"L det(A, ), ce
qui implique

di’j = k‘n ((—1)i+jA(’i,j) det(Ai,j)) = k‘nci,j.

On déduit le résultat souhaité puisque

det(kA) =Y di;j =k" 1y = k" det(A).
j=1 j=1
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Exemple 1.3.5 (multiplication d’une matrice par un scalaire)

-2 2 4
La matrice B = 2 8 2| correspond & la matrice A de l'exemple 1.3.3 qui a
10 0 2

été multipliée par deux. Comme c’est une matrice de taille 3 x 3 et qu’on a vu que
det(A) = —40, on déduit que det(B) = 23det(A) = 8 x —40 = —320.

On conclut cette section en citant trois propriétés importantes sur les déterminants qui
seront démontrées ultérieurement dans cet ouvrage.

> Théoréme 2.4.3. Si A et B sont deux matrices carrées de méme taille, alors det(AB) =
det(A) det(B).

> Théoréme 2.4.4. Si A est une matrice inversible, alors det(A 1) 1

= det(A)"
> Proposition 7.1.3 : Le déterminant d’une matrice carrée complexe est le produit de
ses valeurs propres.
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1.4 Matrices inverses

Tel que déja mentionné, une matrice peut posséder une inverse, et on dit alors qu’elle
est inversible. Cette section présente des conditions nécessaires et suffisantes a ’existence
de I'inverse d'une matrice, ainsi que des propriétés de cette inverse. Par contre, cette section
ne décrit aucune technique permettant d’inverser une matrice, ce point faisant ’objet de la
section section 8.5.

Pour simplifier la présentation, on ne considére ici que l'inverse de matrices réelles.
L’inversion de matrices complexes est traitée dans la section 3.6.4.

1.4.1 Caractérisation des matrices inversibles

On expose ici des conditions nécessaires et suffisantes pour qu'une matrice soit inver-
sible. La définition 1.4.1 qui suit n’est qu’une des nombreuses caractérisations possibles
des matrices inversibles. D’autres caractérisations sont données ultérieurement dans cette
section.

Définition 1.4.1

Si A et B sont deux matrices carrées de méme taille telles que AB = BA =1, alors
A est dite inversible, ou non-singuliére, et la matrice inverse de A, notée A™1, est la
matrice B, c¢’est-a-dire que A~ = B.

Remarque

> Par symétrie de la définition, B est aussi inversible et son inverse est A.

> Si A est inversible, alors A~! I'est aussi, et (A~1)71 = A.

> Une matrice non-singuliére est une matrice inversible et une matrice singuliére
est une matrice non-inversible.

Le théoréme 1.4.1 énonce plusieurs caractérisations des matrices inversibles sous forme
de conditions nécessaires et suffisantes. Certaines de ces caractérisations ainsi que certaines
notions qui leur sont associées font appel & des concepts qui ne sont abordés qu’ultérieure-
ment dans cet ouvrage. Mais par souci de regroupement, il a été décidé de toutes les réunir
dans un méme théoréeme. Toutefois, les termes qui n’ont pas encore été définis & ce stade
sont indiqués en italique. Les renvois appropriés sont également fournis (en bleu) afin de
permettre au lecteur de retrouver chacune des démonstrations.
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Théoréme 1.4.1 (caractérisations des matrices inverses)
La matrice carrée A € R™™ est inversible si et seulement si :
1. Il existe B € R™ " telle que AB = BA =1 (et A~! est alors égale a B).
2. 1l existe B € R™" telle que AB =TI ou BA =1 (et A~! est alors égale a B).
3. 1l existe B € R™™ inversible telle que B~! = A (et A~ est alors égale a B).
4. Le déterminant de A est différent de zéro : det(A) # 0.
5. Toutes les valeurs propres de A sont non nulles (chapitre 7).
6. Les colonnes de A sont linéairement indépendantes.
7. Un algorithme d’élimination permet d’obtenir n pivots (non nuls) (chapitre 2).
8. A est de plein rang : rg(A) = n (section 6.1.5).
9. Le noyau de A est réduit au vecteur nul : Ker(A) = {0} (section 6.1.1).
10. L’image de A remplit tout 'espace : Im(A) = R"™ (section 6.1.3).
11. Lapplication linéaire associée a A est bijective (section 4.4).
12. Le systéme d’équations linéaires Ax = b posséde une solution unique quel que
soit le vecteur b (chapitre 8).
Preuve.

>

>

Le point 1 est bien une condition nécessaire et suffisante pour que A soit inversible
puisqu’il s’agit de la définition 1.4.1 de I'inverse d’une matrice.

Il est montré au chapitre 6 que les points 6 & 12 sont équivalents et que, tel que
prouvé dans le théoréme 2.4.2, une matrice carrée A de taille n X n est inversible si et
seulement si 'algorithme d’élimination produit n pivots (non nuls), ce qui correspond
au point 7. Ces sept points sont donc des caractérisations équivalentes des matrices
inversibles.

Le point 7 indique que A est inversible si et seulement si les pivots générés par
I’algorithme d’élimination sont non nuls, et il est montré a la proposition 2.4.1 que
det(A) est égal au produit des pivots. On déduit donc que A est inversible si et
seulement si son déterminant est non nul. Mais il est également montré au chapitre 7
que det(A) est égal au produit des valeurs propres de A, ce qui implique que A est
inversible si et seulement si ses valeurs propres sont non nulles. Les points 4 et 5 sont
donc deux autres caractérisations des matrices inversibles.

Le point 2 est également une condition nécessaire et suffisante pour que A soit inver-
sible. En effet :

> Si A est inversible, on déduit de la définition 1.4.1 que A™TA = AA™! =1, et
le point 2 est donc valide avec B = A~
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> Sile point 2 est valide, alors il existe une matrice B telle que AB =Tou BA =1.
On a donc, d’aprés le théoréeme 2.4.3, que det(A)det(B) = det(I) = 1, ce qui
implique que det(A) # 0 et donc que A est inversible (selon le point 4).

> Finalement, le point 3 caractérise aussi les matrices inversibles car :

> Si A est inversible, alors la matrice B = A~! est également inversible, ce qui
implique que B~! = (A71)~! = A, et donc que le point 3 est valide.

> Sile point 3 est valide, alors il existe une matrice B inversible telle que B~ = A.
Comme B est inversible, son inverse A l'est également, ce qui donne A™! =
(B~)~! =B.

O

Remarque

Les conditions du théoréme 1.4.1 étant équivalentes, on déduit que pour montrer que
des vecteurs sont linéairement indépendants, on peut calculer le déterminant de la
matrice dont les colonnes sont les vecteurs et s’assurer que celui-ci n’est pas nul. Cela
découle de I’équivalence des points 4 et 6.

Le point 2 est une simplification de la définition d’une matrice inverse. Il stipule qu’il
suffit de trouver une matrice B qui vérifie une seule des multiplications qui donne I'identité,
tel qu’illustré dans I’exemple 1.4.1.

Exemple 1.4.1 (stratégie intuitive pour trouver l'inverse d’une matrice)

2 . . . . .
0 2} est inversible et pour déterminer son inverse, si tel est le

cas, on peut bien sir utiliser la proposition 8.5.1 qui indique comment inverser des
matrices de taille 2 x 2. En cas d’incertitude sur les calculs & effectuer, il est possible
de s’appuyer sur I'intuition ou d’effectuer quelques opérations rapides sur un brouillon
pour, par exemple, obtenir la matrice

B= [é 1_/;]

Pour s’assurer qu’il s’agit bien de U'inverse de A, il suffit de calculer AB et de vérifier
que ce produit matriciel donne bien 'identité :

Pour savoir si A = [

1 2] [1 —1] _[ix14+2x0 I(-1)+2x1/2) _[1 0] _,
0 2/[0 1/2] ~ [0x14+2x0 0(-1)+2x1/2| — [0 1]

Comme tel est bien le cas, on peut conclure que A est inversible et que B est son
inverse. Le point 2 du théoréme 1.4.1 indique qu’il est inutile de vérifier que BA = 1.

AB- |
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Remarque

D’autres conditions que celles du théoréme 1.4.1 permettent de caractériser une ma-

trice

inversible, Il s’agit de variantes des propriétés déja énoncées. Par exemple,

A € R™ ™ est inversible si et seulement si

>
>
>

>

>

ses lignes sont linéairement indépendantes (variation du point 6);
ses lignes générent R™ (variation du point 10);

le systéme Ax = b admet au moins une solution quel que soit le vecteur b
(variation du point 12);

elle peut se réduire a I'identité (voir la proposition 2.1.2 sur la forme échelonnée
réduite) ;

sa transposée est inversible (proposition 1.4.3).

Les preuves de ces points sont laissées en exercice.

Remarque

Si on s’intéresse a des matrices ayant certaines formes particuliéres, d’autres énoncés
sont possibles. Par exemple :

>

>

Une matrice triangulaire est inversible si et seulement si toutes les composantes
sur sa diagonale sont non nulles. En effet, il découle de la proposition 1.4.5
ainsi que du point 4 du théoréme 1.4.1 qu’une telle matrice est inversible si et
seulement si son déterminant est non nul, et la proposition 1.3.1 indique que le
déterminant d’une matrice triangulaire est égal au produit des composantes sur
sa diagonale.

Toutes les matrices d’élimination sont inversibles (voir la section 2.3.1).

1.4.2 Autres propriétés des matrices inverses

La section précédente contenait des conditions nécessaires et suffisantes pour qu'une
matrice soit inversible. Cette section présente quelques propriétés de I'inverse d’une matrice.

La proposition 1.4.1 suivante, qui porte sur 'inverse d’un produit matriciel, a déja été
énoncée au point 2 du théoréme 1.2.2. On dispose désormais des outils permettant de la

prouver.

Proposition 1.4.1 (inverse d’un produit de matrices)

Si A et B sont deux matrices inversibles de méme taille, leur produit AB ’est égale-
ment et (AB)"! = B71A"L
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Preuve. Soit M =B !A"!. Ona (ABIM=ABB'A'=ATA"'=AA"!'=1 On
déduit du point 2 du théoréme 1.4.1 que la matrice AB est inversible et que son inverse est
M. O

Le corollaire 1.4.1 est une généralisation de la proposition 1.4.1 et permet de déduire le
corollaire 1.4.2.

Corollaire 1.4.1 (inverse d’un produit de plusieurs matrices)

Si My, My, ..., M, sont p > 2 matrices inversibles de méme taille, leur produit est
également inversible et (M1May -+ M,)~! = M;leﬂl Y P

Preuve. La preuve est par induction sur p.
> Initialisation. Si p = 2, | résultat est valide puisqu’il s’agit de la proposition 1.4.1.
> Induction. Soit p > 2 et supposons que le résultat est vrai pour le produit de p — 1
matrices, c’est-a-dire que (M1Mjy - - - Mp,l)_1 = M;ElM;EQ e Mfl. Il découle de
la proposition 1.4.1 que :
(MM - - 'Mp)_l = (MM - Mp—l)Mp)_l = M;I(MlMQ T lvlp—l)_1
—Ing—1 —1
= MM ML

Corollaire 1.4.2 (inverse et puissance de matrice)

Si A est une matrice inversible et si p est un entier, alors AP est également inversible
et (AP)"1 = (A1),

Preuve. C’est un cas particulier du corollaire 1.4.1 avec A = M, pour tout i € [1;p].
O

La proposition 1.4.2 démontre que la multiplication une matrice carrée singuliére par
une matrice de méme taille donne toujours une matrice singuliére.

Proposition 1.4.2 (A singuliére implique AB singuliére)

Si A et B sont deux matrices carrées de méme taille et si A est singuliére, alors AB
est également singuliére.

Preuve. Il découle du théoréeme 2.4.3 que det(AB) = det(A) det(B). Si A est singuliére,
on déduit du point 4 du théoréme 1.4.1 que det(A) = 0 et donc que det(AB) = 0, ce qui
signifie que AB est singuliére. O
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La proposition 1.4.3 indique que l'inverse de la transposée d’une matrice carrée A in-
versible est la transposée de 'inverse de A, d’oil on déduit le corollaire 1.4.3 qui stipule que
I'inverse d’une matrice symétrique est symétrique.

Proposition 1.4.3 (transposée de l'inverse)

Si A est une matrice inversible, alors AT I'est également et (AT)_1 = (A*I)T .

Preuve. La proposition 1.2.1 montre que A" (A_l)—r = (A_lA)—r =1I" =1.On déduit

donc du point 2 du théoréme 1.4.1 que AT est inversible et que son inverse est (A‘l)T. O

Corollaire 1.4.3 (symétrie de [’inverse)

Si A est une matrice inversible et symétrique, alors A~! est également symétrique.

Preuve. Si A est une matrice inversible et symétrique, on déduit de la proposition 1.4.3
que (A*I)T = (AT)_1 = A, ce qui signifie que A™! est symétrique. ]

La proposition 1.4.4 montre qu'une matrice triangulaire inversible et son inverse ont la
méme forme.

Proposition 1.4.4 (inverse d’une matrice triangulaire inversible)

L’inverse d’une matrice triangulaire inférieure (resp. supérieure) inversible est égale-
ment triangulaire inférieure (resp. supérieure).

Preuve.

Il suffit de faire la démonstration pour les matrices triangulaires inférieures. En effet,
si la propriété est vraie pour les matrices triangulaires inférieures et si A est triangulaire
supérieure inversible, on déduit du théoréme 1.3.1 que AT est inversible et que (A=) =
(AT)~!. Etant donné que AT est triangulaire inférieure, la matrice (AT)™! est également
triangulaire inférieure, ce qui signifie que A~! est triangulaire supérieure.

Soit donc A une matrice triangulaire inférieure inversible de taille n x n. On déduit du
point 2 du théoréeme 1.4.1 qu’il existe une matrice B telle que AB =1, et il découle alors du
théoreme 2.4.3 que det(I) = det(AB) = det(A)det(B) = 1, ce qui implique det(A) # 0.
La proposition 1.3.1 indique que le déterminant de A est égal au produit des composantes
sur sa diagonale, ce qui implique que A(i,7) # 0 pour tout ¢ € [1;n]. Il reste & montrer
que B est triangulaire inférieure. Il faut donc vérifier que quel que soit i € [1;n], on a
B(i,j) = 0 pour tout i < j < n. La preuve est par induction sur i.

> Initialisation. Pouri = let j € [2;n],ona0=1I(1,j) = (AB)(1,5) = A(1,1)B(1, )

et donc B(1,j) =0.
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> Induction. Soit i > 1 et supposons que B(k, j) = 0 pour tout k¥ < i < j. Sij >, on
]

Le point 4 du théoréme 1.4.1 indique qu'une matrice carrée est inversible si et seulement
si son déterminant est non nul. La proposition 1.4.5 donne une preuve alternative de ce
résultat pour les matrices triangulaires.

Proposition 1.4.5 (déterminant et inverse d’une matrice triangulaire inversible)

Une matrice triangulaire est inversible si et seulement si son déterminant est non nul.

Preuve. Si A une une matrice triangulaire inversible, on déduit du point 2 du théo-
réme 1.4.1 qu’il existe une matrice B telle que AB = 1, et il découle alors du théoréme 2.4.3
que det(I) = det(AB) = det(A) det(B) = 1, ce qui implique que det(A) # 0. Il reste donc &
montrer que si A est une matrice triangulaire de déterminant non nul, alors A est inversible.

Il suffit de faire la démonstration pour les matrices triangulaires inférieures. En effet,
si la propriété est vraie pour les matrices triangulaires inférieures et si A est triangulaire
supérieure de déterminant non nul, alors il découle du théoréme 1.3.1 que det(AT) =
det(A) # 0, et donc que AT est inversible (puisqueA ' est triangulaire inférieure). On
déduit alors de la proposition 1.4.3 que A est également inversible.

