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Sauf indication contraire, ce document est mis à disposition
selon les termes de la licence Creative Commons “Attribution
4.0 International”.

↭ Ce document est un prototype de manuel pour des cours d’algèbre linéaire de premier
cycle.

↭ À terme, il sera distribué en tant que RÉL (ressource éducative libre), en source
LATEX libre, utilisation libre, et adaptation libre.

↭ Cette version prototype est destinée au seul usage des étudiants du cours MTH1008
de Polytechnique Montréal, pour la session d’hiver 2026.

↭ Le document est en cours d’écriture, mais assez mature pour être testé dans un cadre
réel. Il sera progressivement augmenté durant la session d’hiver 2026, en fonction de
l’avancement de son écriture et des commentaires reçus de la part des étudiants.

↭ Il est donc normal que plusieurs liens ne fonctionnent pas encore.
↭ Merci de reporter toute erreur à sebastien.le-digabel@polymtl.ca.
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Préface

Des systèmes dynamiques au traitement du signal, de l’optimisation à la commande au-
tomatique, des réseaux de communication à l’apprentissage machine, l’algèbre linéaire est,
dans tous les domaines scientifiques, essentielle. Souvent perçue comme inutilement abs-
traite ou trop théorique, son utilité concrète n’est pas toujours perceptible de prime abord.
Le but de cet ouvrage est de proposer une approche pragmatique de l’algèbre linéaire,
structurée clairement entre fondements théoriques et applications pratiques. La partie Fon-
dements pose un cadre théorique et rigoureux, et définit toutes les notions nécessaires
aux principales utilisations de l’algèbre linéaire appliquée, présentées dans la partie Ap-
plications : projections, diagonalisation, inégalités matricielles, décomposition en valeurs
singulières, etc.

Le présent ouvrage s’adresse en priorité aux étudiants de premier cycle universitaire
en sciences appliquées, et plus particulièrement en ingénierie, ainsi qu’à toute personne
souhaitant renforcer sa maîtrise de l’algèbre linéaire en vue d’applications techniques, en
proposant une approche résolument tournée vers l’utilisateur plutôt que le théoricien, sans
pour autant sacrifier la rigueur ni le formalisme mathématique. Il est conçu pour être lu
en format électronique et non imprimé : la multitude de liens hypertextes et de références
croisées a été pensée pour favoriser la navigation entre les di!érentes notions et idées.

Les auteurs sont des membres actifs de la communauté scientifique : professeurs et
étudiants au doctorat ou à la maîtrise en mathématiques appliquées et ingénierie, tous
utilisent l’algèbre linéaire à des fins d’applications et ont à cœur d’en transmettre une
vision pragmatique (et une passion !) directement reliée aux problématiques de recherche
actuelles. Tous les auteurs ont également une expérience d’enseignement universitaire, et
sont donc particulièrement sensibles à la pédagogie et à la transmission, en particulier à
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des scientifiques non spécialistes des mathématiques.
Il ne s’agit pas d’une traduction mais d’une création originale, en langue française,

mise à disposition de tous en tant que Ressource Éducative Libre (RÉL). L’écriture de la
première version de ce document a été financée par une subvention des Fonds d’Actions
Pédagogiques Stratégiques (FAPS) de Polytechnique Montréal.
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Notations et terminologie

Ce chapitre vise à fournir au lecteur les outils formels nécessaires à la bonne compré-
hension de cet ouvrage. Toutes les notations et conventions utilisées sont détaillées ici. La
plupart sont standard et cohérentes avec le reste de la littérature en algèbre linéaire et en
mathématique en général, mais certaines sont moins usuelles. Afin de faciliter la transition
vers ou depuis d’autres ouvrages, des termes et notations alternatifs à ceux utilisés ici, ainsi
que certaines traductions anglaises, sont proposés dans la dernière section de ce chapitre.

i Généralités
↭ Ensembles de nombres (voir figure 2) : ils sont supposés connus, on rappelle les inclu-

sions N → Z → Q → R → C.

C
3 + 4i

ω +
3
2 i

R
↑
2

ω

e

Q

↓
1
2

3
4

Z
↓2

↓1

N0
2

Figure 2 – Les ensembles de nombres.
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xviii NOTATIONS ET TERMINOLOGIE

↭ Un astérisque en exposant d’un ensemble de nombres signifie qu’on en exclut 0.
Exemple : R→ est l’ensemble des nombres réels non nuls.

↭ Un signe + ou ↓ en indice signifie qu’on ne retient que les nombres du signe prescrit.
Exemples : R+ est l’ensemble des nombres réels positifs ou nuls, et R→

+ est l’ensemble
des réels strictement positifs.

↭ On appelle scalaire un élément de R ou de C.
↭ Produit de scalaires : si p et q sont deux scalaires, leur produit est noté pq sans le

signe “↔”. Ce signe est en revanche utilisé en présence de valeurs numériques, par
exemple 2↔ 3 = 6. On bannit totalement l’usage du point “·” pour la multiplication,
car il est trop discret à l’écrit et se confond trop facilement avec une décimale.

↭ Approximations : ↗ signifie “environ égal” et ↫ signifie “inférieur, à une tolérance
près”.

↭ On adopte l’usage suivant, non usuel en français, pour le point et la virgule dans
l’écriture des chi!res décimaux :

• Les décimales d’un nombre sont séparées de sa partie entière par un point.
Exemple : 1/3 ↗ 0.33.

• La virgule est utilisée comme séparateur de milliers. Exemple : 3, 250, 125.22.
↭ Les intervalles sont décrits avec des crochets ouverts ou fermés, et un point-virgule

sépare les deux bornes. Exemples : [1; 2], ]↓ 0.5; 10].
↭ L’ensemble des entiers consécutifs {p, p+ 1, . . . , n} avec p < n est noté !p;n".

ii Ensembles, familles, espaces
↭ Bien qu’ils aient de nombreuses propriétés en commun, on distingue ici soigneusement

ensembles et familles. Voir l’exercice 0.2 après avoir lu les deux définitions suivantes.
↭ Un ensemble est une collection non ordonnée d’éléments sans répétition. Ils sont

notés avec des accolades. S’il existe un ordre naturel entre les éléments (un en-
semble de réels, par exemple), ils sont rangés suivant l’ordre croissant. Exemples :
{↓2, 1/3,ω} = {1/3,ω,↓2} (présence d’un ordre, donc on retiendra la première écri-
ture), {u1,u2,u3} = {u2,u3,u1} (absence d’ordre, donc les deux écritures seraient
valables).

↭ Une famille est une collection ordonnée d’éléments pouvant se répéter. Elles sont
notées avec des parenthèses. Exemples : (ω, 1/3,↓2, 1/3) ↘= (↓2, 1/3, 1/3,ω) (ordre
di!érent), (u2,u3,u1) ↘= (u2,u3,u1,u3) (répétition d’un élément).

↭ Les ensembles et les familles sont notés avec des majuscules usuelles (sauf les bases,
voir plus bas). Exemples : U , V .

↭ L’appartenance d’un élément u à un ensemble (ou une famille) U est notée u ≃ U , ce
qui signifie que u est l’un des éléments de U . Dans le cas où U est un espace vectoriel,
u en est alors appelé un vecteur.
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II. ENSEMBLES, FAMILLES, ESPACES xix

↭ On appelle cardinalité d’un ensemble ou d’une famille U le nombre d’éléments qu’il
ou elle contient, et on la note |U |.

↭ Langage des ensembles : si A et B sont deux ensembles (ou familles), on rappelle les
significations des symboles suivants :

• A = B : les ensembles A et B contiennent exactement les mêmes éléments (pour
deux familles, cela signifie que répétitions et ordre des éléments sont également
identiques) ;

• A ⇐ B : A est un sous-ensemble (ou une sous-famille) de B ;
• A → B : A est un sous-ensemble strict (ou une sous-famille stricte) de B, i.e.

A ⇐ B mais A ↘= B ;
• A \B = {x ≃ A : x /≃ B} : di!érence entre A et B (ou “A privé de B”) ;
• A ⇒B = {x : x ≃ A ou x ≃ B} est l’union des ensembles (ou familles) A et B ;
• A⇑B = {x : x ≃ A et x ≃ B} est l’intersection des ensembles (ou familles) A et

B.
Ces opérateurs peuvent être utilisés indi!éremment si A et B sont tous deux des
ensembles ou des familles, et produisent un objet de même nature. Dans le cas où A et
B ne sont pas de même nature, on s’autorise tout de même à utiliser ces opérateurs, en
posant la convention que l’objet produit est systématiquement un ensemble. Exemple :
{↓2, 1/3,ω} ⇒ (↓1/3, 4) = {↓2,↓1/3, 1/3,ω, 4}.

↭ Les termes “espace” et “sous-espace” sont utilisés comme raccourcis pour désigner un
espace vectoriel et un sous-espace vectoriel.

↭ Les bases sont des familles particulières et sont notées avec des majuscules calligra-
phiques. Exemple : B = (b1,b2, . . . ,bn).

↭ On appelle ensemble vide (respectivement famille vide) l’ensemble (respectivement
la famille) ne contenant aucun élément. Ensemble et famille vides sont notés ⇓ et
vérifient |⇓| = 0. Le contexte dicte si ⇓ désigne l’ensemble ou la famille vide.

↭ Si U est un espace vectoriel, on appelle sous-espace triviaux de U : l’espace {0}
engendré par le vecteur nul, et l’espace U lui-même (voir les remarques suivant le
théorème 5.1.1).

↭ Des ensembles (ou familles) de vecteurs peuvent générer des espaces vectoriels. On
parle alors d’ensembles générateurs ou de familles génératrices de ces espaces vecto-
riels. Voir section 5.2.1.

↭ Les “droites”, “plans”, et “hyperplans” de Rn correspondent aux sous-espaces de di-
mensions 1, 2, et n↓ 1, respectivement.

↭ Si A est une matrice, on appelle les quatre sous-espaces fondamentaux de A les espaces
suivants :

• Im(A) est l’image de A ;
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xx NOTATIONS ET TERMINOLOGIE

• Ker(A) est le noyau de A ;
• Im(A↑

) est l’espace des lignes de A ;
• Ker(A↑

) est le noyau à gauche de A.

Le chapitre 6 leur est dédié, et ils sont visualisés aux figures 6.3 et 6.4.

↭ Si U est un espace vectoriel, sa dimension est notée dim(U). Voir section 5.2.4 et
définition 5.2.11.

↭ Orthogonalité (voir la section 5.3) : x ⇔ y signifie que les vecteurs x et y sont ortho-
gonaux, alors que U ⇔ V signifie que les espaces vectoriels U et V sont orthogonaux.
U↓ est le complément orthogonal (ou simplement l’orthogonal) de l’espace vectoriel
U . On dit aussi que U et U↓ sont des espaces complémentaires.

↭ Une famille orthonormale est une famille de vecteurs orthogonaux entre eux et tous
unitaires. Si U est un espace vectoriel, une base orthonormale de U est une base de
U constituée par une famille orthonormale (voir la section 5.3.2).

↭ Opérateurs : quelles que soient les natures des objets sur lesquels un opérateur agit, on
utilise des parenthèses entre l’opérateur et son ou ses argument(s). Exemple : Im(A).
Cependant, cette notation est parfois trop lourde et on s’autorise donc quelques écarts.
Deux exemples de tels usages acceptables sont :

• Im

[
1 2

3 4

]
au lieu de Im

([
1 2

3 4

])
(opérateur agissant sur une matrice donnée

explicitement) ;
• Vect(v1,v2, . . . ,vp) au lieu de Vect((v1,v2, . . . ,vp)) (opérateur agissant sur une

famille).

iii Nombres complexes
Les nombres complexes sont le sujet du chapitre 3.

↭ L’unité imaginaire est notée i. Le i (en italique) désigne souvent les indices d’une
énumération, ou ceux des lignes d’une matrice.

↭ Les parties réelle et imaginaire d’un nombre complexe z ≃ C sont notées respecti-
vement Re(z) ≃ R et Im(z) ≃ R. De même pour une matrice A ≃ Cm↔n, on écrit
Re(A) ≃ Rm↔n et Im(A) ≃ Rm↔n.

↭ Le conjugué de z ≃ C est z.

↭ Le module de z ≃ C est |z|. Si z ≃ R, on l’appelle sa valeur absolue.

↭ Un argument du nombre complexe non nul z ↘= 0 est noté arg(z) ≃ R, et son argument
principal est unique et noté Arg(z) ≃]↓ ω;ω].
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IV. VECTEURS xxi

iv Vecteurs
Les vecteurs sont introduits à la section 1.1, puis généralisés avec une définition formelle

au chapitre 5.

↭ Rn (respectivement Cn) désigne l’ensemble des vecteurs colonne 1 constitués de n
nombres réels (respectivement n nombres complexes). En utilisant cette notation, on
suppose toujours que n ≃ N→, et on ne le précise donc jamais.

↭ On comprendra au chapitre 5 que le terme vecteur désigne en fait tout élément d’un
espace vectoriel. Cependant, les éléments de Rn et Cn (n ↖ 2) jouent un rôle parti-
culier dans cet ouvrage. Sans plus de précision, le terme “vecteur” désigne donc un
élément de Rn, et le terme “vecteur complexe” désigne un élément de Cn. On note de
tels éléments avec des lettres minuscules grasses. Exemple : x ≃ Rn.

↭ On prend soin de distinguer les vecteurs colonne des vecteurs ligne, qu’on peut aussi
appeler colonnes et lignes. Pour passer de l’un à l’autre, on utilise “↙” l’opérateur de
transposition : si x est un vecteur colonne, x↑ est appelé son transposé et c’est un
vecteur ligne, et vice-versa. Ainsi :

• c =




1

2

3



 représente un vecteur colonne ;

• l = [1 2 3] représente un vecteur ligne ;
• on a, pour ces exemples, c↑ = l ;
• pour une écriture plus compacte, on écrira (1, 2, 3) =

[
1 2 3

]↑ un vecteur
colonne (voir la définition 1.1.5).

↭ Si x = (x1, x2, . . . , xn) ≃ Rn ou Cn, les éléments xi = x(i) (i ≃ !1;n") sont appelés
les composantes du vecteur x, et ce sont des scalaires (réels ou complexes). Cette
notation permet également de considérer x comme une famille d’éléments de R ou de
C.

↭ Le nombre de composantes d’un vecteur est appelé sa taille. On n’emploie pas le terme
“dimension”, qui est réservé aux espaces vectoriels.

↭ Le vecteur nul de Rn est noté 0, sa taille est dictée par le contexte. Pour lever une
éventuelle ambiguïté, on écrit parfois 0n. Ce vecteur est aussi appelé l’origine.

↭ Si x est étudié comme élément d’un espace vectoriel et que B est une base de cet
espace, alors [x]B désigne les coordonnées de x dans B (voir théorème 5.2.1).