Soit donc A une matrice triangulaire inférieure de taille n x n telle que det(A) # 0. On
a A(i,7) # 0 pour tout ¢ € [1;n] car det(A) =[[;_, A(4,7) (selon la proposition 1.3.1).

On déduit du point 2 du théoréme 1.4.1 que pour prouver que A est inversible, il suffit
d’exhiber une matrice B telle que AB = I. Soit donc B une telle matrice. II découle de la
proposition 1.4.4 que B est également triangulaire inférieure, et donc que pour tout j > i,
on a B(i,7) =0 et (AB)(i,5) = >y A(4,k)B(k,j) = 0 = I(7,). Il reste & montrer que
pour tout ¢ > j, en imposant (AB)(i,5) = I(i,5), les composantes B(i, ) peuvent étre
déterminées quelles que soient les composantes de A.

> sii=j,ona(AB)(i,i) = A(i,7)B(7,1), et pour avoir (AB)(4,7) = I(i,7) = 1, on pose

donc B(i,i) = ﬁ (qui est bien défini puisque A n’a pas de zéro sur la diagonale).

>> Les composantes B(i,j) pour i > j sont déterminées séquentiellement avec j allant
de 1 & n — 1 et pour chacun de ces indices j de colonne, on considére les indices @
allant de j + 1 a n. Ainsi, pour avoir (AB)(7,j) =1(i,j) =0, on a
i—1
A(i, k)B(k, j)
k=j

;;A(i,k)B(kJ):O < Bl =-""7357

ce qui montre que B(4, j) peut facilement étre calculé puisque A(i,7) # 0 et que tous
les termes B(k, j) avec k allant de j & i — 1 sont connus lorsqu’on calcule B(4, j).
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O

Tel qu’indiqué au point 12 du théoréme 1.4.1, une matrice carrée A est inversible si et
seulement si il existe un unique vecteur x qui vérifie A = b, quel que soit le vecteur b. Le
théoréme 1.4.2 donne plus de précisions sur ce vecteur x lorsque A est inversible.

Théoréme 1.4.2 (solution unique d’un systéme)

Si A est une matrice inversible de taille n X n et b un vecteur quelconque a n compo-
santes, alors 'unique vecteur x qui vérifie Ax = b est x = A~ !b.

Preuve. Si A est une matrice inversible, on déduit du point 12 du théoréme 1.4.1 qu’il
existe un unique vecteur x qui vérifie Ax = b, et comme A(A~'b) = (AA")b=1Ib =b,
il s’ensuit que x = A~ 'b est cet unique vecteur. ]

Si A est une matrice inversible, le théoréme 1.4.2 donne une formule directe pour dé-
terminer 'unique vecteur qui vérifie Ax = b. Cependant, en pratique, il est extrémement
coliteux en termes de calculs d’inverser une matrice. Pour déterminer ce vecteur x, on
n’inverse donc jamais explicitement une matrice. On préfére utiliser les techniques vues au
chapitre 8 basées sur le principe d’élimination qui est le sujet du chapitre 2.

Pour conclure cette section, notons que lorsqu’une matrice n’est pas inversible, on peut
recourir a la notion de pseudo-inverse, qui est abordée a la section section 6.4.
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1.5 Etude de cas : Produit de Kro-
necker

Le produit de Kronecker de deux matrices A € R™*" et B € RP*? est défini par blocs
de la maniére suivante :

A(1,1)B A(1,2)B A(l,n)B
AgB — | MPUB AZ2B ARIIB ( gomxnn),
A(m,)B A(m,2)B --- A(m,n)B

Pour rappel, A(i,j) € R désigne l'entrée (i,5) de A, pour i € [1;m] et j € [1;n].

Bien que trés utile dans de nombreux domaines, le produit de Kronecker est peu étudié
dans les premiers cours d’algébre linéaire notamment parce que la plupart de ses propriétés
sont souvent considérées comme trop techniques pour étre démontrées a ce stade. L’idée de
cette étude de cas n’est pas de prouver des propriétés mais plutét de les énoncer et de les
illustrer par des exemples simples afin de mettre en lumiére la puissance du produit de Kro-
necker. Ensuite, certaines de ces propriétés seront appliquées au contexte de 'apprentissage
automatique.

1.5.1 Propriétés utiles

Dans ce qui suit, les tailles des matrices sont supposées compatibles pour que les produits
puissent étre effectués.
Les propriétés suivantes sont vérifiées pour tout A € R"™*"™ et B € RP*? compatibles :

A ® B ¢ RMP*(19) (tailles) (1.1)
(A1+A)®B=A;B+A,2B (linéarité a droite) (1.2)
A(B1+B)=A®B; +A®B; (linéarité a gauche) (1.3)

(cA) @ B=A® (cB) =c(A®B) (scalaires) (1.4)
(AB)' =AT@B' (transposition) (1.5)
(A®B)(M® D) (AM) ® (BD) (produit mixte) (1.6)
(AL)I,®B)=A®B (cas particulier du produit mixte) (1.7)
e(A © B) = 5(A)  rg(B) (rang) (18)

tr(A ® B) = tr(A) x tr(B) (trace) (1.9)
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D’autres identités classiques incluent la suivante qui concerne les matrices carrées : pour
A e R™™ ¢t B € RP*P on a
det(A @ B) = det(A)? det(B)™.

Aussi, pour une matrice M € R™*" quelconque, notons vec(M) le vecteur obtenu en
empilant les colonnes de M :

vec(M) = e R™".

M(m, n)

Etant données A € R™*" B € RP*9 et M € R"*P, on a
vec(AMB) = (B' ® A) vec(M),

Cette derniére identité est trés utile pour vectoriser des égalités matricielles, par exemple
dans le contexte de la régression linéaire.
1.5.2 Exemple

Dans cette partie, quelques propriétés du produit de Kronecker sont vérifiées. Considé-
rons

|12 2%2 120 2%9 |11 0
A—[O JGR , B—_136R , 12—01.

Par définition,

20 40

1B 2B 13 -2 6
A®B_[OB1B]_ 00 20
00 -1 3

On retrouve bien la propriété (1.1) qui indique que A @ B € R**4,

Aussi, on vérifie aisément la propriété (1.9) puisque tr(A @ B) =10 =2 x 5 = tr(A) x
tr(B).

Pour vérifier la propriété (1.7) avec la matrice I, on peut calculer A ® I et Io ® B, et
ensuite multiplier ces deux matrices :

1020 20 00 2 0 40
01 0 2 13 00 13 -2 6
AL =) o 1 o B®B=| o o o Aek)@eB)=| , , o 4
000 1 00 —1 3 00 -1 3
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On constate que (A ® I3)(Io ® B) = A ® B.
1.5.3 Applications

Imaginons, dans un cadre d’apprentissage automatique, que l'on souhaite utiliser sur
son ordinateur personnel un modéle de traitement du langage naturel tel que GPT-2. Le
probléme est que le modéle est trop volumineux pour tenir dans la mémoire de ’ordinateur.
On peut dans ce cas utiliser ce qu’on appelle la factorisation tensorielle pour décomposer
le modé¢le en un produit de Kronecker de matrices plus petites, qui peuvent étre chargées
en mémoire. C’est précisément ’objet de cette section

De fagon schématique, le modéle de traitement du langage se compose de couches d’at-
tention qui constituent un mécanisme permettant de se concentrer sur les parties impor-
tantes d’un texte & analyser, de capturer les dépendances entre les mots, ce qui est essentiel
pour comprendre le contexte global d’'un texte et générer des réponses appropriées. Pour
ceux qui souhaitent approfondir le sujet, cette architecture est & la base des modéles de
langage actuels (Gemini, Claude, Mistral, LLaMA, GPT, entre autres) comme expliqué
dans D'article Attention Is All You Need.

Les couches d’attention sont représentées par des matrices Aq, Ao,..., A, avec A; €
Re>*% pour i € [1;c]. Les éléments de ces matrices, appelés paramétres, sont des réels.

Le théoréme suivant, & admettre sans démonstration, établit que chaque matrice peut
étre factorisée en une somme de produits de Kronecker de matrices plus petites, réduisant
ainsi ’espace mémoire nécessaire au modéle

Théoréme 1.5.1 (factorisation de Kronecker d’une matrice)

Quelle que soit la matrice A € R™*™ il existe k& € N* ainsi que deux familles de

matrices {A1;}icpin], {A2i}ie[isr telles que, pour tout i € [1;k], Ay; € R™*M et
Ay ; € R™X™2 avec mima = m et ning = n, et

A=A11®A 1 +A120@ A2+ ...+ A1, @Ay .

En d’autres mots, le Théoréme 1.5.1 établit que toute matrice peut étre représentée
comme une somme finie de produits de Kronecker de matrices plus petites, ce qui réduit
I’espace mémoire requis. Il convient a présent d’examiner le gain de mémoire offert par une
telle factorisation.

Premier cas : GPT-2 base

Le modéle de base de GPT-2 est constitué de 48 couches d’attention, chacune de taille
768 x 768. Le nombre total de paramétres liés & ces matrices est donc 48 x 768 x 768 =
28,311, 552. La plupart du temps, ces paramétres sont stockés en 32 bits, soit 4 octets. Ces
paramétres occupent donc environ 113.2 Mo de mémoire

Supposons que chacune de ces couches est factorisable en une somme de k produits de


https://arxiv.org/pdf/1706.03762.pdf
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Kronecker, avec A;; € R16%48 Ay, € R48x16 pour tout i. Le nombre total de paramétres
& stocker pour une seule factorisation est alors

kx (16 x 48 + 16 x 48) = k x 1536.
Pour 48 couches, le nombre total de paramétres devient
48 x k x 1536 = k x 73, 728.

Si l'on choisit & = 10 (ce qui est assez réaliste), le nombre total de paramétres & mé-
moriser est donc 737,280, ce qui requiert environ 3 Mo. Le taux de compression est donc

de
28,311,552

~ 38.4.
737,280 38

Second cas : GPT-2 XL

Le modéle de base de GPT-2 XL est constitué de 192 couches d’attention, chacune de
taille 1600 x 1600. Le nombre total de paramétres liés & ces matrices est donc 192 x 1600 x
1600 = 491, 520, 000, ce qui requiert environ 2 Go. de mémoire.

Supposons, que chacune de ces couches est factorisable en une somme de k produits de
Kronecker, avec Ay ; € R32%50, Ay, € R59%32 pour tout 4. Le nombre total de paramétres
& stocker pour une seule factorisation est alors

k x (32 x 50 + 32 x 50) = k x 3200.
Pour 192 couches, le nombre total de paramétres devient
192 x k x 3200 = k x 614, 400.

Si on choisit £ = 20 (ce qui est & nouveau, assez réaliste), le nombre total de parameétres
a mémoriser est 12,288,000, ce qui requiert environ 49.2 Mo. Le taux de compression est

donc de
491,520,000

~ 12,288,000

Ainsi, que ’on considére le modeéle de base ou le modéle XL, la factorisation de Kronecker
permet de réduire significativement le nombre de paramétres a stocker. Evidemment, la
structure du modéle a été simplifiée pour ’exemple ; les modéles actuels comptent souvent
plusieurs centaines de milliards de paramétres. En pratique, le gain de compression sur
I’ensemble du modéle peut atteindre l'ordre de la centaine, voire davantage, car les couches
d’attention ne représentent qu’'une fraction du total des paramétres.

= 40.0.
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1.8 Exercices sur les vecteurs et les
matrices

Les exercices de ce chapitre se concentrent sur la manipulation de vecteurs et de ma-
trices. La résolution de systémes et l'inversion matricielle ne sont pas concernées car vues
plus loin, au chapitre 8, méme si ici on peut quand méme manipuler des systémes et des
inverses de matrices. Les solutions sont disponibles & I’annexe A.

Série d’exercices 1: Matrices et vecteurs

Exercice 1.1: vrai ou faux ? (x)
Les énoncés suivants sont-ils vrais ou faux ?

1. Soient A et B dans R™ ™. On a (A +B)? = A2 + 2AB + B2

2. Soient A et B dans R™*". Avec B inversible, on a tr(B"1AB) = tr(A).

3. Toute matrice triangulaire est inversible.

4. Soient A et B dans R™*™. Si AB est inversible, alors A et B sont inversibles.
5

. Soient A une matrice quelconque et b un vecteur quelconque. Si le systéme Ax = b
posséde une solution unique, alors la matrice A est inversible.

6. Soient A, B, C et D des matrices inversibles de R"*". La matrice par blocs [g g]

At c!
est inversible et son inverse est donnée par B-1 D-!|"
7. Trois opérations élémentaires sont effectuées sur une matrice A € R™*" dans l'ordre
suivant :

(a) La deuxiéme ligne de A est multipliée par o € R*;
(b) La premiére et la deuxiéme ligne de A sont permutées;

(c¢) La troisiéme ligne est ajoutée trois fois a la premiére ligne de A.

La matrice issue de ces trois transformations est notée A’, et on a

det(A’) = —adet(A) .

Exercice 1.2: (%)
1 23 1 6
Soient A= {2 3 3| eR¥>3 b= |1]|,etc= |8 € R%
1 41 1 6
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1. Vérifier que Ab =c;

2. Ecrire ¢ comme une combinaison linéaire des colonnes de A ;

1 2 3
3. Sachant que 4b = — |2| + |3| + [3], trouver une solution au systéme Ax = b.
1 4 1

Exercice 1.3: (%)

Exprimer le produit Ax comme une combinaison linéaire des colonnes de A, avec A =
-1 1 2

0 1 =3
1 -9 1 et x = (x1,x2,x3).
7 3 -1

Exercice 1.4: (%)
Exprimer la combinaison linéaire suivante comme le produit d’une matrice A et d’un vecteur

2 " 1 " -1 " 6
I 1 T2 1 I3 0 ) 4
Exercice 1.5: (%)

. 2 G _|=V3 9
Smenta—[o},b—[g} etc-{ ﬂ € R=.

1. Calculer la norme de ces trois vecteurs.
2. Calculer (a,b) et (a,c) de deux facons différentes.

3. Sachant que b = @a + 3c, en déduire (b, c).

Exercice 1.6: théoréme de Pythagore (x*)
Soient x,y € R™.

1. Montrer que |[x +y|* + [|x — y||* = 2 |Ix||* + 2 ||y[|*.

2. Si, de plus, x et y sont orthogonaux, montrer que ||x + y||* = ||x||* + |ly||*.

Exercice 1.7: cas d’égalité de ’inégalité triangulaire (x * x)
Soient x,y € R™ non nuls.

1. Montrer que si y = ax avec a > 0 alors ||x +y|| = ||x]| + [|y]]-

2. Montrer que si y = ax avec 0 > a > —1 alors ||x +y| = [|x]| — [|¥]|-

3. Montrer que si (x,y) = ||x]| ||y]| alors x et y sont colinéaires en étudiant la norme de
x.y)

— 4X.
Y x|
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4. Montrer que si [|x +y|| = |[x|[ + [[y[| alors (x,y) = |[x[/|[y]-

5. En déduire une condition nécessaire et suffisante sur la cas d’égalité de l'inégalité
triangulaire.

Exercice 1.8: équation d’un plan généré par deux vecteurs (%)
Soient u = (1,2,3) et v = (0,1,1) deux vecteurs de R®. Donner l'’équation du plan
Vect(u, v).

Exercice 1.9: produits et additions compatibles ? (x)
Soient les matrices et vecteurs suivants :

A eR¥>? BeR¥™, xeR? yeR.

Pour chacune des expressions ci-dessous, indiquer si 'opération est bien définie. Si oui,
préciser le type (matrice ou vecteur) et les dimensions du résultat. Sinon, expliquer pourquoi
I’opération est impossible.

1. Ax
2. BA

3. A+y
4. ATy
5. xTA

Exercice 1.10: (%)

1 3 4

-2 3
4 0 2 L2

SoientA:[ ],etB:
6 0
1. Calculer AB selon les quatre points de vue du cours.

2. Calculer BA selon les quatre points de vue du cours.

Exercice 1.11: (%)
Soient les matrices et vecteurs suivants :

1 2 -1 2 0
A:032,B:—13,C:[:1))_01ﬂ
-1 1 4 1 -2
5 -2
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Pour chacune des expressions suivantes, déterminer si 'opération est bien définie. Si oui,

préciser les dimensions du résultat et le calculer. Si non, expliquer pourquoi.
1. A+BT
2. (CB)" +A
3. Au+Bv
4. C(Au) —2v
5 (A+ANu

Exercice 1.12: (%)

soient &= (S o) B =) oot

1. Calculer AB.
2. Calculer AZ.
3. Calculer A™.

, avec a,b € R.

Exercice 1.13: (xx)

Soit A = [1 1

1 1] € R%2X2. Trouver les matrices telles que AB = BA.

Exercice 1.14: (*)
Soit A € R™™ avec des 1 sur la surdiagonale et des 0 ailleurs. Calculer A* pour k € N.

Exercice 1.15: structure de la matrice noyau (x)

Soit R = [A F} e R™*" of N = [_F

C D B} € R™ (=7 avec r un entier tel que r

min{m,n}.

<

1. Si A € R™", donner les tailles de F, C, D, et aussi B si on veut que le produit RN

soit défini.

2. Exprimer le produit RN.

3. Si A et B sont des matrices identité, et si C et D sont des matrices nulles, exprimer

le produit RN.

Exercice 1.16: (%)

s 1 -2 1 1 1 -2 1 1
. -2 3 1 40 2 1 40 2
SOlentA_[G?J’B_ (1);1;’0_ 1201?71 201

1 201 1 00 1

calculer leur déterminant.
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Exercice 1.17: (%)
Soient les matrices :

-1 1 4 2 10 00 -1 1 4 2
-2 5 13 2 21 00 035 —2
A=l 318 22 5" 135 100" 005 1
4 14 -21 -1 -4 6 -7 1 000 2

1. Vérifier que A = LU.
2. En déduire le déterminant de A.

3. Calculer le déterminant de B = 6 18 —42 5|

8§ 14 21 -11

Exercice 1.18: (%*)
-1 3 1
Soit A = 2 4 1f.
2 7 1

1. Calculer det(A).
2. Est-ce que AT A est inversible ? Si oui, quel est le déterminant de (ATA)~!?

Exercice 1.19: (x %)

(4 4 0 ... 0]
1 4 4
Soit A, =g 1 . "-. o| e R™™
: .. Y .4
0 ... 0 1 4

1. Montrer que det(A,1+2) = 4(det(Ap+1) — det(Ay)) pour tout n € N.
2. En déduire det(A,,) pour tout n € N.

Exercice 1.20: (% x %)
Soient A € R™*" B € R" ", et D € R™*™.

1. Soit la matrice diagonale par blocs définie par My = { oD

Montrer que det(M;) = det(A) det(D).

A O].

2. Soit la matrice triangulaire par blocs définie par Mo = [g g] .
En supposant que A est inversible, montrer que det(Mz) = det(A) det(D).
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Exercice 1.21: (%)

. |12 0 9%3
801tA—[3 0 _JGR )

1. La matrice A est-elle inversible 7

2. Calculer AAT. La matrice est-elle inversible ?
3. Calculer AT A. La matrice est-elle inversible ?
4. Calculer (ATA)T.

Exercice 1.22: (%)
Justifier d’au moins trois fagons différentes que la matrice Iy est inversible.

Exercice 1.23: (%)
Justifier d’au moins trois fagons différentes que la matrice

11
A=l
n’est pas inversible.
Exercice 1.24: (%*)

2 -1
LIEN AVEC exercice 8.2277 On considére la matrice A, = |0 k& . Pour quelle(s)
1 4

ot N

valeur(s) de k € R la matrice Ay n’est-elle pas inversible ?

Exercice 1.25: une histoire d’inverse (*x)
Soient F € R™*"™ une matrice inversible et u € R", un vecteur colonne. Montrer que

Fuu'F

F-1 Ty-1_p_ tuu B
( +uu) 1+ uTFu

(1.10)

Exercice 1.26: matrices nilpotentes et inversibilité (%)
Soit A une matrice telle qu’il existe n tel que A™ = 0 avec A non nulle.

1. Donner un exemple en dimension 2 pour n = 2.
2. Montrer que A n’est pas inversible.
3. Calculer et simplifier au maximum ’expression suivante

n—1

Z(AZ _ Ai-i-l).

1=0

4. Montrer que (I+ A + A% + ... + A" 1) est inversible.
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Exercice 1.27: (xx)
Soient les matrices définies par blocs :

I O I O 1 D
SR B RS
avec I, A, D € R™*"™,
1. A est-elle triangulaire ? S’il existe, donner son déterminant.
2. Calculer le produit AB.
3. Donner l'inverse de A.
4. Calculer AC.

Exercice 1.28: (x*)
Exercice & la bonne place ?

1 12 -6
1. Soit A=1]0 1 0|. A est-elle inversible 7
0 4 -1

2. Montrer que :

0 0
(A-I3)(A+I3)= |0 O
0 0

o O O

3. De maniére générale, soit B € R"*™ une matrice vérifiant :
(B+1,)(B-1,) =0,

Montrer que B est inversible et que son inverse est B~ = B.

Exercice 1.29: (xx)

Montrer qu’une matrice antisymétrique a seulement des zéros sur sa diagonale.

Exercice 1.30: (x*)

Soient A et B deux matrices et x un vecteur tels que Ax = Bx. Peut-on en conclure que
A=B"”

Exercice 1.31: (xx)

. |12 130 ) 3
Soient A = [2 3] et B= [O J deux matrices de R

1. Calculer la norme de Frobenius de ces matrices.
2. Vérifier que | (A,B) | < [|Af; B[
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3. A quelle inégalité liée au produit scalaire réel vu dans la section 1.1.4 I'inégalité de la
question précédente est-elle similaire 7

4. Soient A, B € R™ " deux matrices symétriques, montrer que tr(AB)? < tr(A2) tr(B?).
(Indication : s’aider de la démonstration utilisée pour démontrer I'inégalité cherchée
a la question précédente — LIEN.)



88

CHAPITRE 1. VECTEURS ET MATRICES



Chapitre

Espaces vectoriels

Ce chapitre est consacré a ’étude des espaces vectoriels, qui constituent des structures
algébriques fondamentales en mathématique. Un espace vectoriel est un ensemble dont les
éléments, appelés vecteurs, peuvent étre ajoutés entre eux et multipliés par des scalaires,
qui sont réels ou complexes dans ce document, selon des régles précises. Cette structure
permet de généraliser et d’abstraire les notions de vecteurs et de matrices introduites au
chapitre 1 et de formaliser le fait que les vecteurs des ensembles R™ et C™, ainsi que les
matrices des ensembles R™*™ et C"™*"™ sont des espaces vectoriels. Elle fournit un cadre
unifié pour définir et étudier des concepts essentiels tels que la dimension, les bases, ou
encore les sous-espaces vectoriels. Les espaces vectoriels se rencontrent dans une grande
variété de contextes mathématiques, allant des polynémes aux fonctions, en passant par les
suites, les matrices ou encore les solutions de certains types d’équations différentielles.
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5.1 Définitions

On commence par introduire la notion d’espace vectoriel, accompagnée de quelques
exemples illustratifs, avant d’explorer celle de sous-espace vectoriel.

5.1.1 Définition d’un espace vectoriel

La définition suivante formalise la notion d’espace vectoriel.

Définition 5.1.1 (espace vectoriel)

Un espace vectoriel V est un ensemble d’éléments, appelés vecteurs, muni des opéra-
tions :

o d’addition vectorielle, notée “+4”, qui permet d’additionner deux vecteurs de V'
afin d’obtenir un autre vecteur de V;

e de multiplication par un scalaire, qui permet de multiplier tout vecteur de V' par
un scalaire afin d’obtenir un autre vecteur de V ;

qui respectent les huit propriétés suivantes :
1. x+y =1y + x pour tous vecteurs x et y de V';
2. x+ (y+2z) = (x+y)+ 2z pour tous vecteurs X, y et z de V;

3. il existe un vecteur de V, noté 0, appelé le vecteur nul ou 1'élément nul de
laddition, tel que x + 0 = x pour tout vecteur x de V' ;

4. pour tout vecteur x de V, il existe un vecteur de V', appelé ["opposé de x et noté
—x, tel que x + (—x) = 0 (on pourra écrire x —x = 0);

1x = x pour tout vecteur x de V ;
(af)x = a(Px) pour tous scalaires a et 3 et tout vecteur x de V';

a(x +y) = ax + ay pour tout scalaire « et tous vecteurs x et y de V';

e R

(o + B)x = ax + fx pour tous scalaires a et 3 et tout vecteur x de V.

On parlera d’espace vectoriel réel ou d’espace vectoriel complexe selon que le scalaire
considéré dans ’opération de multiplication par un scalaire est un nombre réel ou un nombre
complexe.

Parfois, un ensemble considéré peut étre vu comme un espace vectoriel réel ou complexe
selon la fagon de le modéliser. C’est par exemple le cas de C qui peut étre vu comme un
espace vectoriel complexe ou un espace vectoriel réel. L’étude de cas de la section 5.4 traite
ce point plus en détail.

Les opérations d’addition vectorielle et de multiplication par un scalaire permettent
d’élargir la définition de combinaison linéaire introduite a la définition 1.1.9.
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Définition 5.1.2 (combinaison linéaire)

Soient vi,va,...,Vv, p vecteurs d'un espace vectoriel V', et aq,as,...,q, p scalaires
(réels si V est considéré comme un espace vectoriel réel ou complexes si V' est considéré
comme un espace vectoriel complexe) :

D
a1Vy +aave + ...+ apv, = E O Vi
k=1

est une combinaison linéaire des vecteurs vi,va,...,Vv.

Une combinaison linéaire est donc une somme finie pondérée de vecteurs, mais ces
vecteurs peuvent appartenir a des espaces vectoriels que R™ ou C"; ils sont, de facon
générale, les éléments d’espaces vectoriels.

Le résultat suivant découle naturellement de la notion de combinaison linéaire.

Proposition 5.1.1 (combinaison linéaire)

Toute combinaison linéaire de vecteurs d’un espace vectoriel V' est également un vec-
teur de V.

Preuve. On considére la combinaison linéaire oyx1 + aoxa + ... + a,X, des p vecteurs
X1,X2,...,Xp de V avec {1, a,...,ap} un ensemble de p scalaires. Selon la propriété de
la multiplication par un scalaire, chaque élément «;x;, pour ¢ € [1;p], est dans V. Ainsi, la
combinaison linéaire est une somme de vecteurs de V', ce qui, selon la propriété de '’addition
vectorielle, est également dans V. Donc a1x1 + aoXo + ... + apx, € V. [

Les huit propriétés de la définition 5.1.1 permettent de formaliser rigoureusement les
comportements que ’on associe intuitivement aux vecteurs du plan. L’addition peut ainsi
étre comprise comme la combinaison de deux vecteurs, et la multiplication par un scalaire
comme une dilatation (ou contraction) du vecteur. Ces opérations, familiéres dans un cadre
géométrique, sont & la base des axiomes qui définissent un espace vectoriel. La structure
abstraite ainsi construite prolonge cette intuition et en offre une généralisation puissante,
applicable bien au-dela du plan ou de I’espace & trois dimensions.

5.1.2 Exemples d’espaces vectoriels

Parmi les exemples d’espaces vectoriels donnés ci-dessous, les exemples I et 11 formalisent
le fait que I’ensemble des vecteurs & composantes réelles et 'ensemble des matrices réelles
forment des espaces vectoriels réels. Les mémes principes s’appliquent pour C™ et C™*",
qui forment des espaces vectoriels complexes.
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Exemple 5.1.1 (ensembles qui sont des espaces vectoriels)

I R™, 'ensemble des vecteurs colonne & n composantes réelles, est un espace vec-

toriel réel.

II R™*" Pensemble des matrices réelles de taille m x n, est un espace vectoriel
réel .

III S, I’ensemble des suites numériques a valeurs réelles, est un espace vectoriel réel.

IV L’ensemble des fonctions réelles ou complexes est un espace vectoriel.

V L’ensemble des fonctions continues sur un intervalle est un espace vectoriel.

VI L’ensemble des fonctions bornées sur R est un espace vectoriel.

VII P2(R), 'ensemble des polyndmes réels de degré inférieur ou égal a deux, est un
espace vectoriel.

a. Il est donc correct de dire que les matrices sont des vecteurs.

Preuve des points I, III, et IV.

I On note chaque élément de R"™ comme x = (z1,2,...,%,), avec z; € R pour i €
[1;n]. Pour deux éléments x = (x1,22,...,2Zn) €ty = (Yy1,¥2,---,yn) de R™ et pour
un scalaire o € R, on considére les deux opérations définies comme suit :

> addition vectorielle : x +y = (21 + y1,22 + Y2, .-, Tn + Yn) ;
>> multiplication par un scalaire : ax = (a1, axe, ..., ax,).

On doit vérifier la validité des huit propriétés de la définition 5.1.1 :

1 x4y =y + x car 'addition des réels est commutative ;

2 (x+y)+z=x+ (y+2) car 'addition des réels est associative;

3 le vecteur nul 0 = (0,0,...,0) € R” satisfait x + 0 = x;

4 pour tout x = (x1,9,...,2,), le vecteur —x = (—x1, —x2,...,—x,) vérifie
x+ (—x) =0;

5 1x = x car lz; = x; pour tout i € [1;n];

(af)x = a(fx) car (af)x; = a(Bx;) pour tout i € [1;n];

7 a(x+y) =ax+ay car a(z; +y;) = ax; + ay; pour tout i € [1;n];

8 (a+ fB)x = ax + fx car (a + B)x; = ax; + Bx; pour tout i € [1;n].

(@)

On a donc montré que R™ est un espace vectoriel réel.

IIT Soit S = {(un)nen : un € R} ensemble des suites numériques & valeurs réelles. Pour
deux éléments (up)nen €t (vp)neny de S et pour un scalaire v € R, on considére les
deux opérations définies comme suit :

> addition : (Un)nEN + (Un)nGN = (un + Un)nEN ;
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>> multiplication par un scalaire : a(up)nen = (QUp )nen-

On doit vérifier la validité des huit propriétés de la définition 5.1.1 :

1 (un)neN + (Un)neN = (Vn)neN + (Un)nen car uy, + v, = vy, + uy, pour tout n € N;

2 ((un)nen + (Vn)nen) + (Wn)neN = (Un)neN + ((Vn)nen + (Wn)nen) car (un +vy) +
Wy, = Up, + (v, + wy,) pour tout n € N;

3 la suite nulle (0),¢cn est I'élément neutre ;

4 pour tout (up)nen € S, la suite (—uy )nen vérifie (un)neny + (—un)neny = (0)nen ;

5 1(tn)nen = (Un)nen car lu, = u, pour tout n € N;

6 (aB)(un)neny = a(B(un)nen) car (afB)u, = a(Buy,)pour tout n € N;

7 a((un)neN + (Vn)neN) = a(tn)nen + @(Vn)nen car a(uy, + vy,) = auy, + avy, pour
tout n € N;

8 (a4 B)(un)nen = a(tun)nen + B(tn)nen car (a + B)u, = au, + Bu, pour tout
n € N.