↭ Pour simplifier définitions et calculs, on assimile certains objets de la façon suivante :
• un vecteur (respectivement un vecteur complexe) à une seule composante est

assimilé à un nombre réel (respectivement un nombre complexe), i.e. R = R1

(respectivement C = C1
) ;

1. Ici “colonne” est bien au singulier, car on parle de vecteurs sous forme de colonne.
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xxii NOTATIONS ET TERMINOLOGIE

• une matrice réelle (respectivement complexe) à n lignes et une colonne est assi-
milée à un vecteur de Rn (respectivement Cn), i.e. Rn↔1

= Rn (respectivement
Cn↔1

= Cn).

Il découle de ce qui précède qu’une matrice à 1 ligne et 1 colonne est assimilée à un
scalaire, i.e. R = R1

= R1↔1 et C = C1
= C1↔1. Ainsi, pour un réel x, on considère

que
x = (x) = [x] = [x]↑ ≃ R

et pour un complexe z, on considère que

z = (z) = [z] = [z]↑ ≃ C .

Exemples : on considère dans cet ouvrage que :

• (1, 2, 3)︸ ︷︷ ︸
↗R3

=




1

2

3





︸︷︷︸
↗R3

=




1

2

3





︸︷︷︸
↗R3→1

;

• 1↓ i︸︷︷︸
↗C

= (1↓ i)︸ ︷︷ ︸
↗C1

= [1↓ i]︸ ︷︷ ︸
↗C1→1

;

• pour x,y ≃ Rn, le produit scalaire ∝x,y′ = x↑y est bien défini comme le produit
d’une matrice 1↔ n et d’une matrice n↔ 1. Il produit une matrice 1↔ 1, qui est
assimilée à un scalaire.

Noter que si cette assimilation est pratique pour le calcul, elle n’est pas exacte du point
de vue théorique. Elle est également considérée illicite par la plupart des langages
de calcul scientifique, qui distinguent par exemple Rn de Rn↔1. Ceux-ci prévoient
cependant des opérations implicites de conversion, et c’est dans cet esprit qu’on pose
cette convention.

↭ Une combinaison linéaire (ou simplement combinaison) de vecteurs est une somme
pondérée de ces vecteurs (voir la définition 1.1.9). On appelle combinaison triviale la
combinaison dans laquelle tous les poids sont nuls, et son résultat est 0.

↭ La notion d’indépendance linéaire est abordée à la section 5.2.1. On s’attache à em-
ployer les adjectifs appropriés :

• une famille de vecteurs peut être libre ou liée ;
• un ensemble de vecteurs peut être (linéairement) indépendant ou (linéairement)

dépendant ;
• des vecteurs eux-mêmes peuvent être (linéairement) dépendants ou (linéaire-

ment) indépendants ;
• deux vecteurs dépendants peuvent être appelés colinéaires.
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↭ L’opérateur Vect(·), formellement défini à la définition 1.1.10, s’applique sur une fa-
mille de vecteurs (et non un ensemble), et produit l’ensemble (et non la famille) des
combinaisons linéaires possibles de ces vecteurs. Voir l’exercice 0.4 pour la maîtrise
de la notation liée à cet opérateur.

↭ Le conjugué d’un vecteur x = (x1, x2, . . . , xn) est x = (x1, x2, . . . , xn). On note l’équi-
valence x ≃ Rn

∞∈ x = x. Le conjugué d’une ligne est défini de façon analogue,
par application du conjugué complexe sur chacune de ses composantes.

↭ Le transconjugué d’un vecteur x = (x1, x2, . . . , xn) est x→
= x↑

= x↑. On note
l’équivalence x ≃ Rn

∞∈ x→
= x↑.

↭ La notion générale de produit scalaire est introduite à la définition 5.3.1.

• Si x et y sont deux éléments d’un espace vectoriel, leur produit scalaire est noté
∝x,y′.

• Le produit scalaire canonique entre deux vecteurs x,y ≃ Rn est ∝x,y′ = x↑y
(voir définition 1.1.12). L’usage du point “·” est banni pour écrire le produit
scalaire dans Rn, car il est trop discret à l’écrit.

• Le produit scalaire canonique entre deux vecteurs x,y ≃ Cn est ∝x,y′ = x→y
(voir définition 3.6.5).

↭ Le produit vectoriel agit sur deux vecteurs x et y et produit un vecteur x∋y qui leur
est à tous les deux orthogonal. Voir la section 1.1.5.

↭ La norme (euclidienne) du vecteur x est notée △x△ ≃ R. Si △x△ = 1, on dit que x est
un vecteur unitaire, ou normalisé.

↭ La distance entre deux vecteurs x et y est dist(x,y) = △x↓ y△.

↭ La base canonique de Rn est notée E = (e1, e2, . . . , en) où ei désigne le vecteur de Rn

dont toutes les composantes sont nulles, sauf la i-ième qui est un 1 (autrement dit, la
i-ième colonne de la matrice identité de taille n).

↭ L’opérateur de projection orthogonale sur un sous-espace est défini à la section 9.1.
Plusieurs notations sont utilisées pour désigner cette opération. Soit V un espace
vectoriel, alors

• si W est un sous-espace vectoriel de V et que x ≃ V , ProjW (x) est la projection
de x sur le sous-espace W ;

• si x,y ≃ V , Projy (x) = ProjVect(y) (x) est le projeté de x sur la droite vectorielle
générée par y ;

• si A ≃ Rm↔n est telle que Im(A) ⇐ V et x ≃ V , ProjA (x) = ProjIm(A) (x) est
le projeté de x sur l’image de A.

↭ La moyenne du vecteur x = (x1, x2, . . . , xn) ≃ Rn est x̂ =
1
n

n
i=1 xi. On s’en sert

pour exprimer facilement la somme des coordonnées d’un vecteur avec
n

i=1 xi = nx̂.
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v Matrices
Les matrices sont introduites à la section 1.2.
↭ Rm↔n et Cm↔n désignent respectivement l’ensemble des matrices à m lignes et n

colonnes constituées de nombres réels et complexes. En utilisant cette notation, on
suppose toujours que m,n ≃ N→, et on ne le précise donc jamais.

↭ Les matrices sont notées par des lettres majuscules grasses. Exemple : A ≃ Rm↔n.
↭ Les nombres de lignes et de colonnes d’une matrice sont appelés sa taille. On n’emploie

pas le terme “dimension”, qui est réservé aux espaces vectoriels.
↭ L’expression générique “une matrice m↔n” désigne une matrice quelconque de Rm↔n

ou de Cm↔n. Lorsqu’une précision est nécessaire, on parle d’une “matrice réelle” ou
d’une “matrice complexe”.

↭ La transposée d’une matrice A ≃ Rm↔n (respectivement A ≃ Cm↔n) est notée A↑
≃

Rn↔m (respectivement Cn↔m).

↭ Si A =





a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n




, les éléments ai,j = A(i, j) (i ≃ !1;m", j ≃ !1;n")

sont appelés les composantes de A, et ce sont des scalaires (réels ou complexes). i
désigne l’indice de ligne, et j désigne l’indice de colonne.

↭ Les colonnes et les lignes d’une matrice peuvent être sujettes à des manipulations. Il

faut pour cela les désigner correctement. Soit A =

[
1 3 5

2 4 5

]
≃ R2↔3.

• La première colonne de A est (1, 2) ≃ R2, c’est un vecteur (sous-entendu : un
vecteur colonne).

• La première ligne de A est
[
1 3 5

]
, ce n’est donc pas un vecteur. Si on souhaite

l’étudier comme un vecteur, on étudiera son transposé
[
1 3 5

]↑
≃ R3.

↭ La matrice identité de taille n est notée I, ou éventuellement In si le contexte nécessite
un éclaircissement. Elle est toujours carrée.

↭ La matrice nulle de taille m ↔ n est notée O (noter la di!érence avec le vecteur nul
0), ou éventuellement Om,n si le contexte nécessite un éclaircissement. Elle n’est pas
forcément carrée. Voir définition 1.2.3.

↭ Une matrice diagonale (donc nécessairement carrée) de taille n peut être décrite uni-

quement par sa diagonale grâce à l’opérateur Diag(·). Exemple : Diag(2, 3) =

[
2 0

0 3

]
.

↭ Le produit matriciel est introduit à la définition 1.2.14. Si A ≃ Rm↔p et B ≃ Rp↔n, le
produit de A et B est noté AB ≃ Rm↔n. On n’utilise pas le signe “↔”. Ceci est vrai
également pour les matrices complexes.
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↭ Le produit de Kronecker de deux matrices A ≃ Rm↔n et B ≃ Rp↔q est noté A▽B ≃

Rpm↔qn. Voir étude de cas de la section 1.5.
↭ Le rang de la matrice A est noté rg(A). Voir la définition 6.1.5. Souvent, pour rac-

courcir la notation, on pose r = rg(A). De plus, si A ≃ Rm↔n, on dit que :
• A est de plein rang colonne si rg(A) = n ;
• A est de plein rang ligne si rg(A) = m ;
• A est de plein rang si A est carrée et que rg(A) = m = n.

↭ Si A est une matrice carrée inversible, on note A↘1 la matrice inverse de A. On dit
aussi que A est non singulière. Dans le cas contraire, on dit que A est non inversible,
ou singulière.

↭ Si A ≃ Rm↔n avec m > n est de plein rang colonne, la matrice pseudo-inverse de A
est notée A†

= (A↑A)
↘1A↑. Voir la section 6.4.

↭ Si A est une matrice carrée symétrique, on note son signe (voir chapitre 12) :
• A ̸ 0 si A est définie positive ;
• A 7 0 ou “A est SDP” si A est semi-définie positive ;
• A ∀ 0 si A est définie négative ;
• A ∃ 0 (ou “A est SDN”) si A est semi-définie négative.

↭ L’opérateur Col(·) retourne la famille des colonnes d’une matrice (voir définition 1.2.4).
Il ne produit pas un ensemble, puisque les colonnes d’une matrice peuvent être iden-
tiques.

↭ Si A ≃ Rm↔n ou A ≃ Cm↔n, sa norme matricielle est △A△ (voir section 1.2.8).
↭ Si A ≃ Rn↔n ou A ≃ Cn↔n, le déterminant de A est noté det(A) (voir la section 1.3).

Si on étudie le déterminant d’une matrice donnée explicitement, il est écrit entre

barres simples. Exemple : avec A =

[
1 3

2 4

]
, on a det(A) =


1 3

2 4

.

↭ La trace d’une matrice carrée A ≃ Rn↔n (respectivement A ≃ Cn↔n) est notée tr(A) ≃

R (respectivement tr(A) ≃ C). Voir la définition 1.2.12.
↭ Les parties réelle et imaginaire d’une matrice A ≃ Cm↔n sont respectivement notées

Re(A) ≃ Rm↔n et Im(A) ≃ Rm↔n. Elles sont définies telles que A = Re(A) +

i Im(A).

↭ La transconjuguée d’une matrice A ≃ Cm↔n est A→
= A

↑
= A↑. On note l’équiva-

lence A ≃ Rm↔n
∞∈ A→

= A↑.
↭ Si B et C sont deux bases d’un espace vectoriel de dimension n, la matrice de chan-

gement de base de B à C est notée PC≃B ≃ Rn↔n.
↭ Deux matrices A,B ≃ Rm↔n ou Cm↔n sont dites équivalentes s’il existe une matrice P

inversible telle que A = PB. Ceci est noté A ¬ B. Cette écriture est particulièrement
utilisée pour pour indiquer que B est obtenue à partir d’une ou plusieurs opération(s)
d’élimination sur A (voir la section 2.1.1).
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↭ Deux matrices A,B ≃ Rm↔n (ou Cm↔n) sont dites semblables s’il existe une matrice
P inversible telle que A = PBP↘1.

↭ Il est souvent utile d’étudier une matrice par blocs, de di!érentes façons. Si A est de
forme m↔ n, on peut la voir :

• comme l’ensemble de ses colonnes, on note alors A =
[
c1 c2 . . . cn

]
où cj ≃

Rm (j ≃ !1;n") ;
• comme l’ensemble de ses lignes. On considère alors que la i-ième ligne de A est

le transposé du vecteur li ≃ Rn (i ≃ !1;m"), et on note A =





l↑1
l↑2

...
l↑m




;

• comme un ensemble de blocs appelés sous-matrices, que l’on peut éventuellement
délimiter par des séparations virtuelles. Par exemple, pour décomposer la matrice
A en 2↔ 2 sous-matrices, on écrit :

A =

[
A11 A12

A21 A22

]
=

[
A11 A12

A21 A22

]
.

où A11 ≃ Rm1↔n1 , A12 ≃ Rm1↔n2 , A21 ≃ Rm2↔n1 et A22 ≃ Rm2↔n2 . Les tailles
doivent être cohérentes avec celle de A, i.e. m1 +m2 = m et n1 + n2 = n.

↭ Une matrice orthogonale est une matrice carrée dont les colonnes sont orthonormales
(voir la définition 5.3.5). Une matrice non carrée dont les colonnes sont orthonormales
n’admet pas d’appellation particulière.

↭ Un vocabulaire varié est à acquérir pour désigner di!érents types de matrices. On
parle ainsi de matrices diagonales, triangulaires, symétriques, hermitiennes, échelon-
nées, échelonnées réduites, unipotentes, d’élimination, de permutation, de rotation, de
réflexion, etc. Une liste exhaustive est donnée à la section 1.2.3.

vi Systèmes
Les systèmes d’équations linéaires (ou simplement systèmes) sont le sujet du chapitre 8.

↭ Plusieurs éléments sont nécessaires pour définir un système. Ces éléments sont appelés
les données du système et sont :

• une matrice A ≃ Rm↔n appelée la matrice des coe"cients du système ;
• un vecteur b ≃ Rm appelé le membre de droite du système ;

On peut aussi considérer des systèmes avec des données complexes.
↭ Résoudre le système donné par A et b consiste à identifier un vecteur x ≃ Rn, ou

un ensemble de tels vecteurs, satisfaisant les équations linéaires décrites par l’égalité
Ax = b.
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↭ Dans le système donné par Ax = b, le vecteur x = (x1, x2, . . . , xn) est appelé vecteur
des variables (ou des inconnues) et la composante xi est appelée la i-ième variable
(ou inconnue) du système (i ≃ !1;n").

↭ Si b = 0, le système Ax = 0 est un système homogène, et sert à définir le noyau de
A (voir la définition 6.1.1).

↭ L’ensemble de toutes les solutions possibles d’un système se nomme sa solution com-
plète, définie à la section 8.4. La solution complète s’écrit à partir d’une solution
particulière et de solutions spéciales. Voir les définitions 8.4.1 et 8.3.1.

↭ La matrice N dont les colonnes sont les solutions spéciales d’une matrice A se nomme
la matrice noyau de A définie à la définition 8.3.2. Il ne faut pas confondre “noyau”
(un espace) et “matrice noyau” (une matrice).

↭ On comprendra dans la section 1.2.5 que dans le système Ax = b, chaque colonne
de A ≃ Rm↔n est associée à une variable tandis que chaque ligne de A est associée à
une équation. On dit donc que le système Ax = b est constitué de n variables et m
équations.