On a donc montré que S est un espace vectoriel réel.

IV Pour deux fonctions réelles ou complexes f et g et pour un scalaire «, on considére
les deux opérations suivantes :
> addition : (f + g)(x) = F(x) + g(x);
> multiplication par un scalaire : (af)(x) = af(x).
Les huit propriétés de la définition 5.1.1 sont faciles & démontrer, en considérant le

vecteur nul comme la fonction nulle f = 0, 0 étant dans R”™ C C™, et 'opposée d’une
fonction f étant —f (c’est-a-dire (—f)(x) = —f(x)).

O

Les preuves des points II, V, VI et VII sont le sujet des exercices 5.3, 5.6, 5.7, et 5.8. De
nombreux ensembles ne satisfont pas les propriétés de la définition 5.1.1. A titre d’illustra-
tion, on donne ci-dessous deux exemples d’ensembles qui ne sont pas des espaces vectoriels.
La preuve du point II est le sujet de I'exercice 5.12.

Exemple 5.1.2 (ensembles qui ne sont pas des espaces vectoriels)

I L’ensemble des matrices inversibles n’est pas un espace vectoriel.

II L’ensemble des vecteurs du premier quadrant de R? n’est pas un espace vectoriel.

Preuve du point I. La matrice nulle O est ’élément nul de ’addition entre matrices,
mais elle n’est pas inversible, ce qui contredit la troisiéme propriété de la définition 5.1.1
qui exige que cet élément nul soit dans ’ensemble. O
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Bien que, tel qu’on I’a vu, il soit possible de montrer qu'un ensemble forme un espace
vectoriel en vérifiant les propriétés de la définition 5.1.1, ceci peut étre fastidieux. En pra-
tique, il peut s’avérer trés utile d’utiliser la notion de sous-espace vectoriel, ce qui constitue
I’objet de la prochaine section.

5.1.3 Sous-espaces vectoriels

De nombreuses structures intéressantes en algébre se révélent étre des sous-espaces vec-
toriels d’espaces vectoriels connus (voir section 6.1). Tel qu’illustré dans cette section, il est
possible de démontrer que certains de ces ensembles sont des espaces vectoriels, sans avoir
& vérifier les huit propriétés de la définition 5.1.1.

Définition 5.1.3 (sous-espace vectoriel)

Soit V' un espace vectoriel, et soit U C V un sous-ensemble de V. Si U, muni des
mémes opérations d’addition vectorielle et de multiplication par un scalaire que V,
est lui-méme un espace vectoriel, alors U est appelé un sous-espace vectoriel de V.

Le théoréme 5.1.1 offre une caractérisation plus simple d’un sous-espace vectoriel, évitant
le recours & la définition 5.1.1. Il permet de démontrer qu’un ensemble U C V' est un sous-
espace vectoriel & I'aide de propriétés assez évidentes a vérifier.

Théoréme 5.1.1 (caractérisation des sous-espaces vectoriels)

Soit V' un espace vectoriel, et soit U un sous-ensemble de V' muni des mémes opérations
d’addition vectorielle et de multiplication par un scalaire que V. Alors U est un sous-
espace vectoriel de V si et seulement si les trois conditions suivantes sont satisfaites :

1. U contient le vecteur nul : 0 € U ;
2. fermeture de ’addition : x +y € U pour tous vecteurs x et y dans U ;

3. fermeture de la multiplication par un scalaire : ax € U pour tout scalaire « et
pour tout x € U.

Preuve. Soit V un espace vectoriel, et soit U un sous-ensemble de V' muni des mémes
opérations d’addition vectorielle et de multiplication par un scalaire que V.

Si U est un espace vectoriel, alors il résulte de la définition 5.1.1 que 0 € U, que x+y € U
pour tous vecteurs x et y dans U, et que ax € U pour tout scalaire a et pour tout x € U.
Les trois conditions du théoréme 5.1.1 sont donc satisfaites.

Supposons maintenant que les trois conditions du théoréme 5.1.1 sont satisfaites, et
montrons que U est alors nécessairement un espace vectoriel. 11 suffit de prouver que les
huit propriétés de la définition 5.1.1 sont vérifiées :

> les propriétés 1, 2, 5, 6, 7 et 8 sont vérifiées dans V et donc aussi dans U.
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> par la propriété 1 du théoréme 5.1.1, on a 0 € U. De plus, pour tout x € U, on a
X + 0 = x dans V, et donc aussi dans U.

> pour tout x € U, son opposé dans V est donné par —x = (—1)x, et —x € U par la
propriété 3 du théoréme 5.1.1. De plus, x —x = 0 dans V, et donc aussi dans U.

O

L’exemple suivant illustre 'application du théoréme 5.1.1. Plusieurs exercices le font
aussi, comme les exercices 5.10 et 5.9.

Exemple 5.1.3

L’ensemble U = {(z,y) € R? : 2 +y = 0} C V = R? est un sous-espace vectoriel de
R2. En effet,

1. L’origine 0 = (0,0) € U car 0+ 0 = 0.

2. Six = (x1,22) € U ety = (y1,y2) € U, alors 1 + 2 = 0 et y1 +y2 = 0.
L’addition de x et y donne x +y = (z1,x2) + (y1,%2) = (1 + y1, 2 + y2) dont
la somme des composantes est 1 +y1 + 2+ y2 = 0. Ainsi x+y € U.

3. Six = (x1,22) € U (et donc 1 + x2 = 0) et si a € R, alors ax = (ax1, axs)
dont la somme des composantes est arq + axs = a(r1 + z2) = 0. Donc ax € U.

Toutes les conditions du théoréme 5.1.1 sont ainsi satisfaites et I’ensemble des vecteurs
de R? dont la somme des composantes est nulle forme bien un sous-espace vectoriel
de R2. Graphiquement, ce sous-espace est la droite d’équation y = —z.

Remarque

Quelques observations & propos du théoréme 5.1.1 :

> Tout espace vectoriel V' admet toujours deux sous-espaces vectoriels particuliers,
soit {0} (c’est-a-dire ’ensemble ne contenant que le vecteur nul) et V' lui-méme.
Ces sous-espaces vectoriels sont dits triviauz.

> Les conditions 2 et 3 du théoréme 5.1.1 peuvent étre remplacées par la seule
condition que pour toute paire (x,y) de U, et tous scalaires o et 3, on a

ax+ Py e U

qui est plus directe & vérifier.

> Les conditions 2 et 3 du théoréme 5.1.1 permettent également de réaliser qu'un
sous-espace vectoriel, tout comme un espace vectoriel, est un ensemble qui
contient toutes les combinaisons linéaires possibles de ses propres éléments. Cette
remarque permet d’exprimer le corollaire 5.1.1 sur 'opérateur Vect(-).
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> Le seul espace vectoriel qui ne contient pas une infinité de vecteurs est {0} *.

> Tout sous-espace vectoriel est un espace vectoriel, et tout espace vectoriel est
un sous-espace vectoriel (au moins de lui-méme). L’exemple 5.1.4 illustre cela.

> Lorsqu’on mentionne un sous-espace vectoriel, il faut aussi mentionner le “sur-
espace”’, c’est-d-dire ’espace vectoriel dans lequel est inclus le sous-espace vec-
toriel étudié. Dans l'exemple 5.1.3, le sur-espace est R2.

> Si on veut prouver qu’un ensemble est (ou n’est pas) un espace vectoriel, la
vérification prioritaire & faire est I’appartenance du vecteur nul & cet ensemble.

a. Pour les espaces vectoriels R et C.

Exemple 5.1.4

> R3, I'ensemble des vecteurs colonne de trois composantes, est un espace vectoriel,
d’oul son appellation familiére d’espace a trois dimensions, ou d’espace 38D. De
méme R? est un espace vectoriel (1'espace 2D). Cependant, R? n’est pas un
sous-espace vectoriel de R?, car R? n’est pas un sous-ensemble de R3. Ils sont en
fait fondamentalement différents car les vecteurs de R® ont trois composantes,
et ceux de R? ont deux composantes, et ces deux espaces ne partagent pas les
mémes additions vectorielles ni les mémes multiplications par un scalaire. Pour
résumer, R? n’est pas un sous-espace vectoriel de R3, mais est un sous-espace
vectoriel de lui-méme.

> Tout plan de R? qui contient O est un sous-espace vectoriel de R?, et donc un
espace vectoriel. Toute droite (passant par 0) d’un plan de R? est un sous-espace
vectoriel de ce plan, et aussi un sous-espace vectoriel de R3. Toute droite de R3
passant par 1’origine 0 est donc aussi un espace vectoriel.

> Ainsi, dans R3, les espaces vectoriels possibles sont :
e R3 lui-méme (un des deux sous-espaces vectoriels triviaux de R3);

e tous les plans de R? qui passent par I'origine 0 ;
toutes les droites de R? qui passent par I'origine 0 ;

{0}, I'autre sous-espace vectoriel trivial de R3.

Pour rappel, 'opérateur Vect(-) (voir définition 1.1.10) prend une famille de vecteurs
en entrée, et retourne ’ensemble de toutes les combinaisons linéaires de cette famille. Le
résultat suivant formalise la remarque qu’un sous-espace vectoriel est caractérisé par un
ensemble de combinaisons linéaires.
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Corollaire 5.1.1 (Vect(+) est un sous-espace vectoriel)

L’opérateur Vect(-) retourne un sous-espace vectoriel.

Preuve. Etant donnée une famille de vecteurs, 'opérateur Vect(-) retourne 'ensemble de
toutes les combinaisons linéaires de cette famille. Par conséquent, Vect(-) contient toutes les
combinaisons linéaires possibles de ses propres éléments, ce qui démontre, par la remarque
de la section 5.1.3, que Vect(-) est un espace vectoriel. O

Le corollaire 5.1.1 fournit un outil puissant pour prouver qu'un ensemble est un sous-
espace vectoriel, comme l'illustre 'exemple 5.1.5 (voir aussi l'exercice 5.5).

Exemple 5.1.5
Soit I'ensemble U = {(z,y) € R? : x+y = 0} C R? déja étudié a 'exemple 5.1.3. On a
vu que U est la droite de R? d’équation y = —x, dont un vecteur directeur est (1, —1).

Donc U = Vect((1,—1)), ce qui confirme que U est bien un sous-espace vectoriel de
R2.

La caractérisation des sous-espaces vectoriels peut étre utilisée pour démontrer la pro-
position 5.1.2 qui suit.

Proposition 5.1.2 (les polynomes forment un espace vectoriel)

Les ensembles de polynéomes P(R) et P(C) sont des espaces vectoriels.

Preuve. On a vu au point IV de 'exemple 5.1.1 que les fonctions réelles et complexes
forment des espaces vectoriels. P(R) est un sous-ensemble des fonctions réelles d’une va-
riable (n = 1) qui ne renvoient qu'un réel (m = 1) et P(C) est un sous-ensemble des
fonctions complexes d'une variable (n = 1) qui ne renvoient qu’un complexe (m = 1) (voir
la définition 4.2.1). Ils contiennent tous deux un élément nul (le polynéme nul) et toute
combinaison linéaire de polyndémes est un polynéme. O

Cette section consacrée aux sous-espaces vectoriels s’achéve par ’étude des intersections
et des unions de sous-espaces vectoriels.

Proposition 5.1.3 (intersection de sous-espaces vectoriels)

Si Uy et Us sont deux sous-espaces vectoriels d’un espace vectoriel V', alors leur inter-
section Uy N Us est également un sous-espace vectoriel de V.

Preuve. Pour montrer que U; N Us est un sous-espace vectoriel de V, il suffit de vérifier
que les trois conditions du théoréme 5.1.1 sont satisfaites :
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1 Le vecteur nul 0O appartient a Uy et a Us, et donc & leur intersection : 0 € Uy N Us;

2 si x et y sont dans Uy N Uy, alors x +y € U; (car x et y sont dans Uy, et x +y
également, par la propriété de I'addition vectorielle de la définition 5.1.1) et x+y € Us
(argument similaire). Donc x +y € Uy N Us;

3 pour tout scalaire a et tout x € Uy NUs, on a ax € U et ax € U, par les propriétés
de la multiplication par un scalaire de la définition 5.1.1. Donc ax € Uy N Us.

Les trois conditions étant satisfaites, U; N Us est bien un sous-espace vectoriel de V.
O

Remarque

L’union de deux sous-espaces vectoriels n’est en général pas un sous-espace vectoriel.
Par exemple, si U; et Uy sont deux droites distinctes de R? passant par l'origine, U
et Uy sont des sous-espaces vectoriels de R? mais pas leur union Uy U Us. En effet, il
est possible que la somme de deux vecteurs de 'union ne soit pas dans I'union, comme
I'illustre 'exemple 5.1.6. La propriété de fermeture de addition du théoréme 5.1.1 n’est
donc pas vérifiée.

Exemple 5.1.6

Soient Uy = {(x,y) € R? : 2 +y = 0} et Uy = {(z,y) € R? : & — y = 0}. Ces deux
ensembles sont des sous-espaces vectoriels de R? correspondant aux droites y = —x
et y = x. Leur intersection est réduite au vecteur nul : Uy N Uz = {0}. L'intersection
de ces deux sous-espaces vectoriels est donc également un sous-espace vectoriel, en
accord avec la proposition 5.1.3. En revanche, leur union U; U Us ne vérifie pas la
propriété de fermeture de 'addition du théoréme 5.1.1. Par exemple, (—2,2) € U; et
(1,1) € Uz, mais (—2,2) + (1,1) = (—1,3) ¢ Uy U Us. Ainsi, Uy U Uy n’est pas un
sous-espace vectoriel de R?. La figure 5.1 illustre ce propos.
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FIGURE 5.1 — Deux sous-espaces vectoriels (définis dans 'exemple 5.1.6) dont I'union n’est
pas un sous-espace vectoriel.
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5.2 DBases

Une base d’un espace vectoriel est une famille aussi petite que possible d’éléments qui
permet de définir sans équivoque tout vecteur de cet espace. Une telle base permet, entre
autres, d’effectuer des opérations liant des vecteurs de 'espace. Afin d’exprimer rigoureuse-
ment la notion de base d’un espace vectoriel, il est nécessaire tout d’abord d’introduire les
notions d’indépendance linéaire (section 5.2.1) et d’ensembles générateurs (section 5.2.2).

5.2.1 Indépendance linéaire

La notion de famille “aussi petite que possible” prend ses racines dans le concept d’in-
dépendance linéaire. Cette notion se décline en plusieurs définitions vues ci-dessous, qui
donnent une grande flexibilité selon le contexte d’utilisation.

Définition 5.2.1 (indépendance linéaire)

Les p vecteurs vi,va, ..., v, sont linéairement indépendants si la combinaison linéaire
a1vi+aova+- - -+ ay v, nest égale au vecteur nul que lorsque les poids g, ao, ..., ay
sont tous égaux a zéro (c’est la combinaison triviale).

Définition 5.2.2 (dépendance linéaire)

Les p vecteurs vi, va, ..., v, sont linéairement dépendants s’ils ne sont pas linéairement
indépendants. En d’autres termes, les p vecteurs sont linéairement dépendants s’il est
possible de les combiner pour obtenir le vecteur nul avec au moins un poids non nul
(on parle alors d’une combinaison non-triviale). Dans le cas p = 2, si les deux vecteurs
v1 et vo sont linéairement dépendants, on dira qu’ils sont colinéaires®. L’un est alors
le multiple de 'autre : vi = avy avec a un scalaire.

a. ceci est valide méme quand un des vecteurs, ou les deux, sont nuls.

Pour résumer, des vecteurs sont linéairement indépendants si seule leur combinaison
triviale donne le vecteur nul, alors qu’ils sont linéairement dépendants s’il existe une com-
binaison non-triviale qui donne le vecteur nul.

Si les p vecteurs sont placés dans un ensemble E = {vi,va,...,Vv,}, alors on pourra
directement qualifier E' d’ensemble indépendant ou d’ensemble dépendant. Si les vecteurs
sont placés dans la famille F' = (v, va,...,Vv,), on emploiera pour F' les termes de famille
libre et de famille liée. Ceci est formalisé dans les quatre définitions suivantes.
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Définition 5.2.3 (ensemble indépendant)

Un ensemble de vecteurs est indépendant si les vecteurs qui le composent sont linéai-
rement indépendants.

Définition 5.2.4 (ensemble dépendant)

Un ensemble de vecteurs est dépendant s’il n’est pas indépendant.

Définition 5.2.5 (famille libre)

Une famille de vecteurs est libre si les vecteurs qui la composent sont linéairement
indépendants.

Définition 5.2.6 (famille liée)

Une famille de vecteurs est liée si elle n’est pas libre.
Ces concepts sont illustrés a l'aide des deux exemples suivants.

Exemple 5.2.1

Considérons les trois vecteurs e; = (1,0,0), es = (0,1,0) et e3 = (0,0,1) dans R3.
Etudier I'indépendance linéaire de ces vecteurs revient & examiner les solutions de
I’équation aje; + ases + azes = 0 dont le développement donne

1 0 0 (03] 0 0 (6751 0
arertagsestazes = a1 |0 +as |1{+a3 |0 =0 |+]as|+]| 0| = |az| = |0
0 0 1 0 0 a3 a3 0

On a donc a1 = as = ag = 0 comme solution unique. L’indépendance linéaire de ces
trois vecteurs est ainsi établie.

Exemple 5.2.2

Soient les vecteurs vi = (1,1), vo = (0,2) et v3 = (1,3). Comme v3 = v + vo, et
donc vi + vo — vy = 0, on en déduit que vi, va, vy sont linéairement dépendants et
que (vi,ve,vs) est une famille lice.

Il convient de noter, pour conclure cette section, que les ensembles indépendants et les

familles libres ne peuvent pas contenir le vecteur nul, ce qui est formalisé par la proposi-
tion 5.2.1 suivante.
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Proposition 5.2.1 (le vecteur 0 rend tout ensemble dépendant et toute famille liée)

Un ensemble de vecteurs qui contient le vecteur nul est dépendant. De méme, une
famille de vecteurs qui contient le vecteur nul est liée.

Preuve. Soit E I'ensemble de vecteurs {0,v1,va,...,Vv,} contenant le vecteur nul, et

soit F' = (0,vy,va,...,Vp). On peut facilement combiner ces vecteurs pour obtenir 0 en
P

utilisant un poids ag non nul : ap0 + > Oviy = ap0 =10 . U
k=1

5.2.2 Ensembles générateurs

La deuxiéme notion nécessaire a la définition d’une base est celle d’ensemble générateur,
qui s’exprime aussi pour les familles. Elle permet de comprendre comment un ensemble fini
de vecteurs permet d’exprimer tous les vecteurs possibles d’un espace vectoriel.

Définition 5.2.7 (famille génératrice)

Une famille de vecteurs F' = (v1,Va,...,Vp) est une famille génératrice d'un espace
vectoriel V' si chaque vecteur x € V' peut s’exprimer comme une combinaison linéaire
de vecteurs de F. On dit alors que F' génére V, et V = Vect(F).

Définition 5.2.8 (ensemble générateur)

Un ensemble de vecteurs E = {vi,Va,...,v,} génére un espace vectoriel V' si chaque
vecteur x € V peut s’exprimer comme une combinaison linéaire de vecteurs de F.

On note a nouveau l'usage de l'opérateur Vect(-) de la définition définition 1.1.10 qui
prend une famille de vecteurs en entrée et qui renvoie un ensemble qui est toujours un
espace vectoriel.

On pourra dire que “des vecteurs générent un espace”, ce qui signifie que I'ensemble (ou
la famille) constitué de ces vecteurs génére 1’espace en question.

Exemple 5.2.3

La famille (v1,va,v3) C R? avec vi = e; = (1,0), vo = e = (0,1) et v3 = (1,1)
génére R?, ce qui s’écrit par I'équation Vect(vy,va,v3) = R2. En effet, pour tout
x = (z1,72) € R?, on a x = x1v] + 22va + Ov3.

La proposition 5.2.2 qui suit énonce le résultat évident que toute famille génératrice est
contenue dans 'espace qu’elle génére.
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Proposition 5.2.2 (les vecteurs d’une famille appartiennent a l’espace qu’elle génére)

Si la famille F' génére 'espace vectoriel V', alors F' C V.

Preuve. Soit F' une famille de vecteurs, soit V' = Vect(F'), et soit v un vecteur de F.
Etant donné que I’espace vectoriel V est ’ensemble de toutes les combinaisons linéaires des
vecteurs de F', y compris la combinaison 1v, on déduit que v € V. Comme ceci est vrai
pour tout v € F, il s’ensuit que FF C V. O

5.2.3 Bases

Les notions d’indépendance linéaire et d’ensembles générateurs ayant été introduites, il
est maintenant possible de définir ce qu’est une base d’un espace vectoriel.

Définition 5.2.9 (base d’un espace vectoriel)
Une famille B forme une base de 1'espace vectoriel V' si les deux conditions suivantes
sont satisfaites :

1. les vecteurs de B sont linéairement indépendants ;

2. les vecteurs de B générent V.

Une base B d’un espace vectoriel est donc une famille génératrice libre. L’exemple 5.2.4
illustre le fait que les bases ne sont pas uniques. Une autre fagon de faire ce constat est de
simplement remarquer que si (v) est une base d’un espace vectoriel V', alors (av) aussi,
pour tout o # 0. Cela signifie que si un espace vectoriel admet une base non vide (voir
proposition 5.2.3 pour l'autre cas), alors cet espace posséde une infinité de bases.

Exemple 5.2.4

La famille (v, v, v3) de 'exemple 5.2.3 n’est pas une base de R? car elle n’est pas
libre (car vz = vi + v3). On a constaté que chaque vecteur x = (x1,22) € R? peut
s’écrire comme X = x1V] + z2Vvy, donc Vect(vy, vy) = R2. De plus, comme v; = e
et vo = ey sont indépendants, (vi,vs) = (e1,e2) = £ est une base de R?, appelée
base canonique. La famille (vq,vs3) est une autre famille génératrice de R2. En effet,
chaque vecteur x = (z1,72) € R? peut s’écrire comme

1 1 Ty —To+x T
x = (21 — x2)v1 + x2vy = (T1 — T2) {O] + T2 [1] = [ ! 0+23:2 2] = [xj

De plus, (v1,v3) est une famille libre car les vecteurs v et v ne sont pas colinéaires.
On peut donc conclure que (v, v3) est une autre base de R2.
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Proposition 5.2.3 (base de {0})

L’espace vectoriel {0} posséde une unique base qui est () (¢’est-a-dire 'ensemble vide).

Preuve. Soit B une base de {0}. B est donc une famille génératrice de {0}, et selon la
proposition 5.2.2, B C {0} : les vecteurs de B ne peuvent étre que le vecteur nul. Or, B est
aussi une famille libre, et selon la proposition 5.2.1, aucune famille libre ne peut contenir
le vecteur nul. La seule option possible est donc d’avoir B = (). O

Le théoréme 5.2.1 qui suit est fondamental car il montre, en particulier, que chaque
vecteur d’un espace vectoriel peut s’écrire de facon unique dans une base donnée de cet
espace.

Théoréme 5.2.1

Soit B = (b1, bs, ..., b)), une famille de vecteurs de 'espace vectoriel V, et soit x € V/
un vecteur quelconque de V. La famille B est une base de V si et seulement s’il existe
une unique famille de scalaires [x]g = (a1, a2, ..., q;) telle que

P
X = E Oélbl
=1

La notation [x]g désigne les coordonnées uniques de x dans la base 5.

Preuve. On montre tout d’abord que si B est une base, alors [x]s est unique, quel que
soit x € V. On raisonne par contradiction. Supposons qu’il existe deux familles de scalaires
(o, aa,...,0p) et (B1, P2, ..., [Bp) distinctes telles que

p
X = Zaibi , (5.1a)
i=1

P
i=1
En soustrayant I’équation (5.1a) a (5.1b), on obtient
p
X—X:O:Z(ﬁi—ai)bi
i=1

avec au moins un coefficient (8; — a;) # 0 pour i € [1;p] car les deux familles de scalaires
sont distinctes. On a donc une combinaison linéaire non triviale des éléments de B qui donne
le vecteur nul. La famille B est donc liée, ce qui contredit le fait que B est une base.
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Réciproquement, supposons que pour tout vecteur x € V, il existe une unique famille
de scalaires (aq,ag,...,a,) CV telle que

p
=1

Pour montrer que B est une base, il est d’abord aisé de remarquer que B est une famille
génératrice de V' car tout x € V peut s’exprimer comme combinaison linéaire de vecteurs
de B. Il reste & montrer que B est libre. Pour cela, exploitons le fait que (5.2) est valide
pour tout x € V', incluant 0. La combinaison triviale est donc I'unique combinaison linéaire
des vecteurs de B donnant le vecteur nul, ce qui prouve que B est une famille libre en plus
d’étre génératrice de V. C’est donc une base de V. g

Remarque

Pour que le résultat énoncé dans le théoréme précédent soit valide, il est important de
conserver l'ordre des vecteurs by, bo, ..., b, dans B, ceci afin de s’assurer que chaque
a;, pour i € [1;p], corresponde au b; de méme indice dans la combinaison linéaire
qui donne x. Ceci justifie le fait que les bases sont des familles (avec ordre) et non des
ensembles (sans ordre).

Il est & noter que la section 5.2.5 porte sur les coordonnées de vecteurs dans plusieurs
bases, et indique comment exprimer un méme vecteur dans des bases différentes.

Proposition 5.2.4 (base canonique de R™)

La famille £ = (eq,e2,...,e,) (notée aussi &, en cas d’ambiguité), o e; est la j-iéme
colonne de I, pour j € [1;n], est une base de R™, appelée la base canonique de R™.

Preuve. Soit x un vecteur quelconque de R™. Selon le théoréme 5.2.1, £ est une base
de R™ s’il n’existe qu'une seule combinaison linéaire des vecteurs de £ qui donne x. Une
telle combinaison s’écrit z1e1 + z2€3 + ... + zp€, = X, avec (1,29, ...,x,) une famille de
scalaires, et elle correspond au systéeme d’équations linéaires

€1 T
T2 T2
I . | = =x
Tn Tn
qui fait apparaitre les coordonnées de x comme étant x1, xo, ..., x,. L’écriture unique de

x = (x1,x2,...,%,) est donc une preuve que £ est une base de R™. O
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Par défaut, la base canonique est celle utilisée pour les coordonnées d’un vecteur de R™ :

x = [X]e = (x1,22,...,T,) = T1€1 + T2€2 + ... + TpE, € R™ .

Remarque (base canonique de C")

La proposition 5.2.4 est tout aussi valable pour C™ en tant qu’espace vectoriel com-
plexe : la base canonique &, est une base de C". La preuve est identique.

L’exemple 5.2.5 suivant illustre cela.

Exemple 5.2.5

z=(1,i+2,—1—1) € C3 est la combinaison unique suivante des vecteurs de &3 :

1 0 0
z=zlg,=1le1+(i+2)ea+ (-1 —i)eg=1 (0| +(i+2) [1| +(—1—1) |0
0 0 1
1 0 0 1
=0+ |i+2|+| 0O |=]| i+2|=(1,i+2,-1-1).
0 0 -1-1i -1-1i

On termine cette section en définissant la base canonique des polynémes. Cette définition
est utilisée pour ’exercice 5.11.

Définition 5.2.10 (base canonique des polynomes)

La famille (1,z,22,...,2"), notée £ ou &, en cas d’ambiguité, est appelée la base
canonique de P,(R) ou P, (C).

Les bases orthogonales, particuliérement pratiques, seront introduites a la section 5.3.2.
5.2.4 Dimension d’un espace vectoriel

La dimension d’un espace vectoriel est une notion fondamentale de I’algébre. Ce concept
est simple et intuitif, mais il faut prendre garde au fait que le terme “dimension” appartient
au langage courant dans bien des contextes différents. Il faut donc I'utiliser adéquatement.
Par exemple, la notion de dimension est toujours associée & un espace vectoriel. Il ne faut
donc pas utiliser ce terme pour parler de la taille d’un vecteur ou d’une matrice.

La définition de la dimension est basée sur le résultat important du lemme 5.2.1 qui
indique que les familles libres d’un espace vectoriel ne contiennent jamais plus de vecteurs
que les familles génératrices de cet espace. Ce lemme est une version simplifiée du théoréme
de I’échange, aussi appelé lemme de Steinitz. La conséquence directe de ce résultat, exposée
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au corollaire 5.2.1, est que toutes les bases d’un espace vectoriel possédent exactement le
méme nombre de vecteurs, et ce nombre est la dimension de 1’espace.

Lemme 5.2.1 (lemme de [’échange)

Soit U C V une famille libre d’un espace vectoriel V', comportant m vecteurs, et soit
W C V une famille génératrice de n vecteurs de V. Alors

m<n.

La preuve du lemme 5.2.1 ci-dessous se fait par récurrence. Elle est d’un niveau avancé,
et exige que la section B.0 soit maitrisée.
Preuve du lemme de 1’échange. Soit U = (uj, uy,...,u,,) une famille libre de V' et
soit W = (w1, wa,...,W,) une famille génératrice de V. On établit par récurrence sur m
que m < n et que, aprés ré-ordonnancement éventuel des w;, pour j € [1;n], la famille
Vin = (u1,02, . ., Wiy Wit 1, Wing2, . . ., Wy ) génére V.

> Initialisation. Si m = 0, ’énoncé est immédiat car n > 0, Vo = W, et Vect(W) = V.

> Hypothése de récurrence. On suppose la propriété vraie pour m — 1 > 0, ce qui
implique m — 1 < n. Aussi, on réordonne les w;, pour j € [1;n], de sorte que

Vect(Vi—1) = Vect(ug,ug, ..., W1, Wi, Wit 1, ..., Wp) = V.

> On montre que la propriété est vraie pour m. On note tout d’abord que m < n.
En effet, si tel n’était pas le cas, on aurait m — 1 =n et V-1 = (ug,ug, ..., Wm-1),
ce qui impliquerait que u,, € V = Vect(V;,—1), et u,, serait donc une combinaison
linéaire des vecteurs ug, ug, ..., W,_1, ce qui est impossible car U est une famille libre.
Etant donné que u,, appartient a Vect(Vyn—1), il existe des scalaires g, ag, ..., an
tels que

m—1 n
u,, = E o;u; + E QjWj .
i=1 j=m

Au moins un des poids (6% our j > m, est non nul, sinon cette égalité contredirait
B ] ’
I'indépendance linéaire des ui, ug, ..., Uy, En réordonnant si nécessaire les w; our
) ) ’ m ]
j S [[m, Tl]] , On peut SUPPOSEr Oy, §é 0 et on obtient

1 m—1 n
Wi, = 70[ (um — E o;a; — E Oéjo) .
m i=1 j=m+1

Ainsi, wy, € Vect(ug,ug,..., U, Wint1, Wit2, ..., Wy,) = Vect(V;,). De plus, les
autres vecteurs ui, o, ..., Um—1, Wint1, Wm+2, - - -, Wp, de la famille V,,,_1 sont dans
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Vin C Vect(V,y,). Par conséquent, Vect(V,,—1) C Vect(V,,). Comme V,,_; génére V
(par hypothése de récurrence), on déduit que

V frg VeCt(mel) g VeCt(Vm) g V

et donc Vect(V,,) = V. La propriété est ainsi démontrée.
U

Il est désormais simple d’énoncer le corollaire 5.2.1 selon lequel toutes les bases d’un
espace vectoriel possédent le méme nombre de vecteurs.