↭ Un système admettant au moins une solution est appelé réalisable (ou compatible). Un
système n’en admettant aucune est appelé irréalisable (ou incompatible). On préfère
le terme de réalisabilité plutôt que compatibilité car le premier est incontournable
dans le domaine de l’optimisation, tandis que le second est ambigu et est réservé dans
ce manuel pour décrire des opérations matricielles valides selon les tailles de matrices.
Voir la définition 8.1.5.

↭ Le chapitre 2 décrit des techniques pour résoudre des systèmes, appelées élimination
de Gauss et élimination de Gauss-Jordan. Ces techniques utilisent un vocabulaire axé
sur la notion de pivot.

• Cette notion est introduite à la définition 2.1.6, et précise qu’un pivot est toujours
un scalaire non nul.

• On dit que (i, j) est une position de pivot de la matrice A si sa composante aij
est un pivot.

• Toute colonne d’une matrice A contenant un pivot est appelée colonne pivot 2

de A, et la variable associée dans un système est appelée variable pivot.
• Toute colonne d’une matrice A ne contenant pas de pivot est appelée colonne

libre 3, ou colonne non-pivot de A, et la variable associée dans un système est
appelée variable libre.

• Attention : Les concepts de “ligne pivot” et de “ligne libre” ne sont pas définis.
• Attention : Les pivots ne se voient pas dans A, mais dans les formes échelonnée

et échelonnée réduite obtenues à partir de A.

2. dont le pluriel est “colonnes pivot”, car chaque colonne est de type pivot.
3. dont le pluriel est “colonnes libres”, car ici ce sont les colonnes elles-mêmes qui sont libres.
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↭ La matrice formée des blocs
[
A b

]
≃ Rm↔(n+1) est appelée la matrice augmentée

du système Ax = b. On dit également qu’elle le représente sous forme augmentée.
Attention à la terminologie : c’est bien la représentation qui est sous forme augmentée,
on ne parle pas de “système sous forme augmentée”. Cette notion se généralise à une
agrégation de p systèmes avec les mêmes coe"cients dans A mais des membres de
droite di!érents placés dans une matrice B, qui donne la matrice augmentée [A B].
Voir la définition 8.1.6.

↭ On appelle opérations élémentaires les opérations sur les lignes d’une matrice e!ec-
tuées dans la méthode d’élimination de Gauss :

• la combinaison linéaire de deux lignes consiste à ajouter à une ligne un multiple
d’une autre. Par exemple, on peut remplacer la deuxième ligne d’une matrice
par cette ligne à laquelle on retranche deux fois la première. Ceci est noté L2 ∅

L1 ↓ 2L2 ;
• la multiplication d’une ligne par un scalaire. Par exemple, on peut multiplier la

première ligne d’une matrice par 2. Ceci est noté L1 ∅ 2L1 ;
• la permutation de deux lignes. Par exemple, on peut permuter les lignes 1 et 2

d’une matrice. Ceci est noté L1 ℜ L2.
↭ Une suite d’opérations élémentaires appliquées sur une matrice A produit une ma-

trice équivalente à A. On désigne ceci par le signe ¬ entre ces deux matrices, et on
précise sous ce signe les opérations élémentaires qui ont été e!ectuées. Par exemple,
l’opération suivante remplace la troisième ligne par elle-même à laquelle on retranche
trois fois la deuxième :




1 3 0

0 1 1

0 3 5



 ¬
L3≃L3↘3L2




1 3 0

0 1 1

0 0 2



 .

Lorsque des composantes sont encadrées comme ci-dessus, elles désignent les pivots
du système. Cet encadrement n’est pas systématique.

↭ Une solution au sens des moindres carrés d’un système est notée x̂ (voir la sec-
tion 9.1.3).

vii Valeurs propres et valeurs singu-
lières

Les valeurs propres sont décrites au chapitre 7 et les valeurs singulières au chapitre 13.

↭ Le spectre d’une matrice A ≃ Rn↔n est noté Sp(A). Il correspond à l’ensemble des
valeurs propres de A. En tant qu’ensemble, il n’admet aucune répétition et donc, ne
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contient que les valeurs propres distinctes de A. Par exemple, si A admet pour seule
valeur propre 2, de multiplicité deux, on écrit tout de même Sp(A) = {2}, et non
Sp(A) = {2, 2}.

↭ Si ε ≃ Sp(A), la multiplicité algébrique de ε est notée µa
A(ε) et sa multiplicité algé-

brique est notée µ
g
A(ε).

↭ Le sous-espace propre associé à la valeur propre ε ≃ Sp(A) n’admet aucune notation
particulière. Il est directement désigné par Ker(A↓ εI).

↭ Le polynôme caractéristique de A ≃ Rn↔n est noté pA. Exprimé en fonction de l’in-
connue ε, il s’écrit pA(ε) = det(A↓ εI).

↭ Les valeurs singulières d’une matrice sont notées avec la lettre ϑ. En particulier, la
plus petite valeur singulière de A est notée ϑmin(A), et la plus grande est notée
ϑmax(A).

↭ Le conditionnement d’une matrice A est ϖ(A) =
ωmax(A)
ωmin(A) .

viii Fonctions
Le chapitre 4 est dédié aux fonctions.

↭ Une application est décrite par

f : X ↓ℑ Y
x ⊤↓ℑ f(x)

où X est le domaine de f et Y est l’espace d’arrivée de f . Voir la définition 4.1.1.
↭ L’écriture raccourcie f : X ℑ Y désigne une application quelconque de domaine X

et d’espace d’arrivée Y .
↭ On désigne par fonction réelle de plusieurs variables une application ayant pour do-

maine Rn et pour espace d’arrivée Rn.
↭ Les ensembles de polynômes sont définis comme suit :

• P(R) (respectivement P(C)) est l’ensemble des polynômes à coe"cients réels
(respectivement complexes).

• Pn(R) → P(R) (respectivement Pn(C) → P(C)) est l’ensemble des polynômes à
coe"cients réels (respectivement complexes) de degré inférieur ou égal à n.

↭ Le degré du polynôme p ≃ P(R) ou p ≃ P(C) est noté deg(p).
↭ Les polynômes considérés dans cet ouvrage sont des fonctions d’une seule variable,

i.e. leur inconnue est un scalaire, et la valeur qu’ils produisent est un scalaire.
↭ Pour f : Rn

ℑ R et x ≃ Rn,
• si f est di!érentiable en x, ⊥f(x) ≃ Rn est le gradient de f en x ;
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• si f est deux fois di!érentiable en x, ⊥2f(x) ≃ Rn↔n est la matrice hessienne de
f en x.

↭ La notion de fonction convexe est définie à la section 12.5.3.
↭ Les notions de minimum/maximum et minima/maxima sont définies à l’étude de cas

de la section 12.5. Y figurent aussi les notions d’optimalité locale et optimalité globales.

Correspondance de termes
Toutes les sections précédentes sont retracées ici pour présenter des termes et notations

alternatifs. Lorsqu’elles peuvent s’avérer utiles, des traductions en anglais sont également
proposées, et signalées par le symbole !.
i Généralités

↭ L’ensemble R+ est parfois écrit R⇐0, et l’ensemble R→
+ est parfois écrit R>0.

↭ Le point médian est parfois utilisé pour remplacer le signe “↔” dans la multiplication
entre scalaires : p↔ q = p · q.

↭ Dans l’écriture des intervalles, des parenthèses peuvent être utilisées pour indiquer
une borne exclue. Exemple : ]↓ 0.5; 10] = (↓0.5; 10].

ii Ensembles, familles, espaces

↭ La cardinalité d’un ensemble U est parfois notée card(U) ou #U .
! La littérature anglophone ne fait pas la distinction entre ensemble et famille. Les deux

sont généralement désignés par le terme set.
↭ Générer un espace vectoriel se dit également engendrer un espace vectoriel.

! Engendrer un espace vectoriel = to span a vector space, ensemble générateur/famille
génératrice = spanning set.

! Image d’une matrice = Range of a matrix ou Column space of a matrix, noté R(A)

ou C(A).
↭ Le noyau de A est parfois noté N(A).

! Noyau = Nullspace, noté parfois Nul(A).
↭ L’espace des lignes est parfois noté Lgn(A).

! Espace des lignes = Row space.
↭ Famille/base orthonormale = famille/base orthonormée.

iii Nombres complexes

↭ L’unité imaginaire est parfois notée en italique i. En physique, elle est souvent notée
j.

↭ Les parties réelle et imaginaire de z ≃ C sont parfois notées ℵ(z) et A(z), respective-
ment.
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iv Vecteurs

↭ Les vecteurs de Rn et Cn sont parfois notés avec de simples minuscules (exemple : x),
ou avec une flèche (exemple : ↓ℑx ). La notation avec une flèche n’est plus acceptable
en mathématique de niveau universitaire.

↭ Le transposé d’un vecteur est souvent noté tx dans la littérature française (qui n’utilise
pas de lettres grasses pour les vecteurs).

↭ Composantes d’un vecteur = coordonnées, éléments, coe"cients, entrées.

! Vector entries.

! Famille libre/ensemble linéairement indépendant = linearly independent set.
! Famille liée/ensemble linéairement dépendant = linearly dependent set.
! Vect(·) = Span(·).
↭ Le transconjugué d’un vecteur x est parfois appelé son transposé conjugué, son adjoint

ou son conjugué hermitien, et noté xH .
↭ Au sens général, un produit scalaire est parfois appelé produit intérieur. Il peut être

noté ∝x | y′ (notamment en physique quantique).

! Scalar product, Inner product.

↭ Le produit scalaire canonique de Rn est parfois noté ∝x,y′ = x · y. Cette notation
n’est plus acceptable au niveau universitaire.

! Dot product.

↭ Le produit vectoriel entre x et y est parfois noté x↔ y.
↭ En géométrie dans le plan ou dans l’espace, les vecteurs de la base canonique sont

parfois notés di!éremment. La base canonique de R2 est notée (i, j) avec i = e1 = (1, 0)
et j = e2 = (0, 1). De même, la base canonique de R3 peut être notée (i, j,k) avec
i = e1 = (1, 0, 0), j = e2 = (0, 1, 0), et k = (0, 0, 1).

v Matrices

↭ Les matrices sont parfois notées avec de simples majuscules non grasses. Exemple :
A ≃ Rm↔n.

↭ Les ensembles de matrices sont parfois notés di!éremment. C’est notamment le cas
dans la littérature française.

• Rm↔n et Cm↔n sont respectivement notés Mm,n(R) et Mm,n(C), ou Mm,n(R)
et Mm,n(C).

• Rn↔n et Cn↔n sont respectivement notés Mn(R) et Mn(C), ou Mn(R) et Mn(C).
• Pour désigner l’ensemble des matrices réelles inversibles de taille n ↔ n, on uti-

lise souvent la notation GLn(R). On appelle cet ensemble le groupe linéaire de
degré/d’ordre/d’indice n.
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↭ La transposée d’une matrice est souvent notée tA dans la littérature française (qui
n’utilise pas de lettres grasses pour les matrices).

↭ Les composantes d’une matrice sont parfois appelés ses coe"cients, ses termes ou ses
entrées.

! Matrix entries.

↭ La pseudo-inverse de A est parfois notée A+.

↭ Le signe d’une matrice est parfois noté A > 0 au lieu de A ̸ 0. De même pour A ↖ 0,
A < 0 et A B 0, au lieu de A 7 0, A ∀ 0 et A ∃ 0.

! Les traductions anglaises peuvent prêter à confusion :

↭ définie-positive = positive-definite, parfois on précise symmetric positive-
definite et on l’abrège SPD. “SPD” signifie donc : semi-définie positive en
français, mais définie-positive en anglais ;

↭ semi-définie positive = positive-semidefinite, souvent abrégé PSD. Celui-ci
n’existe pas en français.

Il faut garder en tête que même sans la mention de symétrique ou symmetric, la notion
de signe d’une matrice ne s’applique qu’aux matrices symétriques.

↭ Pour parler d’une matrice de plein rang, on ne précise pas toujours “plein rang ligne”
ou “plein rang colonne”, même si elle n’est pas carrée. Si A ≃ Rm↔n, rg(A) B

min{m,n} donc “A est de plein rang” peut aussi signifier :

• rg(A) = m si m < n ;
• rg(A) = n si n < m.

↭ Le déterminant de A est parfois directement noté |A|.

↭ La transconjuguée de A est parfois appelée sa transposée conjuguée, son adjoint ou
son conjugué hermitien, et noté AH .

↭ Une matrice hermitienne (voir la définition 3.6.7) est parfois appelée matrice auto-
adjointe.

! Self-adjoint matrix.

↭ Matrice de changement de base = matrice de passage.

! Change-of-coordinates matrix, Change-of-basis matrix.

vi Systèmes

↭ Si deux matrices sont équivalentes parce que l’une a été obtenue après des opérations
d’élimination sur l’autre, elles sont parfois dites équivalentes selon les lignes, puisque
les opérations élémentaires ne concernent que les lignes.

! Row equivalent matrices.
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vii Valeurs propres et valeurs singulières

↭ Le spectre de A est parfois noté ϑ(A).
↭ La multiplicité algébrique de ε ≃ Sp(A) est parfois notée MA(ε), et sa multiplicité

géométrique MG(ε). Il arrive que l’on n’utilise pas le terme “multiplicité géométrique”,
mais que l’on parle directement de “dimension du sous-espace propre associé à ε”.

↭ Le sous-espace propre associé à ε ≃ Sp(A) est parfois noté Eε (cette notation ne fait
pas mention de la matrice A, qui est rendue claire par le contexte).

↭ Le polynôme caractéristique de A est parfois noté ϱA(ε) = det(A↓ εI).

viii Fonctions

↭ On confond ici les trois termes de fonction, application et transformation.
! Espace d’arrivée d’une fonction = Codomain. Ce terme a donné lieu à l’utilisation de

codomaine en français, parfois.
↭ L’ensemble des polynômes à coe"cients réels est parfois noté R[x], ou R[X]. Cette

seconde notation fait intervenir la “grande indéterminée” X et est surtout pertinente
dans l’étude algébrique des polynômes, en dehors du cadre de cet ouvrage. De même,
l’ensemble des polynômes à coe"cients complexes est parfois noté C[x] ou C[X].

↭ Le gradient de f en x est parfois noté gradf(x), et sa hessienne peut être notée Hf (x),
H(x) (quand f est claire par le contexte) ou Hessf(x).
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ix Exercices sur les notations
Solutions disponibles à l’annexe A.

Série d’exercices 0: Notations

Exercice 0.1: valide ou invalide ? (ς)
Soient A un ensemble de vecteurs, F une famille de vecteurs, et x et y deux vecteurs. Parmi
les expressions suivantes, déterminer lesquelles sont valides.