Corollaire 5.2.1

Si B et C sont deux bases d’un méme espace vectoriel V', alors

B = IC| -

Preuve. Etant donné que B est une famille libre et que C est une famille génératrice de
V', on déduit du lemme 5.2.1 que |B| < |C|. De méme, comme C est libre et B génére V', on
déduit que |C| < |B|. Ainsi |B| = |C|. O

La définition de la dimension d’un espace vectoriel peut maintenant étre donnée.

Définition 5.2.11 (dimension d’un espace vectoriel)

La dimension d’'un espace vectoriel V' est notée dim(V') et correspond au nombre de
vecteurs de n’importe quelle base de V.

Illustrons cette définition sur le simple exemple suivant.

Exemple 5.2.6 (dimension d’un espace vectoriel)

Soit V' = Vect(vy,ve,v3) un espace vectoriel ot vi = (1,2,1), vo = (3,2,1) et
vy = (2,0,0). Pour déterminer la dimension de V, il suffit de donner une base de
cet espace. La famille (v, vy, v3) n’est pas libre puisque v3 = vy — vq. Donc V' =
Vect(vy, ve, v3) = Vect(vy, va), et comme (vq, vs) est une famille libre (car vy et v
ne sont pas colinéaires), on déduit que (v, vy) est une base de V. La dimension de V
est donc dim(V') = 2 (V est un plan de R3).

Remarque (dimension de {0})

On a vu a la proposition 5.2.3 que la seule base de ’espace vectoriel {0} est 'ensemble
vide dont la cardinalité est zéro. Ainsi {0} est de dimension 0 : dim({0}) = || = 0.
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Le concept de dimension permet, entre autres, de définir formellement certaines notions
intuitives. Par exemple :
> dim(R") = dim(C"™) = n car |&,| = n (voir proposition 5.2.4);
> I'espace 2D est R? et I'espace 3D est R3 (“D” est bien stir pour “dimension”) ;
D> tout sous-espace vectoriel de R™ de dimension 1 est une droite de R™ (passant par
Porigine) ;
D> tout sous-espace vectoriel de R™ de dimension 2 est un plan de R™ (passant par
lorigine) ;
> tout sous-espace vectoriel de R™ de dimension n — 1 est un hyperplan de R™;
> les hyperplans de R? sont donc des plans.
A des fins de simplicité, dans cet ouvrage, les droites, plans, et hyperplans, sont toujours
des espaces vectoriels, et contiennent donc toujours le vecteur nul.
Cette section se termine par une série de résultats intuitifs découlant directement du

concept de dimension. Tout d’abord, la proposition 5.2.5 prouve qu’un espace vectoriel de
dimension n ne peut pas contenir plus de n vecteurs linéairement indépendants.

Proposition 5.2.5

Si V est un espace vectoriel de dimension n, alors toute famille libre de V' contient au
plus n vecteurs.

Preuve. Soit F C V une famille libre de V. Selon le lemme 5.2.1, toute famille libre de
V' posséde moins de vecteurs que toute famille génératrice de V. Comme dim(V') = n, on
peut trouver des familles génératrices de n vecteurs. Ainsi |F| < dim(V) = n. O

Remarque

Il découle de la proposition 5.2.5 que l'espace 3D (c’est-a-dire R?) ne peut pas avoir
plus de trois vecteurs linéairement indépendants. De méme, dans ’espace 2D, qui est
R?, on ne peut avoir plus de deux vecteurs linéairement indépendants.

De fagon générale, la proposition 5.2.5 est trés utile pour, parfois, prouver simplement
qu’une famille de vecteurs est liée.

La proposition 5.2.6 stipule qu’il est impossible de générer un espace vectoriel de di-
mension n avec moins de n vecteurs.

Proposition 5.2.6

Si V est un espace vectoriel de dimension n, alors toute famille génératrice de V' doit
contenir au moins n vecteurs.
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Preuve. Soit F' C V une famille génératrice de V. Selon le lemme 5.2.1, toute famille libre
de V posséde moins de vecteurs que toute famille génératrice de V. Comme dim(V') = n,
on peut trouver des familles libres de n vecteurs. Ainsi |F| > dim(V) = n. O

Le résultat suivant est un corollaire direct du lemme 5.2.1. On ne le mentionne qu’ici
car il est trés utile pour prouver la proposition 5.2.7.

Corollaire 5.2.2 (de la base incompléte)

Si U = (ug,uy,...,u,) est une famille libre d’un espace vectoriel V' dont une base
est B = (b1, bsg,...,by,), alors il existe une sous-famille de vecteurs B C B telle que
|B| = |B| —|U| et BUU est une base de V' (c’est a dire qu’il est possible de compléter
la famille U avec la famille B pour obtenir une base de V).

Preuve. Poser B =V, \ U = (by+1,bm+2,...,by,) dans la preuve du lemme 5.2.1. 11
faut noter que dans la preuve, W = B est bien génératrice car c’est une base de V. ]

La proposition qui suit permet de prouver qu’une famille libre est une base, sans avoir a
montrer qu’elle est génératrice. Elle est utilisée, par exemple, pour répondre a l'exercice 5.13.

Proposition 5.2.7

Une famille libre de p vecteurs d’un espace vectoriel de dimension p est nécessairement
une base de cet espace.

Preuve. Puisqu’une famille libre de p vecteurs est déja de la méme taille que la dimension
de l'espace, elle est nécessairement une base. Si elle ne I’était pas, elle pourrait étre complétée
en une base, mais cela impliquerait d’ajouter des vecteurs, selon le corollaire 5.2.2; ce
qui n’est pas possible car on a déja atteint le nombre maximal de vecteurs linéairement
indépendants pour cet espace. [l

La proposition 5.2.8 suivante formalise le fait que si un sous-espace vectoriel est de
méme dimension que son sur-espace, alors il est nécessairement égal & son sur-espace.

Proposition 5.2.8

Si W est un sous-espace vectoriel d'un espace vectoriel V' et si dim(W) = dim(V),
alors W =V.

Preuve. Soit V un espace vectoriel et soit W C V un sous-espace vectoriel de V tel
que dim(W) = dim(V). Soit B une base quelconque de W. On a donc W = Vect(B).
Comme tous les vecteurs de B sont aussi dans V', B est une famille libre de V. Et selon la
proposition 5.2.7, ¢’est aussi une base de V', et V = Vect(5). Donc W = V. O
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La proposition 5.2.8 permet, par exemple, de déduire que si un sous-espace vectoriel de
R3 est de dimension trois, ce sous-espace est R? lui-méme.

5.2.5 Changements de base

Il a été établi au théoréme 5.2.1 que pour n’importe quel espace vectoriel V' et n’importe
quelle base B C V, il est possible d’exprimer chaque vecteur x € V' de fagon unique a 'aide
du vecteur [x]z dont les composantes sont les coordonnées de x dans la base B. Certaines
bases sont assurément plus pratiques que d’autres, et il convient donc de savoir exprimer
des vecteurs dans plusieurs bases différentes. Ainsi, si on considére une autre base C de V,
les coordonnées de x dans C seront différentes des coordonnées de x dans B : [x]p # [X]c.
Cette section introduit le concept de changement de base, pour des espaces vectoriels dans
R™ ou dans C". Ces changements de base permettent d’obtenir [x]z & partir de [x]c, et
inversement. Pour simplifier la présentation, le reste de cette section sur les changements
de base se concentre sur R", mais tous les résultats peuvent aussi s’appliquer & C", ainsi
qu’illustré dans l'exemple 5.2.9.

Etant donné un vecteur de R? dont on connait les composantes dans la base canonique
&, I'exemple suivant illustre comment exprimer ce vecteur dans une autre base B de R2.

Exemple 5.2.7 (ezprimer x dans une autre base que la base canonique)

Soit B = (by,bs) = ((1,1),(0,2)). Etant donné que b; et by ne sont pas colinéaires,
B est une famille libre de dimension 2, ce qui prouve que B est une base de R?.

Soit x = (5,6) € R? dont les composantes sont les coordonnées de x dans la base
canonique : x = [X]¢. On veut déterminer [x|p, c’est-a-dire les coordonnées de x dans
B, et pour cela, on doit trouver les scalaires o et g tels que

x = ajb; + azbs

ce qui s’écrit sous forme matricielle
[b1bo] [al] =X.
&%)

C’est un systéme d’équations linéaires, dont la résolution est le sujet du chapitre 8,
mais celui-ci peut déja étre résolu grace au théoréme 1.4.2, car la matrice B =

by bg] = E g] est inversible. Son inverse est facile a calculer (voir la proposi-

tion 8.5.1), ce qui donne
ar| -1, L[ 2 0][5] _[5
ol =2 s L[] -

1
X:5b1—|—§b2,

et donc
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c’est-a~dire [x]g = (5, 3).

La proposition qui suit indique comment généraliser I’exemple ci-dessus afin d’exprimer
les vecteurs d’un sous-espace vectoriel de R™ dans n’importe quelle base de ce sous-espace.

Proposition 5.2.9 (liens entre x et [x]p)

Soit x € V avec V un sous-espace vectoriel de dimension p de R™, dont une base est

B = (by,ba,...,by,). Ce vecteur x peut s’exprimer comme
x = B[x|p
avec B =[by by --- b,] € R"*P et [x]p € RP, les coordonnées de x dans B.

Si de plus p = n, alors B est une base de R" et

x]p =B ![x]e =B 'x e R" .

Preuve. Dans la base B, les coordonnées de x € V sont [x|g = (aq,a0,...,qp) et
on a x = aiby; + asbs + ... 4+ a,by, ce qui correspond au produit d’'une matrice par un
vecteur vu a la section 1.2.5, soit x = B[x|g. Si p = n, alors la proposition 5.2.7 nous
assure que B est une base de R"™, de plus B est carrée et ses colonnes sont linéairement
indépendantes (car B est une base). B est donc inversible selon le cas 6 du théoréme 1.4.1.
I1 découle du théoréme 1.4.2 qu’il existe une solution unique au systéme B[x|g = x donnée
par [x]g = B~ !x. De plus, en considérant la base canonique £ = (e1,es,...,€e,), on a
x = I[x]|s = [x]e. O

Considérons maintenant une base C, et supposons qu’on s’intéresse & obtenir les coor-
données d’un vecteur dans cette base, en connaissant ses coordonnées dans une autre base
B. Ce processus est illustré sur 'exemple 5.2.8, qui est la suite de 'exemple 5.2.7. Tout ceci
sera par la suite formalisé & I’aide du lemme 5.2.2 et du théoréme 5.2.2.

Exemple 5.2.8 (exprimer x dans deux bases autres que la base canonique)

Soient B = ((1,1),(0,2)) et x = (5,6) la base et le vecteur de R? de I'exemple 5.2.7.
Soit C = (c1,¢2) = ((—1,3),(1,12)) une autre base de R%. On veut exprimer x dans
la base C connaissant ses coordonnées dans la base B. Une option consiste & utiliser
la proposition 5.2.9 pour avoir

x]e = Cx (5.3)
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avec C = [c; cg], ce qui donne

o= L[F12 1][5] _ L[-54
“T15| 3 1)06] 15| 21
Pour exprimer [x]¢ en fonction de [x]g, il suffit d'injecter x = B[x|g dans (5.3) et on

obtient
[x]c = C'B[x]z

c’est-a-dire

e 2 0 Y- 051

La matrice qui permet de “passer” de [x|g & [x]¢ est notée P¢.p, et on a donc

_ —11 2
Pc%BzclB:fs[ A 2]

Avant de généraliser ’exemple 5.2.8 au théoréme 5.2.2, il convient de réaliser que les
bases en jeu dans cet exemple sont des bases de R?, ce qui signifie que les matrices étudiées
sont carrées. Dans le cas général, on s’intéresse a des bases de sous-espaces vectoriels de R”
de dimension p < n, comme par exemple & 'exercice 5.13.

Le lemme 5.2.2 suivant est utile pour prouver le théoréme 5.2.2. Il établit, d’une certaine
maniére, une propriété de “distributivité” des coordonnées d’une combinaison linéaire dans
une certaine base.

Lemme 5.2.2 (distributivité de [-]3)

Soient p vecteurs vi, va, ..., v, d'un espace vectoriel V' dont B est une base, et soient
p scalaires aq, ag, ..., ap. On a

[a1vi + ove + ...+ vyl = a1 [vi]g + e[ Vol + ... + op[VvplB -

La preuve du lemme 5.2.2 est technique et demande d’absolument maitriser l'usage de
lopérateur de somme Y, ainsi que les double sommes > > .

Preuve. On exprime tout d’abord vi, va, ..., v, dans la base B = (by,ba,...,by,) de
V,oun=dim(V) :

n
vi =vibi+ by + ...+ by = 4/b;
i=1
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n
vy =71b1 +93by + ... +9by = > 47b;
i=1

n
vy =b1+ by + ... +90b, =Y b,
=1

ol ’yg est un scalaire pour tout i € [1;n] et pour tout j € [1;p]. Considérons maintenant
le vecteur x = a1 vy + aava + ... + a,Vvy. Il peut s’écrire comme suit :

X =0 (Z’YllbfL) + a9 (Z’y?bl) + ... —|-Oép (Z’yfbl>
1=1 1=1 =1

j=1 i=1
P n
=>_ > ajb;
7j=1 =1
n p
]’Yz ?
i=1 j=1
n p
_ s J b:
= 35 i
i=1 \ j=1

On a ainsi réussi a exprimer x comme combinaison linéaire des vecteurs de B :

p o ‘ p 4
_ j J il _ | =
[x|p = g v, g oo T g a;v, | = =t
j=1 j=1 j=1 :

Il ne reste plus qu’a développer o [vi|g+ a2[va|g+ ...+ ap[vy]s et & vérifier qu’on obtient
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[x]p. C’est bien le cas, car

2 "
71 v2 AP a1y + o 4.+ ot % ;
0 V2 % a1y + o273 + .+ apYy 2. A
a1 . +O[2 . ++ap . = . = [|j=1 :[X]B
Tn T vl Loavn oavi 4.+ o p
2. ajvn
Lj=1 _
O
Il est désormais aisé d’introduire formellement la matrice de changement de base.
Théoréme 5.2.2 (matrice de changement de base)
Soit V' un sous-espace vectoriel de dimension p de R™, soit x € V et soient B =
(b1,bg,...,b,) et C = (c1,ca,...,cp) deux bases de V. Les coordonnées de x dans C
sont données par
[X]C = PC%B[X]B € RP
avec
Peep = [[bi]e [bolc- - - [bplc] € RP*P
qui est appelée la matrice de changement de base de B a C.
Si de plus p = n, alors Pe, s = C7'B,avec B=[b; by --- byJet C=[c; ¢ -+ ¢,]
dans R™*™,
Preuve. Soient aq,as, ..., ap les coordonnées de x dans la base B : [x]g = (o1, a2, ..., o).

La proposition 5.2.9 donne x = B[x]z. On a donc
[x]|c = [B[X]B]C = [B(al, s, ... ,ap)]c = [albl 4+ agsby + ...+ apbp]c
ce qui, d’aprés le lemme 5.2.2, donne

[xlc = ai[bi]e + aa[bale + ... + apbple = [[bile [bale - - [bplc] O? =Pcplx|s .

Qp

Si p = n, alors [x]¢c = C™'x (proposition 5.2.9) et comme x = B[x|s (par la méme
proposition 5.2.9), on a [x]¢c = C™'B[x]|s, et donc Pe, 5 = C'B. O

On peut constater que le théoréme 5.2.2 généralise la proposition 5.2.9, lorsque C = £. En
effet, on a alors [x]¢ = [x]¢ = x et Por g = Pecp = [[b1]e [ba]e -+ [byle] = [b1 b2 by =
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B, et donc x = B[x]|g. On montrera a la proposition 5.2.10 que la matrice de changement
de base est inversible et que son inverse est aussi une matrice de changement de base.

Remarque (calcul de la matrice de changement de base)

Pour calculer Pe g = [[bl]c [ba]c - [bp]c], il faut exprimer les vecteurs de B dans
la base C. On commence par [bi|¢ qui est la solution du systéme d’équations linéaires
C[bi]c = b;. On doit ensuite résoudre Clbz]¢c = by pour trouver [ba]c, et ainsi de
suite. Il faut donc résoudre p systémes. Dans cette situation, on peut résoudre tous
ces systémes en paralléle, en considérant la matrice augmentée

[CIB] = [erca -+ cp [ byby --by] ~ [] Pecg)

Les matrices augmentées sont formellement définies a la définition 8.1.6. Elles repré-
sentent des systémes dont la résolution est expliquée a la section 8.2. Un exemple est
donné a l'exercice 5.14.

L’exemple 5.2.9 suivant illustre le concept de changement de base pour des bases de
'espace vectoriel complexe C3.

Exemple 5.2.9 (changement de base dans un espace complexe)

Soient B et C deux bases de C? avec

i 0 0 i 0 0
B:(bl,bg,bg): —i y 1 y 0 et C:(Cl,CQ,Cg): 0 y —2 s 0
i 3 -2 0 0 3

Pour trouver la matrice de changement de base P¢. g, il faut exprimer les vecteurs
de la base B selon les vecteurs de la base C.

Pour cela, il faut résoudre le systéme [C | B] avec B = (b; by bs) et C = (¢1 c3 c3),
qui est évident & résoudre car C est diagonale. On obtient alors

1 0 0
Pep = [[bie [b2]e [bsle] = [i/2 —1/2 0
i/3 1 —2i/3

Pour avoir P, ¢, il suffit d’exprimer les vecteurs de C selon la base B ou de prendre
I'inverse de P¢._ 5. La premiére option est la plus simple car B est triangulaire, mais
dans les deux cas, on obtient

1 0 0

Pscc=[[c1i]s [cals [eslgl = Pyls= |1 —2 0
2 3 3i/2
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Les résultats qui suivent sont des extensions pratiques du théoréme 5.2.2. La proposi-
tion 5.2.10 caractérise 'inverse des matrices de changement de base, et la proposition 5.2.11
permet de considérer les changements de base avec trois bases.

Proposition 5.2.10 (inverse d’une matrice de changement de base)

Si B et C dont deux bases d’'un méme espace vectoriel V' de dimension p. Alors la
matrice p X p de changement de base de B & C est inversible et son inverse est la
matrice de changement de base de C & B :

—1
Pe g =Psec .

Preuve. Soit x € V. Tel qu'établi dans le théoréme 5.2.2, on a [x]¢ = P¢g[x]s ainsi
que [x]g = Pp.c[x]c. On a donc les deux égalités suivantes :

x]c = PcePpeclxlc (5.4)

(x]s = PpecPceslx|B . (5.5)

Ces deux égalités (5.4) et (5.5) sont vraies pour tout x € V et en particulier pour b; et ¢; qui
sont tels que [c;]¢ = [b;]s = €; pour tout ¢ € [1;p]. Ainsi, Per gPpec = PpecPecn =1,
ce qui, selon le cas 1 du théoréme 1.4.1, montre que P¢. 5 est inversible et que son inverse
est Ppc. |

Proposition 5.2.11 (composition de matrices de changement de base)

Si B, C et D sont trois bases d’un espace vectoriel V', alors Pp. 3 = Pp.cPcei.

Preuve. Soit x un vecteur quelconque de V, Il résulte du théoréme 5.2.2 qu’on peut ob-
tenir [X]D a l'aide de [X]B . [X]D = PD(—B[X]B~ Aussi, [X]D = PD<—C [X]C = PD<—CPC<—B[X]B-
On a donc Pp.pg =Pp.cPccpi. O

Un cas particulier intéressant de la proposition 5.2.11 est d’utiliser la base euclidienne
de la sorte :
Pccp=PceePeen
=P Pecs

et si p = n, on retombe sur
Peop= C'B.
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Résumé des formules de changements de base

Pour conclure cette section, on donne ci-dessous un résumé des différentes formules de
changement de base, pour le cas p = n.

> BZ(bl,bg,...,bn) C=(Cl,C2,...,Cn) S=(e1,e2,...,en)

> B=Pg<_3=[b1 by ... bn]

C=Pe.c=lcica ... ¢
> x = B[x|g = C[x]¢

> [x]c = Peeslx]s

x]s = Pclxlc = Pzl s[xlc

> Pc<_3 = [[bl]C [bg]c [bn]c] = C_lB

Ps.c = [[ci]s [cals - [enls] = B'C =P, 4
> [C B} = [cl Co ... Cabi by ... bn} ~ [IP&_B}

[B c} _ [b1 by ... by ciCy ... cn} ~ [IP&_C}
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Solutions des exercices

Notations : Section ix.

Matrices et vecteurs : Section 1.8.
Elimination : Section 2.8.
Complexes : Section 3.8.

Fonctions : Section 4.9.

Espaces vectoriels : Section 5.7.
Espaces fondamentaux : Section 6.7.
Valeurs propres : Section 7.4.

Systémes : Section 8.10.

© o N o oW DO

Projections et moindres carrés : Section 9.4.

—
e

Orthogonalisation : Section 10.5.

—_
—_

. Diagonalisation : Section 11.4.

—_
[\]

. Signe des matrices : Section 12.8.

—_
w

. Décomposition en valeurs singuliéres (SVD) : Section 13.8.
Série d’exercices 0: Notations

Solution 0.1: (énoncé)
Les expressions valides sont :



426 ANNEXE A. SOLUTIONS DES EXERCICES

1 x€eA; 7 {x,y} C A; 18 x=[12]T;

2 x€F; 8 x € R?; 1
4. B ) 19 x =

5 {x,y} = A4; 13 x=(1,2); [2]

Solution 0.2: (énoncé)

1. > (5,2,5) est une famille et cette écriture est déja correcte. Attention, ce n’est pas
la méme famille que (2,5,5) ni (2,5) car avec les familles, 'ordre des éléments
et les répétitions sont pris en compte;

> {e2,e1,e3} est un ensemble. Cette écriture est correcte mais il est plus intuitif
d’écrire {eq, ez, e3} méme si 'ordre des vecteurs n’est pas pris en compte ;

> {p,p+1,...,n} = [p;n] est un ensemble.
2. {-3,-2,...,4} = [-3:4].

3. & est une famille.
Solution 0.3: (énoncé)

1. A est un ensemble et B une famille.
2. On a

(a) AUB=1{1,3,4,5};

(b) AnB={1,3};

(c) B\ A={4};
(d) A\ B ={5}.

Ces opérations mélangent des ensembles et des familles, et par convention, on consi-
dére que les résultats sont des ensembles.

Solution 0.4: (énoncé)
Comme 'opérateur Vect(-) prend une famille en entrée et retourne un ensemble, seules les
formulations suivantes sont valides :

2 Vect(F') = A (famille en entrée, ensemble en sortie) ;

6 Vect(x,y) C A (un ensemble sous-ensemble d’'un autre) ;
7 Vect(x,y) = A (deux ensembles égaux) ;
9 Vect((x,y)) = A (idem).
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Solution 0.5: (énoncé)

2 € B;

{2} c 4;
Aucun lien ;
{1,6} C 4;
Aucun lien ;
B CA.

A N

Solution 0.6: (énonceé)

2e@G;

(2) C F;

Aucun lien ;

GCF;

Aucun lien (lordre différe).
Fc(1,2,2,4,6).

A

Solution 0.7: (énoncé)

us € G;
—1€uy;
(ug) C F;
Aucun lien;
G C F;

Aucun lien (Pordre différe) ;

NS e W

F C (ug,uz,uz, u3).
Série d’exercices 1: Matrices et vecteurs
Solution 1.1: (énoncé)

1. Faux. Le produit AB n’est pas défini;
2. Vrai. tr(B"'AB) = tr(ABB™!) = tr(AI) = tr(A);
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. : 1 . . . .
3. Faux. Un contre-exemple simple est la matrice [8 O] qui est triangulaire mais pas

inversible ;

4. Vrai. Avec C = (AB)~!, BC est l'inverse de A et CA celle de B. On peut aussi le
montrer avec le déterminant ;

0
5. Faux. Un contre-exemple est A = 1| et b = (1,1,1); Le systétme Ax = b
1

T O O =

posséde I'unique solution x = (1,1) et
carrée) ;

ourtant A n’est pas inversible (elle n’est pas

6. Faux. Pour construire un contre-exemple simple, on peut voir qu'un seul nombre
définit un bloc de taille 1 x 1. Si a # 0, la matrice [a] est inversible : son inverse est

o . . 11
donnée par [a] ™! = [a~!] = [1/a]. On peut ainsi considérer la matrice [1 1] dont les
quatre blocs [1] sont inversibles, mais qui n’est pas inversible. Remarquer que 1’énoncé

. S . . 1 1 .
est également faux en supposant la matrice entiére inversible : considérer [ 1 1] qui

est inversible mais son inverse n’est pas obtenue en inversant les blocs;

7. Vrai. Les opérations élémentaires sur les lignes d’une matrice A € R™ "™ affectent
son déterminant de maniére bien définie :

> Multiplier une ligne par un scalaire non nul a € R* multiplie le déterminant par
as
> Permuter deux lignes multiplie le déterminant par —1;

> Ajouter un multiple d’une ligne a une autre laisse le déterminant inchangé.
Appliquer successivement les opérations suivantes & la matrice A :

(a) La deuxiéme ligne est multipliée par « : le déterminant devient ovdet(A);

(b) La premiére et la deuxiéme ligne sont permutées : le déterminant devient —« det(A) ;

(c) Trois fois la troisiéme ligne sont ajoutées a la premicre : le déterminant reste
—adet(A).

La matrice A’ issue de ces trois transformations vérifie donc det(A’) = —adet(A).
[’égalité mentionnée dans I’énoncé est correcte, ce qui rend 'affirmation vraie.

Solution 1.2: (énoncé)
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2. D’aprés ce qu’on vient d’écrire, on peut déduire que c est égal a la somme des colonnes

1 2 3
de A:c=|2| 4+ 3|+ |3];
1 4 1

3. D’aprés I’énoncé, b est une combinaison linéaire des colonnes de A, qui s’exprime
comme 4b = A(—1,1,1). On adonc b = 2A(—1,1,1) et x = $(—1,1,1).

Solution 1.3: (énoncé)

—1 1 2
0 1 -3
Ax =z 1| T2 o T2 4
7 3 -1
Solution 1.4: (énoncé)
71
21 -1 6 e
A_[l 10 —4]’ 7
Tq

Solution 1.5: (énonceé)

L Jlall =2, [bll =3v2 et [c] =2
2. (a,b) = 2x340%3 = 2x3v/2xcos(F) = 6 (a,c) = —V/3*2+1x0 = 2x2xcos(5T) = —2V/3

3. (b,c) = 333 (a ¢) + 3 (c,c) = —(3V3+3)V3+3%2 = —3+ 33,

Solution 1.6: (énoncé)

1. HXﬂ;YHZ = (xty.x+y) = xl” + Iyl + 2 (x.y) Ix=y|* = (x—y,x—y) =
%[+ Iyl =2 (x,y)
2. On reprend la premiére expression mais ici, on sait (x,y) = 0.

Solution 1.7: (énoncé)

I. x+y=(1+a)x,donc [x+y| =1+« ||x|| = (1 + ) ||x] (puisque 1+ « > 0). De
plus, [|y[| = |af [Ix[| = a x| Ainsi, [x +y|| = (1+a) [[x]| = [[x[[+a x| = [x]+]y] -

2. Siy =ax avec —1 < a < 0. Ici, |ly]| = |o| ||| = —a||x]| et 1 +a > 0. [[x+y]|| =
(1+a) x| = lIxll + e [lx[| = [Ix[| = [ly]l -
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(x,y)
x|

3. On pose a = .Alors, (y —ax,y — ax) = (y,y —ax)—a (x,y —ax) = (y,y)—

aly,x) —axy)+a?(x,x) = |ly|* - <m>22 = 0 par définition de « et hypothese de

I’énoncé. De fait, le seul vecteur de norme 0 est le vecteur nul donc : y = ax.
4. On développe I'équation au carré des deux cdté pour retrouver I'égalité.

5. On a égalité si et seulement si il existe o > 0 tel que y = ax. (Les cas triviaux x = 0
ouy = 0 sont inclus.)

Solution 1.8: (énoncé)
On commence par remarquer u et v ne sont pas colinéaires, donc Vect(u, v) est bien un
plan de R3. Puis, si x = (z,y, z) € Vect(u, v), alors

1 0 o x
x=au+pv=a|2|+8|1| = |2a+8]| = |y
3 1 3a+ z

avec « et § deux réels.
> Méthode 1: 2 =3a+ 8 =a+2a+ 8 =x+ y est 'équation du plan.

> Méthode 2 : uAv = (—1,—1,1) est orthogonal au plan, donc son équation est donnée
par —x —y + 2z =0, soit z =z + y.

Solution 1.9: (énonceé)

1. Ax:
A € R**2 x € R?, donc le produit est bien défini (multiplication d’une matrice 3 x 2
par un vecteur colonne de taille 2).
Résultat : vecteur colonne dans R3.

2. BA:
B c R?** et A € R3*2,
Ici, les dimensions internes ne coincident pas : 4 # 3.
BA n’est pas définie, car le nombre de colonnes de B ne correspond pas au nombre

de lignes de A.

3. A+y:
A cR3*2 y e R3.
Irréalisable : A est une matrice 3 x 2, y un vecteur colonne de taille 3.
Il n’est pas possible de les additionner.
A + y n’est pas définie.
4. ATy :
AcR>*2 = AT e R?3, y ¢ R3.
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Le produit ATy est bien défini : 2 x 3 par 3 x 1.
Résultat : vecteur colonne de taille 2, donc dans R2.

5. x A :
x € R2 = xT e RI*2, A € R3*2,
Ici, les tailles ne sont pas compatibles pour un produit direct (on a 1 x 2 et 3 x 2), il
faudrait que le nombre de colonnes de x' (2) corresponde au nombre de lignes de A
(3)-

Ainsi x" A n’est pas définie.

Solution 1.10: (énoncé)

25 9
Lano 5]

10 -6 -2
2.BA=|9 3 8

6 18 24

Solution 1.11: (énoncé)

1. La matrice A est de taille 3 x 3 et BT est de taille 2 x 3. Ces matrices n’ont pas les
mémes tailles. L’opération A + BT n’est donc pas définie.