1 x ≃ A ;
2 x ≃ F ;
3 x ⇐ A ;
4 x ⇐ F ;
5 {x,y} = A ;
6 {x,y} ≃ A ;
7 {x,y} ⇐ A ;
8 x ≃ R2 ;

9 x → R2

10 x = R2

11 x = (1 2) ;
12 x = (1 2)

↑ ;
13 x = (1, 2) ;
14 x = (1, 2)↑ ;
15 x = [1, 2] ;
16 x = [1, 2]↑ ;

17 x = [1 2] ;

18 x = [1 2]
↑ ;

19 x =

[
1

2

]
;

20 x =

[
1

2

]↑
.

Exercice 0.2: ensembles et familles : repérage et réécriture (ς)

1. Pour chacune des écritures suivantes, préciser si elle désigne un ensemble ou une
famille, puis la réécrire en respectant les conventions :
↭ (5, 2, 5) ;
↭ {e2, e1, e3} ;
↭ {p, p+ 1, . . . , n}.

2. Noter sous forme compacte l’ensemble des entiers de ↓3 à 4 (bornes incluses) en
utilisant la notation !·".

3. Dire si la base canonique E = (e1, e2, e3) est un ensemble ou une famille.

Exercice 0.3: opérations sur ensembles et familles (ς)
Soient A = {1, 3, 5} et B = (1, 3, 3, 4).

1. Préciser pour chacun s’il s’agit d’un ensemble ou d’une famille.
2. Déterminer :

(a) A ⇒B ;
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(b) A ⇑B ;
(c) B \A ;
(d) A \B.

Exercice 0.4: bon usage de l’opérateur Vect(·) (ς)
Soient A et B deux ensembles, F et G deux familles, et x et y deux vecteurs. Parmi les
expressions suivantes, déterminer lesquelles sont valides.

1 Vect(B) = A ;
2 Vect(F ) = A ;
3 Vect(F ) = G ;
4 Vect(A) = F ;
5 Vect(x,y) ≃ A ;
6 Vect(x,y) → A ;
7 Vect(x,y) = A ;
9 Vect((x,y)) = A ;

10 Vect {x,y} = A.

Exercice 0.5: appartenance et inclusion – ensembles (ς)
Soient les ensembles A = {1, 2, 4, 6} et B = {2, 4}. Indiquer à l’aide des opérateurs d’ap-
partenance et d’inclusion si un lien existe entre chacune des paires d’éléments suivantes :

1. 2 et B ;
2. {2} et A ;
3. 6 et B ;
4. {1, 6} et A ;
5. {1, 3} et A ;
6. A et B.

Exercice 0.6: appartenance et inclusion – familles (ς)
Soient les familles F = (1, 2, 4, 6) et G = (2, 4). Indiquer à l’aide des opérateurs d’apparte-
nance et d’inclusion si un lien existe entre chacune des paires d’éléments suivantes.

1. 2 et G ;
2. (2) et F ;
3. {2} et F ;
4. F et G ;
5. (4, 2) et F ;
6. (1, 2, 2, 4, 6) et F .
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Exercice 0.7: appartenance et inclusion – familles de vecteurs (ςς)
Soient les vecteurs u1 = (↓1, 0, 1), u2 = (1, 0,↓1), et u3 = (2, 0, 0), et les deux familles
F = (u1,u2,u3) et G = (u1,u3).

Indiquer à l’aide des opérateurs d’appartenance et d’inclusion si un lien existe entre
chacune des paires d’éléments suivantes.

1. u3 et G ;
2. ↓1 et u2 ;
3. (u2) et F ;
4. {u2} et F ;
5. F et G ;
6. (u3,u2) et F ;
7. (u1,u2,u2,u3) et F .



P
R
O
T
O
T
Y
P
E

Première partie

Algèbre linéaire : Fondements
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Chapitre

1
Vecteurs et matrices

Ce chapitre est consacré à l’étude des vecteurs et matrices, qui sont des outils fonda-
mentaux en algèbre linéaire Il sert d’introduction à leur manipulation, alors que leur vraie
nature est formalisée et étudiée au chapitre 5.

Plus précisément, on manipule dans ce chapitre les vecteurs colonne 1 de Rn, et les
matrices réelles. Ces deux structures sont en fait des tableaux de réels desquels découlent
des définitions, propriétés et méthodes fondamentales en algèbre linéaire. Les manipulations
présentées ici sont simples, mais à la base du reste de l’ouvrage.

Les vecteurs colonne de Cn et les matrices complexes sont définis à la section 3.6.
Cependant, tout au long de ce chapitre, il est mentionné lorsqu’il est possible de travailler
avec Cn. Dans ce cas, les subtilités inhérentes à leur nature sont explicitées.

Par ailleurs, le mot “scalaire” apparaîtra souvent : ce terme désigne, selon le contexte,
soit un réel, soit un complexe. Si on choisit un k ≃ C, c’est une généralisation du cas réel.
En e!et, rien n’empêche un complexe k d’être dans R (figure 2).

On précise enfin que les premières applications de ces concepts, telles que la résolution
de systèmes et l’inversion matricielle, sont vus plus tard dans cet ouvrage, au chapitre 8.
De façon générale, les applications des concepts fondamentaux de la partie I sont vues à la
partie II.

1. On ne met pas de “s” à “colonne” car on manipule la notion de vecteurs de type colonne.
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1.1 Vecteurs colonne
Cette section est consacrée à la présentation des vecteurs colonne. Ces vecteurs peuvent

être additionnés et multipliés par un scalaire pour donner de nouveaux vecteurs colonne
grâce à des combinaisons linéaires présentées à la définition 1.1.9. Enfin, la notion de produit
scalaire est introduite afin de définir le concept de norme pour un vecteur colonne.

1.1.1 Définitions

Tel qu’indiqué dans l’introduction du chapitre, un vecteur est un tableau de scalaires. Ce
tableau est, par convention, représenté sous forme d’une colonne 2, d’où le nom de “vecteur
colonne”.

Le nombre de lignes de ce tableau détermine la taille du vecteur, tel que vu dans
l’exemple 1.1.1. Les éléments d’un vecteur colonne (ce qui apparaît sur chaque ligne) sont
appelés les composantes. Ce sont ces composantes qui sont des scalaires. On utilise des
parenthèses pour y accéder. L’exemple 1.1.1 clarifie cette notion de composante.

Définition 1.1.1 (vecteur colonne)
Un vecteur colonne est un tableau constitué d’une colonne de scalaires. Les scalaires
sur chacune des lignes sont appelés les composantes du vecteur.

Il convient de noter qu’au chapitre 5, consacré aux bases, le terme “coordonnées” est
préféré à celui de “composantes”. Le théorème 5.2.1 énonce l’emploi correct de ce terme.

Bien que les vecteurs colonne soient souvent représentés en 2D ou 3D par une flèche,
comme dans la figure 1.1, leur notation avec une flèche au dessus de la minuscule n’est
pas appropriée au niveau universitaire. En e!et, pour de plus grandes dimensions, cette
représentation perd son sens, et on préfère donc la notation en minuscules grasses.

Il existe trois façons d’écrire une colonne pour représenter un vecteur colonne. Celles-ci
sont détaillées à la section iv. Tous les autres usages liés aux notations sont explicités dans
cette section.

Les vecteurs colonne ayant le même nombre de lignes (composantes) forment un en-
semble introduit à la définition 1.1.2.

Définition 1.1.2 (Rn)
Rn désigne l’ensemble des vecteurs colonne à n composantes réelles.

2. C’est la convention usuelle mais, on aurait pu les laisser sous forme de lignes. Cependant, cette
configuration facilite la compréhension des opérations présentées par la suite.
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Pour Cn, la définition reste la même, mais, les composantes sont cette fois-ci des com-
plexes. L’ensemble Cn est donc une extension de Rn puisque Rn

→ Cn. On utilise également
le terme de “vecteur” (sans le terme “colonne”) pour les éléments de Rn ou Cn ainsi que
pour les éléments de certains sous-ensembles de Rn ou Cn.

La définition formelle des vecteurs est donnée au chapitre 5, et l’ensemble V de ces
vecteurs est alors appelé un espace vectoriel.

Remarque
Si n = 1, on assimile le vecteur à un scalaire : R = R1 et C = C1. Par exemple,
[3] = 3.

Exemple 1.1.1

↭ u =

[
3

4

]
est un vecteur (de R2) à deux composantes réelles, et u(2) = 4 est la

seconde composante du vecteur u.

↭ v =





2

2

1

4

ω




est un vecteur de R5 à cinq composantes réelles, et v(5) = ω est la

cinquième composante du vecteur v ;
↭ Pour x = (x1, x2, . . . , xn), un vecteur colonne à n composantes réelles ou com-

plexes, x(i) = xi est la i-ième composante de x : c’est donc un scalaire, ce qui
explique pourquoi cette composante n’est pas écrite en gras comme le vecteur.

Pour un n donné, les vecteurs les plus connus et utiles dans de nombreux cas sont les
colonnes de la matrice identité, tel que décrit à la définition 1.1.3. Le concept de “matrice
identité” sera expliqué de manière formelle à la définition 1.2.16.

Définition 1.1.3 (j-ième colonnes de la matrice identité)
Pour un n donné, on définit n vecteurs ej ≃ Rn pour j ≃ !1;n" tels que ej(i) = 0 si
i ↘= j pour i ≃ !1;n" et ej(j) = 1.

Exemple 1.1.2
Dans R3, les trois colonnes de la matrice identité sont e1 = (1, 0, 0) (souvent noté i),
e2 = (0, 1, 0) (souvent noté j), et e3 = (0, 0, 1) (souvent noté k).
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Pour un vecteur colonne donné, il est utile de définir son transposé dans lequel une
colonne (un vecteur) devient une ligne et donc une matrice (ce terme est défini à la sec-
tion suivante). La transposée est notamment utile dans la notion de produit scalaire vue
ultérieurement à la section 1.1.4.

Définition 1.1.4 (transposé d’un vecteur)
Le transposé d’un vecteur x ≃ Rn, noté x↑, est une matrice à une ligne et n colonnes :

x↑
=





x1
x2
...
xn





↑

=
[
x1 x2 . . . xn

]
.

Pour les vecteurs complexes, transposer n’est souvent pas su"sant. On fait alors appel
à la transconjuguée sur les complexes (la définition 3.6.4 donne plus de détails).

Remarque

↭ Il est important de noter qu’une matrice composée d’une ligne n’est pas un
vecteur mais une matrice 1↔ n ;

↭ On n’assimile pas R1↔n à Rn pour n > 1. C’est Rn↔1 qui est assimilé à Rn (il
en est de même pour les complexes).

On conclut cette sous-section en décrivant trois façons di!érentes d’écrire les vecteurs
colonne.

Définition 1.1.5 (les trois di!érentes écritures d’un vecteur colonne)
Soit x un vecteur (colonne) de n composantes notées x1, x2, . . ., xn. On utilise les
trois façons suivantes d’écrire x et ses composantes :

x = (x1, x2, . . . , xn)

=
[
x1 x2 · · · xn

]↑

=





x1
x2
...
xn




.
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1.1.2 Opérations vectorielles simples

Dans cette section, deux opérations simples sur les vecteurs sont abordées : l’addition
et la multiplication par un scalaire. Ces deux types d’opérations sont combinés dans la
section 1.1.3 portant sur les combinaisons linéaires. Ces opérations se font dans un ensemble
Rn, où n est un entier naturel supérieur à un, mais, pour des questions de visualisation, les
exemples sont donnés avec des vecteurs de R2. Un vecteur de R2 a donc deux composantes
que l’on note x et y par la suite. On peut donc représenter un vecteur x = (x, y) ≃ R2 comme
un point dans un repère avec deux axes perpendiculaires, chacun des axes représentant une
dimension. C’est ce que l’on appelle le repère “2D”. L’origine de ce repère représente le
vecteur nul noté 0 = (0, 0). Les propriétés de ce vecteur sont vues au chapitre 5 et dans
la section 1.1.3. Le repère 2D, le vecteur nul 0 = (0, 0) et le vecteur v = (v1, v2) sont
représentés dans la figure 1.1. Bien que le vecteur v corresponde au point de coordonnées
(v1, v2), la coutume est d’ajouter une (bleue dans la figure), de manière symbolique, pour
expliciter ce vecteur. Ici, le mot vecteur prend une signification plus générale : Pour n
quelconque, un vecteur n’a pas de “direction”, ni d’“origine”, et ni d’“extrémité”, même si
ces termes peuvent être utiles pour n B 3.

x

y

v
v2

v10

Figure 1.1 – Représentation d’un repère de R2, du vecteur nul 0 et du vecteur v = (v1, v2).

La première opération étudiée dans cette section est l’addition de deux vecteurs, soit
l’opération qui consiste à additionner chacune des composantes une à une.

Définition 1.1.6 (addition de deux vecteurs)
Soient x,y ≃ Rn. Le vecteur z = x+y correspond à l’addition de x et y. Il est calculé



P
R
O
T
O
T
Y
P
E

1.1. VECTEURS COLONNE 9

en additionnant les composantes des deux vecteurs. Plus précisément :

z = x+ y =





x1
x2
...
xn




+





y1
y2
...
yn




=





x1 + y1
x2 + y2

...
xn + yn




.

La soustraction de deux vecteurs, formalisée à la définition 1.1.7, se fait de manière
similaire en soustrayant les composantes une à une. Il convient de souligner que l’ordre des
vecteurs dans une soustraction est important.

Définition 1.1.7 (soustraction de deux vecteurs)
Soient x,y ≃ Rn. Le vecteur z = x↓ y correspond à la soustraction de x et y. Il est
calculé en soustrayant les composantes des deux vecteurs. Plus précisément :

z = x↓ y =





x1
x2
...
xn




↓





y1
y2
...
yn




=





x1 ↓ y1
x2 ↓ y2

...
xn ↓ yn




.

La figure 1.2 illustre ces notions d’addition et de soustraction dans R2. On peut remar-
quer que le vecteur v ↓w est di!érent du vecteur w ↓ v.

Le deuxième type d’opération vu dans cette section est la multiplication d’un vecteur
par un scalaire. La définition 1.1.8 formalise cette opération.

Définition 1.1.8 (multiplication d’un vecteur par un scalaire)
Soit x ≃ Rn et soit k un scalaire. Le vecteur y = kx correspond à la multiplication
de x par le scalaire k. Il est calculé en multipliant par k les composantes de x. Plus
précisément :

y = kx = k





x1
x2

...
xn




=





kx1
kx2

...
kxn




.

Le scalaire k est également appelé poids.
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x

y

0

v

w

↓v

↓w

v +w

v ↓w

w ↓ v

↓v ↓w

Figure 1.2 – Représentation de deux vecteurs v et w dans R2 ainsi que de leur addition
et de leur soustraction.

Remarque
Selon les valeurs du scalaire k, le vecteur résultant a des propriétés :

↭ Si k < 0, les flèches qui relient 0 à x et à kx sont de sens opposé ;
↭ Si 0 < k < 1, kx est “rétréci” par rapport à x ;
↭ Si k > 1, kx est “agrandi” par rapport à x.

Ces notions de “rétréci” et “agrandi” prendront leur sens lorsque la norme d’un vecteur
sera définie à la définition 1.1.13.

La figure 1.3 illustre cette opération de multiplication par un scalaire dans R2 pour
di!érentes valeurs de k.

Si deux vecteurs x et y sont tels que x = ky, où k est un scalaire 3, alors on dit

3. Ce scalaire peut être nul : Comme 0 = 0x pour tout vecteur x, le vecteur nul 0 est colinéaire à tous
les vecteurs.
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x

y

0

kv (k > 1)

v

kv (0 < k < 1)

kv (k < 0)

Figure 1.3 – Représentation de x et kx pour di!érentes valeurs de k dans R2.

que x et y sont colinéaires, ou dépendants. La notion d’indépendance linéaire est vue à la
section 5.2.1. En combinant les opérations d’addition et de multiplication par un scalaire,
on fait intervenir la notion de combinaison linéaire qui est introduite à la définition 1.1.9
de la section suivante.

1.1.3 Combinaisons linéaires

Une combinaison linéaire de vecteurs est une somme de ces vecteurs qui sont chacun
pondérés par un scalaire. Le résultat est lui aussi un vecteur. La définition 1.1.9 formalise
ceci.

Définition 1.1.9 (combinaison linéaire)
Soit V un ensemble de vecteurs. Une combinaison (linéaire) de vecteurs de V est une
opération qui consiste à multiplier ces vecteurs par des scalaires (appelés des poids),
puis à les additionner. On parle aussi de somme pondérée.
Plus précisément, avec les p vecteurs v1,v2, . . . ,vp de V et avec les p poids
φ1,φ2, . . . ,φp associés à ces vecteurs, la combinaison linéaire de ces vecteurs pondérés
s’écrit

φ1v1 + φ2v2 + . . .+ φpvp =

p

k=1

φkvk .
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x

y

0

u

v w

↓v

1
2w

2u

2u↓ v +
1
2w

Figure 1.4 – Illustration de l’exemple 1.1.3.

Cette notion de combinaison linéaire s’applique non seulement à V = Rn ou Cn, mais
également à des sous-ensembles de ces ensembles.

Dans le chapitre 5, l’ensemble V est généralisé et appelé espace vectoriel. Grâce à cer-
taines propriétés, on peut montrer qu’une combinaison linéaire de vecteurs d’un espace
vectoriel appartient également à cet espace.

Dans l’exemple 1.1.3, la combinaison linéaire de trois vecteurs de R2 est étudiée.

Exemple 1.1.3

Soient u =

[
↓1

2

]
,v =

[
3

4

]
et w =

[
6

4

]
. Une combinaison linéaire de ces trois vecteurs

est par exemple : 2u↓ v +
1
2w. Dans ce cas,

2u↓ v +
1

2
w = 2

[
↓1

2

]
↓

[
3

4

]
+

1

2

[
6

4

]
=

[
↓2

4

]
+

[
↓3

↓4

]
+

[
3

2

]
=

[
↓2

2

]
.

Le vecteur résultant est bien un vecteur de R2. Les di!érentes étapes de la somme
sont représentées à la figure 1.4.

Ainsi, si on considère un ensemble {x1,x2, . . . ,xp} de p vecteurs de V et un ensemble
{φ1,φ2, . . . ,φp} de p scalaires, alors φ1x1 +φ2x2 + . . .+φpxp est une combinaison linéaire
des p vecteurs, qui est elle-même un vecteur de V . Cette appartenance à V est formellement
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démontrée à la proposition 5.1.1.

Remarque (combinaisons linéaires particulières de deux vecteurs)
Soient x et y deux vecteurs, et soit φx + ↼y leur combinaison linéaire avec deux
scalaires φ et ↼ :

↭ Si φ = ↼ = 1 : la combinaison est la somme des deux vecteurs : x+ y ;
↭ Si φ = 1, ↼ = ↓1 : la combinaison est la soustraction des deux vecteurs : x↓y ;
↭ Si ↼ = 0 : la combinaison est la multiplication de x par le scalaire φ ;
↭ Si φ = ↼ = 0 : cette combinaison donne 0x+0y = 0, c’est-à-dire le vecteur nul.

Cette combinaison linéaire est appelée triviale.

Il existe une infinité de combinaisons linéaires d’un sous-ensemble de vecteurs avec des
scalaires quelconque. L’opérateur Vect(·) traduit se phénomène. Il permet d’écrire d’une
façon condensée l’ensemble des combinaisons linéaires d’une famille de vecteurs. La dé-
finition 1.1.10 explicite ceci. Pour maîtriser cette notation, il est recommandé de faire
l’exercice 0.4.

Définition 1.1.10 (opérateur Vect(·))
Soit (v1,v2, . . . ,vp) une famille de p vecteurs de Rn. L’opérateur Vect(·) est défini
comme

Vect(v1,v2, . . . ,vp) = {x ≃ Rn
: x = c1v1+c2v2+ . . .+cpvp avec c1, c2, . . . , cp ≃ R} .

Remarque (entrées et sorties de Vect(·))
L’opérateur Vect(·) :

↭ prend une famille (et non un ensemble) de vecteurs en entrée ;
↭ retourne l’ensemble (et non une famille) de toutes les combinaisons linéaires

possibles de ces vecteurs.

Il est montré au corollaire 5.1.1 que la sortie de Vect(·) est un espace vectoriel. L’exemple 1.1.4
donne une intuition de ce résultat ainsi que plusieurs exemples d’ensembles retournés par
l’opérateur Vect(·).

Exemple 1.1.4

↭ Pour u ≃ Rn et u ↘= 0, l’ensemble Vect(u) est une droite. En 2D (n = 2), on
peut visualiser ceci sur la figure 1.3 ;
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↭ Étant donnés deux vecteurs u et v non nuls de R3 qui ne sont pas colinéaires,
l’ensemble Vect(u,v) est un plan.

Ces di!érents cas de figures sont étudiés à la section 5.2.4.

1.1.4 Produit scalaire réel

Cette section introduit la notion de produit scalaire, une opération qui permet d’ef-
fectuer la “multiplication” de deux vecteurs colonne afin, notamment, de définir dans la
section 1.2.6 non seulement la norme d’un vecteur, mais aussi le produit de deux matrices.

Pour multiplier deux vecteurs colonne, on introduit la notion de produit ligne-colonne
à la définition 1.1.11. Le terme ligne vient du fait que l’on transpose un vecteur colonne et
qu’il devient donc une ligne.

Définition 1.1.11 (produit ligne-colonne)
Étant donnés x,y ≃ Rn, le produit ligne-colonne de x avec y, noté x↑y, est défini
par :

x↑y =

n

i=1

xiyi.

Il s’agit de la somme des produits des composantes des deux vecteurs.

Remarque

↭ Cette opération est généralisée par le produit matriciel vu à la définition 1.2.14 ;
↭ Formellement, l’opération x↑y est un produit de matrices, car il a été vu plus tôt

qu’un vecteur transposé est une matrice. Il n’est pas nécessaire ici de maîtriser
ce concept car la formule donnée dans la définition 1.1.11 permet de facilement
faire ce calcul ;

↭ x↑y = y↑x : peu importe le vecteur qui est transposé, le résultat est le même.

Ce produit ligne-colonne représente en fait un produit scalaire dans Rn. Un produit
scalaire est une fonction qui prend en entrée deux vecteurs et qui donne un scalaire en
sortie.

La définition 1.1.12 donne la définition du produit scalaire dans Rn qui est utilisée dans
ce document.

Définition 1.1.12 (produit scalaire dans Rn)
Soient x = (x1, x2, . . . , xn) ≃ Rn et y = (y1, y2, . . . , yn) ≃ Rn. Le produit scalaire de x
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et y, noté ∝x,y′, est égal à

∝x,y′ =
n

i=1

xiyi = x↑y .

Remarque

↭ ∝x,y′ = ∝y,x′ ;
↭ Dans certains ouvrages, le produit scalaire est noté avec un point entre les vec-

teurs à la place de la notation utilisée ici. Cela crée de la confusion et est donc
proscrit dans cet ouvrage ;

↭ Dans la définition 1.1.12, il faut que les vecteurs soient dans Rn. Pour Cn, une
autre définition est nécessaire : voir la définition 3.6.5 pour plus de détails ;

↭ La notion de produit scalaire est généralisée à la définition 5.3.1 ;
↭ Un produit scalaire peut être positif ou négatif.

Le produit scalaire permet de définir la norme d’un vecteur. Dans R2 ou R3, c’est la
“longueur” de la flèche qui représente symboliquement le vecteur.

Définition 1.1.13 (norme d’un vecteur)
Étant donné x ≃ Rn, la norme de x, notée △x△, est définie par

△x△ =


∝x,x′ =


n

i=1

x2i .

Remarque

↭ La norme est bien définie car c’est la racine d’une somme d’éléments positifs ou
nuls ;

↭ Cette définition étend la notion de valeur absolue. En e!et, pour n = 1, x = (x1)

et on retrouve △x△ =


∝x,x′ =

1
i=1 x

2
i =


x21 = |x1|.

Dans les sections précédentes, la façon de multiplier un vecteur par un scalaire a été
étudiée. Le résultat de cette opération est aussi un vecteur et possède donc une norme.
Tel qu’indiqué dans la proposition 1.1.1, il n’est pas nécessaire de refaire le calcul de la
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norme de ce nouveau vecteur si l’on connaît la norme du vecteur initial. Cette propriété
n’est présentée ici que pour les réels, mais elle est généralisée à la proposition 3.6.1 pour les
complexes.

Proposition 1.1.1 (norme et multiplication par un scalaire)
Étant donnés k ≃ R et x ≃ Rn, on a △kx△ = |k| △x△.

Preuve. Soit k ≃ R et soit x = (x1, x2, . . . , xn) ≃ Rn. On a kx = (kx1, kx2, . . . , kxn) et
donc △kx△ =


∝kx, kx′ =

n
i=1(kxi)

2 =
↑

k2
n

i=1 x
2
i = |k| △x△. ↬

Les vecteurs qui ont une norme égale à 1 (définition 1.1.14) sont très utilisés en pratique
et notamment dans la section 5.3 et le chapitre 13.

Définition 1.1.14 (vecteur normalisé)
Un vecteur est normalisé (ou unitaire) si sa norme est égale à 1.

Remarque
Ceci est valide également pour les complexes avec la norme de la définition 3.6.6.

Une façon très simple d’obtenir un vecteur normalisé (non nul) est de le diviser par sa
norme tel que vu à la proposition 1.1.2.

Proposition 1.1.2 (normalisation d’un vecteur)

Si x ≃ Rn est un vecteur autre que le vecteur nul 0, alors
x

△x△
est normalisé.

Preuve. D’après la proposition 1.1.1, on a


x

△x△

 =


1

△x△

 △x△. De plus,

1

△x△

 △x△ =

1

△x△
△x△ car △x△ > 0. Il s’ensuit que


x

△x△

 =
△x△

△x△
= 1. ↬

Remarque
Cette technique de normalisation fonctionne pour les complexes : voir la proposi-
tion 3.6.2.

Il existe une relation très connue qui relie le produit scalaire de deux vecteurs et leur
norme : c’est l’inégalité de Cauchy-Schwarz. Elle est très utile dans de nombreuses démons-
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trations et notamment celle du théorème 1.1.2. Le théorème 1.1.1 est aussi valide pour les
complexes grâce aux définitions de norme et de produit scalaire adéquates vues dans le
chapitre 3.

Théorème 1.1.1 (inégalité Cauchy-Schwarz )
Étant donnés x,y ≃ Rn ou Cn, on a

|∝x,y′| B △x△ △y△ .

La compréhension de la preuve repose sur la connaissance des propriétés des fonctions
du second degré (section 4.3.2) et des normes.
Preuve. Soient x,y ≃ Rn ou Cn et soit f une fonction réelle à une variable définie par
f(φ) = △x+ φy△2 = △x△2 + 2φ ∝x,y′ + φ2

△y△2. Si y = 0, l’inégalité est vraie puisque
|∝x,y′| = 0 = △x△ △y△. Si y ↘= 0, sa norme est aussi di!érente de 0 (tel que vu dans le
chapitre 5) et f est une fonction du second degré positive car elle est définie grâce à une
norme au carré. Le discriminant associé à cette fonction est donc négatif ou nul car elle
possède au plus une racine réelle (voir chapitre 4). On a donc

(2 ∝x,y′)2 ↓ 4 △x△2 △y△2 B 0

c’est à dire :
∝x,y′2 B △x△2 △y△2 .

En prenant la racine de chaque côté de l’inégalité, on déduit le résultat car une telle opé-
ration ne change pas le sens de l’inégalité (puisque la fonction racine est croissante et que
les termes |∝x,y′|, △x△ et △y△ sont positifs). ↬

Comme la notion de norme étend la valeur absolue définie sur R, l’inégalité triangulaire
reste valide. Cette inégalité demeure vraie quelle que soit la norme considérée, qu’il s’agisse
de celle définie ici ou de celle sur les complexes (définition 3.6.6) car les deux normes
s’appuient sur les propriétés du produit scalaire.

Théorème 1.1.2 (inégalité triangulaire)
Étant donnés x,y ≃ Rn ou Cn, on a △x+ y△ B △x△+ △y△.

Preuve. Soient x,y ≃ Rn ou Cn. En utilisant la distributivité du produit scalaire vue
dans la définition 5.3.1, on obtient

△x+ y△2 = ∝x+ y,x+ y′ = ∝x,x+ y′+ ∝y,x+ y′ = ∝x,x′+ ∝x,y′+ ∝y,x′+ ∝y,y′

= △x△2 + 2 ∝x,y′+ △y△2 .
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Il découle du théorème 1.1.1 que ∝x,y′ B |∝x,y′| B △x△ △y△. On a donc

△x+ y△2 B △x△2 + 2 △x△ △y△+ △y△2 = (△x△+ △y△)2.

En prenant la racine de chaque côté de l’inégalité, on déduit le résultat car une telle opé-
ration ne change pas le sens de l’inégalité (puisque la fonction racine est croissante et que
les termes △x+ y△, △x△ et △y△ sont positifs. ↬

Le cas d’égalité de l’inégalité triangulaire est traité dans l’exercice 1.7. Il est aussi pos-
sible de dériver d’autres égalités comme l’égalité du parallélogramme ou même le théorème
de Pythagore vus dans l’exercice 1.6. Pour résoudre cet exercice, la notion d’orthogonalité
doit être explicitée. Ici encore, cela étend une notion vue dans R2 : la perpendicularité. On
dit que deux vecteurs sont orthogonaux si leur produit scalaire est nul (définition 1.1.15).
Si de plus, il sont normalisés, on dit qu’ils sont orthonormaux (définition 1.1.16).

Définition 1.1.15 (vecteurs orthogonaux )
Deux vecteurs x et y de Rn ou Cn sont dits orthogonaux si ∝x,y′ = 0.