2. Le produit CB est défini puisque C est 2 x 3 et B est 3 x 2. Le résultat est une
matrice 2 x 2. Ainsi, (CB) " est de taille 2 x 2. La matrice A est de taille 3 x 3, donc
'addition (CB)" 4+ A n’est pas définie car les tailles ne sont pas compatibles.

3. Le produit Au est défini : A est 3 x 3 et u est 3 x 1. Le résultat est un vecteur colonne
3 x 1. Le produit Bv est aussi défini : B est 3 x 2 et v est 2 x 1, donc le produit
donne un vecteur colonne 3 x 1. L’addition Au + Bv est donc bien définie et donne
un vecteur 3 x 1 :

1 2 —1 2] 1-2+42-(=1)+(-1)-3 2—-2-3 -3
Au=| 0 3 2| |-1| = 0-2+3-(-1)+2-3| = -3+6|=1| 3
-1 1 4 3] ~1-241-(-1)+4-3 —2-1+12 9
2 0] ) 2-1+0-4] [ 2 2
Bv=|-1 3 M— 11434l =|-14+12| =] 11
1 —2] 1-1+4(-2)-4] | 1-38 -7
-3 2] [—1
Au+Bv=| 3|+ |11]| =] 14
9 ~7 2
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4. Le produit Au donne un vecteur 3 x 1 comme vu ci-dessus. La matrice C est de taille
2 x 3, donc C(Au) est défini et donne un vecteur 2 x 1. Ensuite, 2v est également un
vecteur 2 x 1. L’opération C(Au) — 2v est donc bien définie :

-3 5 |3 <[ S - -

S ST b

5. La somme A + AT est définie car A est carrée (3 x 3). Le résultat est une matrice
symétrique 3 x 3. Le produit (A + AT)u est donc bien défini et donne un vecteur

I3 x1:
12 -1 1 0 — 2 2 —2
A+AT=] 03 2/+| 23 1|l=| 26 3
-1 1 4 ~1 2 -2 3 8
2 2 -2 2 2.242.(=1)+(-2)-3 4-2-6 —4
(A+AThu=| 2 6 3| |-1| = 2:-246-(~1)+3-3| =| 4-6+9|=| 7
-2 3 8 3 —2.24+3-(-1)+8-3 —4-3+24 17

Solution 1.12: (énoncé)

L AB — [— c.os(a) cos(b) — sin(a) sin(b) — cos(a)sin(b) — sin(a) Cos(b)]

_ [— cos(a —b) —sin(a + b)
—sin(a) cos(b) + cos(a) sin(b) —sin(a) sin(b) + cos(a) cos(b)

sin(b—a)  cos(a+b)

sin(2a cos(2a)
3. Par récurrence : A" = C?s(na) — sin(na)
sin(na) cos(na)

Solution 1.13: (énoncé)

. . . a b
On cherche une matrice de cette forme pour que le produit existe : B = ]

al
latc b+d|  |a+b a+b ] _ _
Onveut.[a+c b+d]_{c+d C+d].Onveutdonc.a+b—a+c,a+b—b+d,

c+d=a+c, b+d=c+d. Cesont donc des matrices de la forme : [(Z b} )
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Solution 1.14: (énoncé)
aji+1=1pourt=1,...,n—1et a;; = 0 ailleurs.
Pour k = 2, Donc pour A2 si n > 2, les seuls coefficients a; ; non nuls sont ceux tels que
i—j=2etsin=2 A?2=0.
Pour k = 3, Donc pour A® si n > 3, les seuls coefficients a;; non nuls sont ceux tels que
i—j=3etsin=3, A% =0.
etc.

Solution 1.15: (énoncé)

1. Fe ]R'r’x(n—'r)7 Ce ]R(m—'r)xr7 De R(m—r)x(n—'r), et B € ]R(n—r)x(n—'r).

—AF +FB
-CF +DB

3. On donne d’abord A =1,, B=1,,_,, C=Oy,—, et D = Oy, 5,, puis

2. RN = [ ] € Rmx(n=r)

= Ompn—r -

RN — |: _IT‘F + FIn—r :| _ |: _Or,n—r :|

_Omfr,rF + Omfr,nfr Infr

Omfr,nfr

Solution 1.16: (énoncé)

1. det(A)=—-2-3-6-3=—24

2. det(B) =—1-(4-3—5-1) = —7 en additionnant les lignes 1 et 3 et en développant
par rapport a la premiére colonne.

3. det(C) = 0. La deuxiéme et la troisiéme lignes de C sont égales donc la matrice n’est
pas inversible donc le déterminant est nul.
4. det(C) = 1det(D) = (=1)'"24(1-1—1-1)+(-1)>*22(1-1-2-1) = —2 en développant
2
par rapport a la troisiéme colonne avec D = 1|, en développant ensuite par
1

= =
SN

la deuxiéme colonne de D.

Solution 1.17: (énoncé)

1. C’est la décomposition LU de A vue au chapitre chapitre 6

2. Comme L et U sont triangulaires leur déterminants sont simples & calculer det(A) =

det(L)det(U) =1-(=1)-3-5-2 = —30

3. La premiére colonne de A est multipliée par 2 et la troisiéme par -1 pour obtenir B
donc det(B) =2 (—1) - det(A) = 60
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Solution 1.18: (énoncé)

1. On applique le développement par les cofacteurs sur la premiére ligne de A =

N DN =
- e w

det(A)=—1-(4-1—1-7)=3-(2-1-1-2)4+1-(2-7—4-2)
=—1(-3)—3(0)+1(14—8)=3+6=9

2. A est inversible car son déterminant est non nul, de plus A" l'est aussi car son
déterminant est égal a celui de A, enfin AT A est inversible comme produit de matrices
inversibles. On a :

1 1 1

" det(ATA)  det(A)2 81

det((ATA)™Y

Solution 1.19: (énoncé)

1. On développe A, ;2 d’abord par la premiére ligne, cela donne le facteur 4 det(A,+1)
puis pour obtenir le deuxiéme il faut développer la matrice résultante par la premiére
colonne.

2. Par récurrence : det(A,) = (n+ 1)2"

Solution 1.20: (énoncé)
Attention! Il est impossible d’appliquer la formule du déterminant d’une matrice 2 x 2 sur
des matrices construites par blocs. Généralement, on aura :
A B
C D # det(A) det(D) — det(C) det(B).

1. L’objectif est de se ramener & une forme sur laquelle on peut s’imaginer appliquer un
développement selon une ligne/colonne. Observer d’abord que

A O][1, O
Ml_[o Im] [o C]'

Traiter d’abord la premiére matrice : un développement récursif selon la derniére ligne

—_ = =
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donne
A O] 1. A 0]

A O
[y O]

=1-1-...-1-det(A)
—

= det(A).

La méme logique (selon la premiére ligne cette fois) donne :

I, O] _, [ O
o c|~ o C

n fois
= det(C).
Finalement,
A O I, O]
det(M;) = [O Im:| . [O C] = det(A) - det(C).

2. En observant que
—1
M — [A O] [In A B},

O C||O I,

on peut écrire :

v [3 9] [5 2]

et ceci vaut bien det(A) - det(C) par la question précédente.

Solution 1.21: (énoncé)

1 2 0

1. La matrice A = [3 0 —1

] € R?*3 n’est pas carrée, donc elle n’est pas inversible.
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13
+ 12 o0 5 3
AA_{30—1(2)_(1)_310

Cette matrice est inversible car son déterminant est non nul :

det(AAT)=5-10-3-3=50—-9=41#0

10 2 -3
3. ATA = 2 4 0| n’est pas inversible car son déterminant est nul.
-3 0 1

(ATA)T=AT(A)T=ATA

Solution 1.22: (énoncé)
Note : quand les notes seront écrites sur la caractérisation des matrices inversibles, il serait
bon de revoir cette correction pour mentionner les numéros des propriétés donnés dans les
notes de cours. Il faut d’abord noter que Iy est carrée, premiére étape obligatoire pour
qu’elle puisse étre inversible.

1. I peut étre réduite en elle-méme par une élimination de Gauss, qui n’effectue aucune
étape. Elle est donc inversible. : ce n’est pas dans la caractérisation
2. Chacun des coefficients non nuls de Is est un pivot. Il y en a évidemment 2, soit un
pivot par colonne. Iy est donc inversible. (point 7)
3. En cherchant a résoudre Inx = 0, on peut :
(a) Remarquer que Iox = x, d’ott Isx = 0 < x = 0 et donc Ker(Iz) = {0}
(b) Observer que la matrice augmentée du systéme est déja sous forme échelonnée :

1 00
010
et donc, la seule solution & Isx = 0 est x = 0, d’ou Ker(A) = {0}.

Donc I est inversible. (point 9)

4. Les colonnes de I sont les vecteurs (1,0) et (0, 1), qui sont évidemment linéairement
indépendantes. (point 6)

5. Si b € R?, I'équation Iox = b se réduit en x = b, elle admet donc la solution x = b.
Puisque cette équation admet au moins une solution pour tout b € R? (et que I est
carrée), I est inversible. (point 12)

6. Il est mentionné plus haut que les colonnes de Iy sont linéairement indépendantes.
Elles constituent donc une famille de deux vecteurs linéairement indépendants dans
R2. Elles engendrent donc R?, ainsi Iy est inversible. (point 10)
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7. det(Iz) = 1 car c’est une matrice diagonale avec des 1 sur la diagonale, donc Iy est
inversible. (point 4)

8. En posant C = I, on constate que IsC = CIy = I, donc Is est inversible, et elle est
sa propre inverse. (point 1)

Solution 1.23: (énoncé)
Note : quand les notes seront écrites sur la caractérisation des matrices inversibles, il serait
bon de revoir cette correction pour mentionner les numéros des propriétés donnés dans les
notes de cours. Il faut d’abord noter que A est carrée, ce qui oblige & justifier qu’elle n’est
pas inversible d’une autre fagon.

1. En appliquant I’élimination de Gauss sur A, on obtient la forme échelonnée

11
0 0|
A ne peut donc pas étre réduite a I, elle n’est pas inversible. idem : pas vu dans le
caractérisation
2. La forme échelonnée ci-dessus montre bien que A n’admet qu’'une seule position de

pivot. Puisqu’elle a deux colonnes, elle n’est pas inversible. (point 7)

3. En cherchant a résoudre Ax = 0, on obtient la matrice augmentée suivante sous
forme échelonnée :
110
0 0 0

Le systéme est donc réalisable, et admet une infinité de solutions, dont par exemple
(1,—-1). Puisque Ker(A) # {0}, A n’est pas inversible. (point 9)

4. Les deux colonnes de A sont identiques, donc elles sont évidemment linéairement
dépendantes. A n’est donc pas inversible. (point 6)

5. Avec b = (1,0), le systéme Ax = b se réduit en la matrice augmentée suivante :
11 1
0 0 —1|°
Ce systéme est donc irréalisable. Puisqu’il existe un b € R? tel que Ax = b n’admette

aucune solution, A n’est pas inversible. (point 12)

6. Les colonnes de A sont linéairement dépendantes. Deux vecteurs linéairement dépen-
dants ne peuvent pas engendrer R?, donc les colonnes de A n’engendrent pas R?. A
n’est donc pas inversible. (point 10)

o[ 3
Cy C4

7. Supposons qu’il existe une matrice
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telle que AC = I,. En appliquant la régle ligne-colonne, cette égalité se réécrit sous

la forme :
c1+c3=1
c1+c3=0
co+cy=1 ’
co+c4 =0

qui est évidemment irréalisable. Puisqu’une telle matrice C n’existe pas, A n’est pas
inversible. (point 2)

8. det(A) =1x1—1x1=0donc A n’est pas inversible. (point 4)

Solution 1.24: (énoncé)

1. On calcule le déterminant de A en développant selon la deuxiéme ligne :

2 -1

det(A) = k det [2 k] — 2 det [1 4

. ]:k(IO—k)—2(8+1):—k:2+10k:—18.

Les racines de ce polynéme sont &k =5 — V7ietk=5++7.
Conclusion : A n’est pas inversible si et seulement si k € {5 — VT , D+ N }.

Solution 1.25: (énoncé)
On prend le terme de droite et on le multiplie & droite par (F~' +uu'). On obtient :

Fuu'F Fuu'F Fuu'F
< 1—|—uTFu>( +uu) T T TR T +uFa
Fuu' Fuu'F
=1+ Fuu' — — T
TR T T T e Tt u Fa
1 u' Fu
—I+Fuu' - Fu———u' ~Fu————u'
o I +u Fa" I +u Fa"
=1

On a trouvé une matrice telle que le produit des deux est la matrice identité donc elles sont
bien inverses I'un de 'autre.

Solution 1.26: (énoncé)
Soit A une matrice carrée telle qu’il existe n tel que A™ = 0 avec A non nulle.

0 1
A
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2. On a det(A"™) = 0, c’est-a-dire : det(A)” = 0 donc det(A) = 0. Alors A n’est pas
inversible.

3. iy (AT — AT = ST (AN — ST (ATTY) = SR (AT) = Y (AT =T A"
4. I-A)I+A+A2+ . +A" ) =1

Solution 1.27: (énoncé)

D I
égaux & I, donc det(A) = det(I)det(I) = 1.

IR AT

3. Puisque AB=1,0ona A~ =B.

4.
I O][I D I D
ACZ{D I] [0 I}:[D D2+I]

Solution 1.28: (énoncé)

. 0) . o .
1. La matrice A = ] est triangulaire inférieure. Tous les blocs diagonaux sont

1. Son déterminant est égal & 1 donc elle est inversible.

2. Montrons que (A —I3)(A 4 I3) = 03.

0 12 —6][2 12 —6 000
(A-T)(A+Is)=[0 0 o|]o 2 o|l=[00 0
0 4 —2/|o0 4 o0 000

3. Soit B € R™™" telle que (B+1,)(B—1,) = O,,.
B+I1,)(B-1,)=B*-1,=0, = B?=1I,

Donc B~! = B, c’est-a-dire que B est inversible et que son inverse est elle-méme.

Solution 1.29: (énoncé)
Soit A € R™*"™, Lors de la transposition, les termes de la diagonale restent les mémes. Pour
avoir AT = — A, sur la diagonale, on doit avoir A(i,i) = —A(i,4) pour tout i € [1;n] en
regardant les deux cotés de ’équation. Ce qui veut dire que 2A(,i) = 0 pour tout i € [1;n].
en ajoutant A(,7) de chaque coté de I'équation. Et donc, A(7,7) = 0 pour tout i € [1;n].
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Solution 1.30: (énoncé)

Non, ce n’est vrai que si A et B sont inversibles. Par exemple, si A = O = [8 8],

B = B :ﬂ, et x =(1,1), alors Ax = Bx =0 = (0,0) et A et B sont différentes (et non

inversibles).

Solution 1.31: (énoncé)

L [|A]l, = Vtr(ATA) = V18 = 3v2 et | B||, = /tr(BTB) = /10
2. (A,B) =tr(ATB) = 9 et on a bien 9 < 3v/2/10 = 12V/5
3. Cauchy-Schwarz.

4. Méme démonstration que le théoréme 1.1.1 mais avec la norme matricielle (défini-
tion 1.2.18) et en utilisant le fait que les matrices sont symétriques.

Série d’exercices 2: Elimination

Solution 2.1: (énoncé)
TODO.

Solution 2.2: (énoncé)
TODO.

Solution 2.3: (énoncé)
TODO.

Solution 2.4: (énoncé)
TODO.

Solution 2.5: (énonceé)
TODO.

Solution 2.6: (énonceé)
Pour chacun des exemples suivant, on s’autorise a faire plusieurs opérations d’élimination
a la fois. Les pivots sont encadrés.
Pour M; :
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