Remarque
La définition s’applique aussi au vecteur nul qui est donc orthogonal à tous les autres.

Définition 1.1.16 (vecteurs orthonormaux )
Deux vecteurs x et y de Rn ou Cn sont dits orthonormaux s’ils sont orthogonaux et
normalisés, c’est-à-dire que △x△ = △y△ = 1 et ∝x,y′ = 0.

La notion d’orthogonalité est généralisée à la section 5.3.
En plus, de la “taille” d’un vecteur, on voudrait être capable d’évaluer à quel point

des vecteurs sont “éloignés” l’un de l’autre, la notion de distance est introduite à la défini-
tion 1.1.17.

Définition 1.1.17 (distance entre deux vecteurs)
La distance entre deux vecteurs x et y de Rn est la norme du vecteur x↓y, autrement
dit △x↓ y△.

Remarque

↭ La norme d’un vecteur représente donc sa distance au vecteur nul ;
↭ Comme △x↓ y△ = △y ↓ x△, la distance entre deux vecteurs est unique ;
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Dans R2, le signe du produit scalaire possède une interprétation géométrique. En e!et,
si l’angle entre deux vecteurs est inférieur à ω/2, la produit scalaire est positif. Cela vient
du fait que l’on peut exprimer le produit scalaire de x et y de R2 grâce au cosinus de l’angle
formé par ces deux vecteurs.

Proposition 1.1.3 (produit scalaire dans R2)
Soient x et y deux vecteurs non nuls de R2 et soit ↽ ≃ [0;ω] l’angle formé par les
droites d’origine 0 et qui passent par x et y, respectivement, dans le repère 2D. On a

∝x,y′ = △x△ △y△ cos(↽) .

Preuve. La distributivité du produit scalaire donne

△x↓ y△2 = ∝x↓ y,x↓ y′ = ∝x,x↓ y′ ↓ ∝y,x↓ y′ = ∝x,x′ ↓ ∝x,y′ ↓ ∝y,x′+ ∝y,y′

= △x△2 ↓ 2 ∝x,y′+ △y△2 .

Considérons le triangle formé par les vecteurs 0, x et y. La longueur de l’arête opposée à
l’angle ↽ est égale à la distance △x↓ y△ (définition 1.1.17) et la loi des cosinus appliquée à
ce triangle donne △x↓ y△2 = △x△2 + △y△2 ↓ 2 △x△ △y△ cos(↽).

On a donc △x△2 ↓ 2 ∝x,y′ + △y△2 = △x△2 + △y△2 ↓ 2 △x△ △y△ cos(↽), ce qui implique
∝x,y′ = △x△ △y△ cos(↽). ↬

Remarque
L’angle ↽ ≃ [0;ω] entre deux vecteurs x et y non nuls vérifie

cos(↽) =
∝x,y′

△x△ △y△

ce qui, par le théorème 1.1.1, donne bien un nombre dans l’intervalle [↓1; 1]. De plus,

↭ si ∝x,y′ = 0, alors ↽ =
ω

2
(x et y sont orthogonaux) ;

↭ si ∝x,y′ > 0, alors ↽ ≃ [0;
ω

2
[ ;

↭ si ∝x,y′ < 0, alors ↽ ≃]
ω

2
;ω].

L’exemple 1.1.5 illustre ce propos.

Exemple 1.1.5
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Soient u =

[
↓1

3

]
, v =

[
3

4

]
, et w =

[
6

1

]
:

↭ ∝u,v′ = ↓1↔ 3 + 3↔ 4 = 9 ;
↭ ∝u,w′ = ↓1↔ 6 + 3↔ 1 = ↓3.

Tel qu’illustré à la figure 1.5 l’angle ↽1 entre u et w est donc supérieur à
ω

2
(car

↓3 < 0) alors que l’angle ↽2 entre u et v est inférieur à
ω

2
(car 9 > 0).

x

y

u

v

w

0

↽1

↽2

Figure 1.5 – Illustration de l’exemple 1.1.5.

1.1.5 Produit vectoriel

Comme le produit scalaire, le produit vectoriel prend en entrée deux vecteurs, mais
y di!ère en produisant un vecteur à la place d’un scalaire. Ce produit est défini pour les
vecteurs à composantes réelles appartenant à R3. Il permet, pour deux vecteurs linéairement
indépendants, d’en créer un troisième qui leur est orthogonal.

Définition 1.1.18 (produit vectoriel dans R3)
Soient x = (x1, x2, x3) et y = (y1, y2, y3) deux vecteurs de R3. Le produit vectoriel de
x et y est

x ∋ y =




x2y3 ↓ x3y2
x3y1 ↓ x1y3
x1y2 ↓ x2y1



 .

Proposition 1.1.4 (propriétés du produit vectoriel dans R3)
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Soient x, y et z trois vecteurs de R3, ainsi que φ un réel. Le produit vectoriel respecte
les propriétés suivantes.

1. Anti-commutativité : x ∋ y = ↓(y ∋ x) ;
2. Distributivité par rapport à l’addition : x ∋ (y + z) = (x ∋ y) + (x ∋ z) ;
3. Compatibilité avec la multiplication par un scalaire : φ(x ∋ y) = (φx) ∋ y =

x ∋ (φy) ;
4. Respect de l’identité de Jacobi : x ∋ (y ∋ z) + z ∋ (x ∋ y) + y ∋ (z ∋ x) = 0 ;
5. Orthogonalité des vecteurs en entrée : ∝(x ∋ y),x′ = ∝(x ∋ y),y′ = 0 ;
6. Donne le vecteur nul pour deux vecteurs linéairement dépendants : x∋(φx) = 0 ;
7. Règle de l’échange : ∝(x ∋ y), z′ = ∝x, (y ∋ z)′ ;
8. Formule du double produit : x ∋ (y ∋ z) = ∝x, z′y ↓ ∝x,y′ z.

Les propriétés 7 et 8 sont démontrées ci-dessous. Le reste des propriétés est facilement
démontrable et laissé en exercice.

Preuve de la règle de l’échange. Soit x =




x1
x2
x3



, y =




y1
y2
y3



 et z =




z1
z2
z3



. D’une part

on a

∝(x ∋ y), z′ = z1(x2y3 ↓ x3y2) + z2(x3y1 ↓ x1y3) + z3(x1y2 ↓ x2y1)

x1y2z3 ↓ x1y3z2 + x2y3z1 ↓ x2y1z3 + x3y1z2 ↓ x3y2z1 .

D’une autre part, on a

∝x, (y ∋ z)′ = x1(y2z3 ↓ y3z2) + x2(y3z1 ↓ y1z3) + x3(y1z2 ↓ y2z1)

= x1y2z3 ↓ x1y3z2 + x2y3z1 ↓ x2y1z3 + x3y1z2 ↓ x3y2z1 .

D’où ∝(x ∋ y), z′ = ∝x, (y ∋ z)′ pour tous x y et z de R3. ↬

Preuve de la formule du double produit.
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Soit x =




x1
x2
x3



, y =




y1
y2
y3



 et z =




z1
z2
z3



.

x ∋ (y ∋ z) = x ∋




y2z3 ↓ y3z2
y3z1 ↓ y1z3
y1z2 ↓ y2z1





=




x2(y1z2 ↓ y2z1)↓ x3(y3z1 ↓ y1z3)
x3(y2z3 ↓ y3z2)↓ x1(y1z2 ↓ y2z1)
x1(y3z1 ↓ y1z3)↓ x2(y2z3 ↓ y3z2)





=




y1(x3z3 + x2z2)↓ z1(x2y2 + x3y3)
y2(x3z3 + x1z1)↓ z2(x3y3 + x1y1)
y3(x1z1 + x2z2)↓ z3(x1y1 + x2y2)





=





y1(x3z3 + x2z2) + (y1x1z1 ↓ z1x1y2)︸ ︷︷ ︸
0

↓z1(x2y2 + x3y3)

y2(x3z3 + x1z1) + (y2x2z2 ↓ z2x2y2)︸ ︷︷ ︸
0

↓z2(x3y3 + x1y1)

y3(x1z1 + x2z2) + (y3x3z3 ↓ z3x3y3)︸ ︷︷ ︸
0

↓z3(x1y1 + x2y2)





=




y1(x3z3 + x2z2 + x1z1)↓ z1(x2y2 + x3y3 + x1z1)
y2(x3z3 + x1z1 + x2z2)↓ z2(x3y3 + x1y1 + x2y2)
y3(x1z1 + x2z2 + x3z3)↓ z3(x1y1 + x2y2 + x3y3)





= ∝x, z′y ↓ ∝x,y′ z .

↬

Il est à noter que le produit vectoriel de deux vecteurs n’est pas associatif. C’est-à-dire
qu’en général (x ∋ y) ∋ z ↘= x ∋ (y ∋ z).

Exemple 1.1.6 (non-associativité du produit vectoriel)
Voici un exemple qui montre que le produit vectoriel n’est pas associatif en général.

Soit x =




1

2

3



, y =




2

1

2



 et z =




3

4

4



.
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D’une part on a

(x ∋ y) ∋ z =








1

2

3



 ∋




2

1

2







 ∋




3

4

4



 =




2↔ 2↓ 3↔ 1

3↔ 2↓ 1↔ 2

1↔ 1↓ 2↔ 2



 ∋




3

4

4





=




1

4

↓3



 ∋




3

4

4



 =




4↔ 4↓ 4(↓3)

↓3↔ 3↓ 4↔ 1

1↔ 4↓ 4↔ 3



 =




28

↓13

↓8



 .

D’un autre part, on a

x ∋ (y ∋ z) =




1

2

3



 ∋








2

1

2



 ∋




3

4

4







 =




1

2

3



 ∋




1↔ 4↓ 2↔ 4

2↔ 3↓ 2↔ 4

2↔ 4↓ 1↔ 3





=




1

2

3



 ∋




↓4

↓2

5



 =




2↔ 5↓ 3(↓2)

3(↓4)↓ 1↔ 5

1(↓2)↓ 2(↓4)



 =




16

↓17

6



 .

D’où (x ∋ y) ∋ z ↘= x ∋ (y ∋ z).

La propriété du point 5 indique que le vecteur produit par deux autres vecteurs sera
toujours orthogonal à ceux-ci. Ceci implique qu’il sera aussi orthogonal au plan généré par
les deux vecteurs en entrée. En e!et, les vecteurs générés par deux vecteurs linéairement
indépendants v et w de R3 sont donnés par une combinaison linéaire de v et w. C’est-à-dire
qu’ils sont représentables par

T (φ,↼) = φv + ↼w, pour tout φ et ↼ dans R.
En imaginant les composantes de chaque vecteur T (φ,↼) comme étant des coordonnées

de points (x, y, z) dans R3, on remarque que ces vecteurs se retrouvent dans un plan de R3

passant par l’origine.

Définition 1.1.19 (représentation paramétrique d’un plan passant par l’origine dans
R3)
Un plan passant par l’origine dans R3 peut être représenté par

T (φ,↼) = φv + ↼w, pour tout φ et ↼ dans R,

où v et w sont des vecteurs linéairement indépendants de R3. C’est une représentation
paramétrique d’un plan passant par l’origine généré par v et w, de paramètres φ et
↼.
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Pour v =




v1
v2
v3



 et w =




w1

w2

w3



, la représentation est

T (φ,↼) = φv + ↼w =




φv1 + ↼w1

φv2 + ↼w2

φv3 + ↼w3



 , pour tout φ et ↼ dans R.

Autrement dit, n’importe quel vecteur b =




x
y
z



 qui appartient à ce plan est tel que

x = φv1 + ↼w1,

y = φv2 + ↼w2 et
z = φv3 + ↼w3.

pour certains scalaires réels φ et ↼. C’est l’équation paramétrique du plan généré par
v et w.

L’ensemble des vecteurs qui font partie d’un plan généré par deux vecteurs linéairement
indépendants v et w dans R3 sont tous orthogonaux à v↔w, car pour toutes valeurs de φ
et ↼ dans R,

∝v ↔w, T (φ,↼)′ = ∝v ↔w,φv + ↼w′

= ∝v ↔w,φv′+ ∝v ↔w,↼w′ , distributivité du produit scalaire
= φ ∝v ↔w,v′+ ↼ ∝v ↔w,w′ , propriétés de multiplication par un scalaire
= φ0 + ↼0 = 0 .

En trois dimensions, le vecteur v ∋ w produit à partir de deux vecteurs linéairement
indépendants d’un plan est un vecteur qu’on dit normal à ce plan. Pour chaque plan dans
R3, il existe une infinité de vecteurs normaux qui sont tous colinéaires à v∋w. C’est-à-dire
qu’ils s’expriment comme v ∋w multiplié par une valeur réelle.

On peut montrer qu’un plan dans R3 passant par l’origine qui contient deux vecteurs
linéairement indépendants v et w admet exactement tout les vecteurs dans R3 qui sont
orthogonaux à v ∋w.

Définition 1.1.20 (équation cartésienne d’un plan passant par l’origine)
Le plan passant par l’origine et contenant deux vecteurs v et w linéairement indépen-
dants peut s’écrire sous la forme

∝n,x′ = 0
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où n est un vecteur normal au plan généré par v et w et où x = (x, y, z) est un vecteur
appartenant au plan. L’ensemble des vecteurs x qui respectent cette équation forme
un plan qui passe par l’origine. Peut importe le vecteur normal n choisi, l’équation
représentera toujours le même plan. Ces équations sont les équations cartésiennes d’un
plan.

Exemple 1.1.7 (équation cartésienne d’un plan)
On cherche l’équation d’un plan passant par l’origine dans R3 contenant les vecteurs
indépendants v = (1,↓2, 4) et w = (3, 7, 5). Il est possible d’utiliser le produit vecto-
riel suivant pour trouver un vecteur normal qui permettra de décrire le plan comme
une équation cartésienne :

n = v ∋w =




1

↓2

4



 ∋




3

7

5



 =




↓2↔ 5↓ 4↔ 7

4↔ 3↓ 1↔ 5

1↔ 7↓ (↓2)↔ 3



 =




↓38

7

13



 .

Donc x = (x, y, z) ≃ Vect(v,w) (le plan généré par v et w) s’il respecte

∝n,x′ = 0 ∞∈
[
↓38 7 13

]



x
y
z



 = 0 ∞∈ ↓38x+ 7y + 13z = 0

qui est une équation cartésienne du plan généré par les deux vecteurs v et w.

Que faire lorsqu’on cherche à obtenir une équation d’un plan qui ne passe pas par
l’origine ? Dans ce cas, les vecteurs appartenant à ce plan sont générés en partant d’un
vecteur r appartenant au plan et en se déplaçant dans les directions de deux vecteurs v, w
tangents au plan. Les vecteurs qui appartiennent à ce plan sont donnés par

T (φ,↼) = r+ φv + ↼w, pour tout φ et ↼ dans R.

Définition 1.1.21 (représentation paramétrique d’un plan passant par un point quel-
conque dans R3)

Un plan passant par un vecteur quelconque r =




r1
r2
r3



 dans R3, où v et w sont deux

vecteurs linéairement indépendants tangents à ce plan, peut être représenté paramé-
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triquement par

T (φ,↼) = r+ φv + ↼w, pour tout φ et ↼ dans R.

Les paramètres de cette représentation sont φ et ↼.

Si x =




x1
x2
x3



 et y =




y1
y2
y3



, la représentation paramétrique devient

T (φ,↼) = r+ φv + ↼w =




r1 + φv1 + ↼w1

r2 + φv2 + ↼w2

r3 + φv3 + ↼w3



 , pour tout φ et ↼ dans R.

On remarque que pour n’importe quel vecteur b =




x
y
z



 appartenant à ce plan, il

existe un scalaire φ et un scalaire ↼ tel que

x = r1 + φv1 + ↼w1,

y = r2 + φv2 + ↼w2 et
z = r3 + φv3 + ↼w3.

C’est l’équation paramétrique du plan passant par r, généré par v et w.

Alors, n’importe quel vecteur v appartenant à ce plan est aussi tel que b↓ r appartient
au plan passant par l’origine et généré par v et w. Le prochain exemple montre comment
utiliser ce fait pour obtenir une équation cartésienne d’un plan ne passant pas par l’origine.

Définition 1.1.22 (équation cartésienne d’un plan passant par un point quelconque)
Soit v, w, n et r, quatre vecteurs de R3 où n est un vecteur normal au plan généré
par v et w. Si un plan de R3 est généré par

T (φ,↼) = r+ φv + ↼w, pour tout φ et ↼ dans R,

alors n’importe quel vecteur b de R3 appartenant à ce plan est tel que

∝n,b↓ r′ = 0,

ou de manière équivalente
∝n,b′ = ∝n, r′ .

C’est une équation cartésienne du plan contenant l’ensemble des vecteurs générés par
T (φ,↼).
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Exemple 1.1.8 (équation cartésienne d’un plan ne passant pas par l’origine)

Soit un plan qui contient le vecteur r =




↓1

↓2

3



 dont deux vecteurs tangents à celui-ci

sont v =




4

3

2



 et w =




↓1

5

6



. Pour trouver une équation cartésienne de ce plan, il faut

d’abord calculer un vecteur normal au plan généré par v et w. On utilise le produit
vectoriel

n = v ∋w =




4

3

2



 ∋




↓1

5

6



 =




3↔ 6↓ 2↔ 5

(↓2↔ 1)↓ 4↔ 6

4↔ 5↓ (3↔ (↓1))



 =




8

↓26

23



 .

Ainsi, un vecteur b = (x, y, z) appartenant à ce plan doit être tel que

∝n,b′ = ∝n, r′

∞∈
[
8 ↓26 23

]



x
y
z



 =
[
8 ↓26 23

]



↓1

↓2

3





∞∈ 8x↓ 26y + 23z = 113.

Est-il possible de partir d’une équation cartésienne pour obtenir une représentation
paramétrique d’un plan dans R3 ? C’est e!ectivement possible en trouvant deux vecteurs
linéairement indépendants entre eux et orthogonaux à n.

Exemple 1.1.9 (d’une équation cartésienne d’un plan dans R3 à une représentation
paramétrique)
Prenons l’équation cartésienne d’un plan dans R3

2x+ 5y + 8z = 8 .

Pour obtenir une représentation paramétrique, il faut d’abord trouver un vecteur qui
appartient à ce plan. Puisque cette équation possède trois inconnues, il su"t d’en fixer
deux pour obtenir la troisième. On pose x = 0 et y = 0 pour obtenir 8z = 8 ce qui

implique z = 1. Alors le vecteur r =




0

0

1



 appartient au plan. Il faut maintenant obtenir
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deux vecteurs qui sont orthogonaux à n =




2

5

8



 et qui sont linéairement indépendants

entre eux.

Soit un vecteur v =




v1
v2
v3



, alors

∝n,v′ = 0

∞∈ 2v1 + 5v2 + 8v3 = 0

En posant v1 = 1, alors l’équation devient

2 + 5v2 + 8v3 = 0

et on peut prendre v2 = ↓2 et v3 = 1 pour obtenir un vecteur v =




1

↓2

1



 orthogonal à

n. De plus, on pourrait continuer à chercher un autre vecteur w orthogonal à n qui est
linéairement indépendant à v. Une astuce rapide est de prendre le produit vectoriel
de v avec n. On a

w = v ∋ n

=




1

↓2

1



 ∋




2

5

8



 =




↓16↓ 5

2↓ 8

5 + 4



 =




↓21

↓6

9



 .

Ainsi, une représentation paramétrique du plan d’équation cartésienne 2x+5y+8z = 8

est

T (φ,↼) = r+φv+↼w =




0

0

1



+φ




1

↓2

1



+↼




↓21

↓6

9



 =




φ↓ 21↼
↓2φ↓ 6↼
1 + φ+ 9↼



 , avec φ,↼ dans R.

Proposition 1.1.5 (formule équivalente du produit vectoriel)
Soit ↽ ≃ [0,ω], l’angle entre x et y dans le plan qui les contient, alors le produit
vectoriel de deux vecteurs x et y est aussi

x ∋ y = △x△ △y△ sin ↽u

où u est le vecteur unitaire orthogonal au plan généré par x et y tel que ∝(x↔ y),u′ >
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0. Attention, ici il faut quand même utiliser la formule de la définition du produit
vectoriel pour trouver le sens du vecteur normal unitaire u.

Preuve. Montrons que pour deux vecteurs x et y de R3 et ↽ ≃ [0;ω] l’angle entre ces
deux vecteurs, alors

△x ∋ y△ = △x△ △y△ sin ↽.

En e!et, on a

△x ∋ y△2 = ∝x ∋ y,x ∋ y′

= ∝x,y ∋ (x ∋ y)′ , par la règle de l’échange
= ∝x, ∝y,y′x↓ ∝x,y′y′ , par la formule du double produit sur y ∋ (x ∋ y)

= ∝y,y′ ∝x,x′ ↓ ∝x,y′ ∝x,y′ , par distributivité du produit scalaire

= △x△2 △y△2 ↓ ∝x,y′2 , par définition du produit scalaire

= △x△2 △y△2 ↓ (△x△ △y△ cos ↽)2, par la proposition 1.1.3

= △x△2 △y△2 ↓ △x△2 △y△2 cos2 ↽

= △x△2 △y△2 (1↓ cos
2 ↽)

= △x△2 △y△2 sin2 ↽, par l’identité trigonométrique

=∈ △x ∋ y△ =


△x△2 △y△2 sin2 ↽

= △x△ △y△ |sin ↽|

= △x△ △y△ sin ↽, car ↽ ≃ [0,ω].

Ainsi, si u est le vecteur unitaire orthogonal à x et y dans le même sens que x∋y, alors

x ∋ y = △x ∋ y△
x ∋ y

△x ∋ y△
= △x ∋ y△u = △x△ △y△ sin ↽u.

↬
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1.2 Matrices
Cette section est consacrée à la présentation des matrices. Elles peuvent être addition-

nées et multipliées par un scalaire pour donner de nouvelles matrices grâce à des combi-
naisons linéaires. Ces matrices peuvent aussi être multipliées entre elles. Enfin, un produit
scalaire est introduit afin de permettre la définition rigoureuse d’une norme associée à une
matrice.
1.2.1 Définitions

Dans la section précédente, un vecteur colonne était un tableau de scalaires à une
colonne. Les matrices sont des extensions de ce concept, en considérant plusieurs colonnes.
Les éléments du tableau qui définissent la matrice sont aussi appelés des composantes.

Une matrice est donc un tableau de scalaires qui possède m lignes et n colonnes. Le
couple (m,n) indique la taille de la matrice que l’on note m↔n. Il convient de noter que l’on
parle ici de la “taille” d’une matrice et surtout pas de sa dimension. Le terme “dimension”
est réservé pour les espaces vectoriels. Voir la section 5.2.4 pour une définition plus précise.

Définition 1.2.1 (matrice)
Une matrice A est un tableau de taille m↔ n. Ses éléments sont ses composantes qui
sont des scalaires notés A(i, j), avec i ≃ !1;m" l’indice de ligne et j ≃ !1;n" l’indice
de colonne. La forme générale d’une matrice est donc :

A =





A(1, 1) A(1, 2) · · · A(1, n)
A(2, 1) A(2, 2) · · · A(2, n)

...
... . . . ...

A(m, 1) A(m, 2) · · · A(m,n)




.

Remarque
Utiliser les expressions “la ligne i de A” et “la colonne j de A” revient à mentionner
la i-ième ligne de A et sa j-ième colonne.

Remarque
Les noms attribués aux indices revêtent une importance particulière, dans la mesure
où ce sont systématiquement les mêmes qui sont repris, par convention, ce qui facilite
la compréhension de la suite. Ansi,

↭ Les notations i, j, m, n sont réservées tout au long de l’ouvrage, avec la signifi-
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cation suivante :
↭ i est l’indice d’une ligne ;
↭ j est l’indice d’une colonne ;
↭ m est le nombre de lignes ;
↭ n est le nombre de colonnes.

↭ Par convention, lorsque l’on accède à une composante, on donne toujours la ligne
en premier, et la colonne en second.

Si on dit que deux matrices ont la même taille, cela signifie qu’elles ont le même nombre
de lignes et le même nombre de colonnes. Les matrices qui sont d’une certaine taille et dont
les scalaires sont de même nature forment également un ensemble usuel de l’algèbre tel que
mentionné à la définition 1.2.2. Si toutes les composantes sont réelles alors A ≃ Rm↔n.

Définition 1.2.2 (Rm↔n)
Rm↔n est un ensemble d’éléments, appelés matrices, écrits sous forme de m lignes et
n colonnes et à composantes réelles.

Remarque

↭ Lorsque les composantes sont des complexes, les matrices appartiennent à Cm↔n.
On a bien évidement Rm↔n

→ Cm↔n.
↭ Si A ≃ Rm↔n, on dit que A est une matrice réelle.
↭ Si A ≃ Cm↔n, on dit que A est une matrice complexe.
↭ Une matrice A ≃ Cm↔n peut éventuellement être une matrice réelle.

Il est expliqué au chapitre 5 que ces ensembles sont également des espaces vectoriels.
Cette connaissance n’est pas nécessaire dans le présent chapitre.

Tout comme avec les vecteurs colonne, certains ensembles peuvent être assimilés :
Rm↔1

= Rm et R = R1
= R1↔1. (c’est également vrai avec les ensembles complexes si-

milaires). En e!et, un vecteur colonne à m composantes peut être vu comme une matrice
à m lignes et n = 1 colonne.

Tel que déjà mentionné à la suite de la définition 1.1.4, il convient de noter qu’une ligne
n’est pas un vecteur mais une matrice (sauf si elle a une seule composante et que c’est un
scalaire). Tout ceci est illustré dans l’exemple 1.2.1.



P
R
O
T
O
T
Y
P
E

32 CHAPITRE 1. VECTEURS ET MATRICES

Exemple 1.2.1 (Rm↔1
= Rm et R = R1

= R1↔1)

↭ x = (1, 2, 3) =




1

2

3



 = [1 2 3]
↑
↘= [1 2 3].

↭ x = 1 = (1) = [1] = [1]
↑.

La matrice nulle (définition 1.2.3), notée O, est aussi un élément central de l’ensemble
des matrices. Sa définition sert surtout à la justification que l’ensemble des matrices est un
espace vectoriel (tel que vu à l’exercice 5.3). Il est essentiel de ne pas confondre la matrice
nulle O avec le vecteur nul 0 : leur taille est di!érente (sauf, bien sûr, si on considère la
matrice nulle à une seule colonne).

Définition 1.2.3 (matrice nulle)
La matrice nulle est la matrice dont toutes les composantes sont égales au scalaire nul
(réel ou complexe). Elle n’est pas forcément carrée et est notée O ou (Om,n en cas
d’ambiguïté).

Une autre matrice très utile en pratique est la matrice identité. Elle sert surtout pour
les produits de matrices et est introduite dans la section 1.2.6.

Une manière courante de représenter une matrice consiste à la considérer comme un
ensemble de vecteurs colonne. Cette représentation s’avère utile pour introduire la notion
de produit matriciel. Il est ainsi intéressant d’introduire un nouvel opérateur Col(.) à la
définition 1.2.4 qui permet d’accéder aux colonnes d’une matrice d’une façon plus aisée.

Définition 1.2.4 (opérateur Col(.))
Soit A = [a1 a2 · · · an] une matrice de taille m ↔ n dont les colonnes aj sont des
vecteurs réels ou complexes de taille m, pour j ≃ !1;n". L’opération Col(A) donne la
famille des colonnes de A :

Col(A) = (a1,a2, . . . ,an) .

La section v donne d’autres détails de notations.

1.2.2 Transposée de matrices

La transposée d’une matrice, tel qu’indiqué dans la définition 1.2.5, est similaire à la
transposée d’un vecteur. Le principe est le même, en considérant les colonnes d’une matrice
comme des vecteurs colonne : les colonnes deviennent des lignes et les lignes deviennent des
colonnes.
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Définition 1.2.5 (transposée d’une matrice)
Soit A une matrice de taille m↔ n. La transposée de A, notée A↑, est la matrice de
taille n↔m telle que

A↑
(i, j) = A(j, i)

pour i ≃ !1;m" et j ≃ !1;n".

Les propriétés de la transposée sont regroupées dans la proposition 1.2.1. Les notions
nécessaires pour comprendre certaines de ces propriétés sont vues plus loin dans l’ouvrage.
Les liens vers les sections pertinentes sont donnés dans la preuve de cette proposition.

Proposition 1.2.1 (propriétés de la transposée)
Soient A et B deux matrices.

1. si A et B sont de même taille, alors (A + B)
↑

= A↑
+ B↑ (la somme des

transposées est la transposée de la somme) ;
2. (kA)

↑
= kA↑ ;

3.

A↑↑

= A ;
4. Si A est triangulaire inférieure (supérieure), alors A↑ est triangulaire supérieure

(inférieure) ;
5. Si le produit matriciel AB est possible, alors (AB)

↑
= B↑A↑ ;

6. Si A est inversible, alors

A↑↘1

=

A↘1

↑ ;
7. det(A↑

) = det(A).

Preuve.
1 Les composantes de A+B sont A(i, j)+B(i, j). Lorsqu’on transpose A+B les com-

posantes deviennent A(j, i) +B(j, i), ce qui correspond à la somme des composantes
de A↑ et B↑ ;

2 Les composantes restent toutes multipliées par k, d’où le résultat ;
3 Comme les lignes et les colonnes sont échangées deux fois, elles reviennent à leur place

initiale ;
4 Voir la section 1.2.3 pour la définition des matrices triangulaires ; la preuve découle

alors directement de cette dernière et de la définition de la transposée ;
5 Voir le point 1 du théorème 1.2.2 pour la propriété du produit matriciel ;
6 Voir la proposition 1.4.3 pour la transposée de l’inverse ;
7 Voir le théorème 1.3.1 pour le déterminant de la transposée.

↬
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La notion de transposée constitue le fondement des matrices symétriques qui sont défi-
nies à la section 1.2.3. Il convient également de noter que cette définition de la transposée
est vraie pour les matrices réelles et complexes. Toutefois, pour faire des manipulations sur
les matrices complexes, la plupart du temps cela ne su"t pas. Cette définition de transposée
est donc étendue via la notion de transconjuguée (définition 3.6.4).

On note finalement que la section 4.4 du chapitre 4 montre que la transposée est une
application linéaire.

1.2.3 Formes de matrices

Les matrices peuvent avoir une forme particulière desquelles découlent des propriétés
intéressantes. Par exemple, il sera établi au chapitre 7 que les matrices symétriques ont
toujours des valeurs propres réelles.

Formes usuelles

Les formes les plus usuelles des matrices sont les suivantes :

↭ matrice rectangulaire : une telle matrice a un nombre de lignes di!érent du nombre
de colonnes, c’est-à-dire qu’une matrice A de taille m↔n est rectangulaire si m ↘= n ;

↭ matrice carrée : une telle matrice a autant de lignes que de colonnes. On distingue
plusieurs types particuliers de ces matrices. Ainsi, une matrice carrée peut être :

↭ Triangulaire : cette notion est évoquée à la section 1.2.2. Il existe deux types de
matrices triangulaires :

↭ Triangulaire supérieure : la matrice est constituée de zéros sous sa diagonale.
En d’autres termes, A est triangulaire supérieure si A(i, j) = 0 pour tous
i > j. Les autres composantes peuvent aussi être nulles ;

↭ Triangulaire inférieure : la matrice est constituée de zéros au-dessus de sa
diagonale. En d’autres termes, A est triangulaire inférieure si A(i, j) = 0

pour tous i < j. Les autres composantes peuvent aussi être nulles.

Grâce à cette définition, il est facile de prouver le point 4 de la proposition 1.2.1.
En e!et, si A(i, j) = 0 pour tout i < j, alors A↑

(j, i) = 0 pour tout j > i ;
↭ Diagonale : une matrice A est diagonale si A(i, j) = 0 pour tout i ↘= j. Les

seuls éléments non nuls sont sur la diagonale. Il peut également y avoir des 0 sur
la diagonale. Une matrice diagonale est donc à la fois triangulaire supérieure et
inférieure ; 4

↭ Unipotente : une matrice A est unipotente si on peut trouver un entier k tel que
(I↓A)

k
= O ;

4. la notation Diag(a, b) =

[
a 0
0 b

]
simplifie l’écriture d’une matrice diagonale.
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↭ Symétrique : une matrice A est symétrique si elle est égale à sa transposée, c’est-
à-dire A = A↑. Ainsi, toute matrice diagonale est symétrique car les termes
échangés lors de la transposition sont des zéros ;

↭ Antisymétrique : une matrice A est antisymétrique si A↑
= ↓A. Tel qu’indiqué

à l’exercice 1.29, il s’ensuit que les termes sur la diagonale de telles matrices sont
nuls ;

↭ Hermitienne : Voir définition 3.6.7 ;
↭ Orthogonale : Voir définition 5.3.5.

Il se peut, bien sûr, qu’une matrice soit de plusieurs des formes décrites ci-dessus. Les
exemples 1.2.2 et 1.2.3 illustrent cela.

Exemple 1.2.2
O est à la fois triangulaire supérieure, triangulaire inférieure, diagonale, unipotente,
symétrique, antisymétrique et hermitienne.

Exemple 1.2.3
Toute matrice diagonale est triangulaire (inférieure et supérieure).

D’autres formes sont étudiées dans d’autres sections, par exemple les matrices échelon-
nées et échelonnées réduites (voir pour cela les définitions 2.1.4 et 2.1.5).

Matrices par blocs

Pour démontrer certaines propriétés ou pour faciliter certains calculs, on peut “découper”
une matrice en blocs. Ce découpage permet également de paralléliser certaines tâches lors
de calculs de grande taille. Dans ce qui suit, les matrices peuvent être réelles ou complexes.

Définition 1.2.6 (sous-matrice)
Une sous-matrice d’une matrice A de taille m ↔ n est une matrice de taille m⇒

↔ n⇒

avec m⇒
B m et n⇒

B n dont on a gardé seulement certaines lignes ou colonnes de A.

Une matrice définie par blocs est une matrice que l’on définit en fonction de certaines
sous-matrices qu’on appelle “blocs” de A. Chacun des blocs d’une telle matrice A est une
sous-matrice de A pour laquelle on a gardé des lignes et des colonnes consécutives. Les
tailles de ces blocs doivent être cohérentes avec la taille de A, i.e., le nombre total de
colonnes des sous-matrices, doit être égal au nombre total de colonnes de la matrice A, et
il en est de même pour les lignes.
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Définition 1.2.7 (matrice blocs)
Soit A une matrice de taille m ↔ n. On peut définir A grâce à des sous-matrices
appelées blocs de telle sorte que

A =





A11 A12 · · · A1q

A21 A22 · · · A2q
...

... . . . ...
Ap1 Ap2 · · · Apq





où Aij est une sous-matrice de A pour tout i ≃ !1; p" et pour tout j ≃ !1; q", p étant
le nombre de divisions des m lignes de A, et q le nombre de divisions des n colonnes
de A.

Les blocs peuvent, par exemple, être les colonnes d’une matrice, dans quel cas on a
A = [a1 a2 · · · an] avec aj ≃ Rm ou Cm pour j ≃ !1;n" (pour rappel, l’indice j est réservé
pour les colonnes).

Les blocs peuvent aussi être les lignes d’une matrice, dans quel cas, pour une matrice
B dont les lignes sont b↑

1 ,b
↑
2 , . . . ,b

↑
m, on a

B =





b↑
1

b↑
2
...

b↑
m





avec bi ≃ Rn ou Cn pour i ≃ !1;m" (pour rappel, l’indice i est réservé pour les lignes). Il
convient de noter l’utilisation du symbole de la transposée pour les lignes de B, car chaque
ligne de B est un vecteur colonne transposé.

On peut éventuellement délimiter les blocs par des séparations virtuelles pour des ques-
tions de visualisation, comme cela est fait dans l’exemple 1.2.4.

Exemple 1.2.4

↭ Lorsqu’une matrice A ≃ R4↔4 est décomposée en blocs de taille 2↔2, on écrira :

A =

[
A11 A12

A21 A22

]
=

[
A11 A12

A21 A22

]
.

où A11 ≃ R2↔2, A12 ≃ R2↔2, A21 ≃ R2↔2 et A22 ≃ R2↔2 ;
↭ Considérons le découpage ci-dessous de la matrice B en 4 blocs

B =

[
1 2 3 4

5 6 7 8

]
=

[
1 2 3 4

5 6 7 8

]
=

[
B11 B12

B21 B22

]
.
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On a B11 =
[
1 2 3

]
≃ R1↔3, B12 =

[
4
]
≃ R1↔1, B21 =

[
5 6 7

]
≃ R1↔3 et

B22 =
[
8
]
≃ R1↔1.

Certains découpages par blocs sont intéressants de par leur structure. C’est le cas, par
exemple, des matrices diagonales par blocs et des matrices triangulaires par blocs décrites
dans les définitions suivantes. L’exemple 1.2.5 illustre ces définitions alors que l’exercice 1.20
en démontre l’utilité.

Définition 1.2.8 (matrice diagonale par blocs)
Soit A une matrice définie par blocs selon la définition 1.2.7. Elle est diagonale par
blocs si p = q, Aij = 0 pour tout i ↘= j, et Aii est quelconque (pas nécessairement une
matrice diagonale classique) pour tout i ≃ !1; p".

Définition 1.2.9 (matrice triangulaire par blocs)
Soit A une matrice définie par blocs selon la définition 1.2.7. Elle est triangulaire par
blocs si p = q et

↭ Aij = 0 pour tout i > j (triangulaire supérieure) ;
↭ Aij = 0 pour tout i < j (triangulaire inférieure).

Exemple 1.2.5

↭ A =





1 2 3 0 0 0

0 0 0 8 0 0

0 0 0 0 1 1

0 0 0 0 1 1



 =





1 2 3 0 0 0

0 0 0 8 0 0

0 0 0 0 1 1

0 0 0 0 1 1



 est diagonale par blocs.

↭ B =

[
1 2 3 0

5 6 7 8

]
=

[
1 2 3 0

5 6 7 8

]
est triangulaire inférieure par blocs.

Les matrices définies par blocs sont aussi utilisées à la section 8.1.4 pour la résolution
de systèmes d’équations linéaires.

1.2.4 Opérations matricielles simples

Comme pour les vecteurs, il est possible de définir deux opérations matricielles, à savoir
le produit par un scalaire et l’addition. Ces deux opérations sont utiles pour démontrer
la structure d’espace vectoriel de Rm↔n (voir par exemple l’exercice 5.3). Dans les deux
définitions qui suivent, les matrices peuvent être réelles ou complexes.



P
R
O
T
O
T
Y
P
E

38 CHAPITRE 1. VECTEURS ET MATRICES

Définition 1.2.10 (addition matricielle)
Étant données deux matrices A,B ≃ Rm↔n (ou Cm↔n), leur addition matricielle est
la matrice C notée

C = A+B

et ses composantes sont définies par

C(i, j) = A(i, j) +B(i, j).

Remarque
A et B doivent être de même taille pour pouvoir être additionnées !

Définition 1.2.11 (produit scalaire-matrice)
Étant donnés une matrice A ≃ Rm↔n (ou Cm↔n) et un scalaire k, le produit scalaire-
matrice est la matrice C notée

C = kA

et ses composantes sont celles de A multipliées par le scalaire k, c’est-à-dire

C(i, j) = kA(i, j).

Remarque
Il est possible de combiner ces di!érentes opérations pour faire des combinaisons
linéaires de matrices.

La proposition 1.2.2 donne quelques propriétés de base de ces deux opérations matri-
cielles.

Proposition 1.2.2 (propriétés de l’addition matricielle et du produit scalaire-matrice)

1. A+B = B+A ;
2. k(A+B) = kA+ kB ;
3. A+ (B+C) = (A+B) +C.

Preuve. Pour prouver ces trois propriétés, il su"t d’étudier les composantes de chacune
de ces matrices, en tenant compte des définitions précédentes. Les propriétés découlent alors
directement du fait qu’elles sont vraies pour des scalaires alors que les composantes de ces
matrices sont toutes des scalaires. ↬
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Les exercices 1.9 et 1.11 permettent de se familiariser avec ces opérations et la notion
de transposée.

Chaque matrice carrée (réelle ou complexe) possède une trace qui, telle que définie
ci-dessous, est la somme de ses éléments diagonaux.

Définition 1.2.12 (trace d’une matrice)
Si A est une matrice carrée n↔n réelle ou complexe, alors sa trace est définie comme
la somme de ses éléments diagonaux. Elle est notée tr(A), ce qui donne

tr(A) =

n

i=1

A(i, i) .

La proposition 1.2.3 regroupe les propriétés importantes portant sur la trace des ma-
trices.

Proposition 1.2.3 (propriétés de la trace)
Soient A,B deux matrices réelles ou complexes et soit k un scalaire. On a

1. tr(A+B) = tr(A) + tr(B), où A et B sont deux matrices carrées ;
2. tr(kA) = k tr(A), où A est une matrice carrée ;
3. tr(A↑

) = tr(A), où A est une matrice carrée ;
4. tr(AB) = tr(BA), où AB et BA sont des matrices carrées, alors que A et B

ne le sont pas forcément ;

Preuve.

1 En supposant que A et B sont de taille n↔ n, étant donné que les coe"cients diago-
naux de A+B sont A(i, i) +B(i, i), il s’ensuit que

tr(A+B) =

n

i=1

(A(i, i) +B(i, i)) =
n

i=1

A(i, i) +
n

i=1

B(i, i) = tr(A) + tr(B);

2 En supposant que A est de taille n↔n, étant donné que les coe"cients diagonaux de
kA sont kA(i, i), il s’ensuit que

tr(kA) =

n

i=1

(kA(i, i)) = k
n

i=1

A(i, i) = tr(A);

3 Cette propriété découle du fait que les coe"cients diagonaux ne changent pas lors
d’une transposition ;



P
R
O
T
O
T
Y
P
E

40 CHAPITRE 1. VECTEURS ET MATRICES

4 La démonstration de ce point est faite à la section 1.2.6 (voir la proposition 1.2.6).

↬

Il convient de noter qu’on n’a pas nécessairement tr(AB) = tr(A) tr(B), tel qu’illustré
dans l’exemple 1.2.6. On peut également remarquer que tr(AB) est défini même si la trace
de A et la trace de B n’existent pas, lorsque A et B ne sont pas des matrices carrées. La
section 1.2.6 traite de ces problématiques de taille.

Exemple 1.2.6 (contre-exemple pour la trace du produit de matrices)

En général, on a tr(AB) ↘= tr(A) tr(B). Par exemple, si A =

[
1 1

0 0

]
et B =

[
0 1

0 1

]
,

alors AB =

[
0 0

0 0

]
, tr(A) = tr(B) = 1, tr(AB) = 0, et donc 0 ↘= 1↔ 1.

1.2.5 Produit matrice-vecteur

Avant de multiplier des matrice entre-elles, il est essentiel de maîtriser la notion de pro-
duit matrice-vecteur de la définition 1.2.13. Elle est basée sur une opération de type produit
ligne-colonne (définition 1.1.11). Le produit matrice-vecteur est illustré à la figure 1.6.

Définition 1.2.13 (produit matrice-vecteur)
Soient

↭ A une matrice réelle ou complexe de taille m↔ n dont les lignes sont
a↑1 ,a

↑
2 , . . . ,a

↑
m ;

↭ x ≃ Rn ou Cn un vecteur à n composantes réelles ou complexes.
Le produit matrice-vecteur qu’on prononce “A fois x” est le vecteur Ax ≃ Rm ou Cm

et défini par :
(Ax)(i) = a↑i x pour i ≃ !1;m".

Remarque

↭ Il est important d’observer que le produit matrice-vecteur Ax n’est possible que
si le vecteur x a autant de composantes que le nombre de colonnes de la matrice
A. L’exercice 1.9 s’attarde sur ce point ;

↭ Si A ≃ Rm↔n, alors (Ax)(i) = a↑i x = ∝ai,x′ pour i ≃ !1;m". C’est un produit
scalaire. Pour les complexes, ce n’est pas le cas (voir la définition 3.6.5).

Le produit matrice-vecteur constitue le fondement des systèmes d’équations linéaires,
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A =





a↑1
a↑2
...

a↑m




m

n

x =







 n

1

Ax =





a↑1 x
a↑2 x

...
a↑mx




m

1

Figure 1.6 – Produit matrice-vecteur Ax de la matrice A et du vecteur x vu comme des
produits ligne-colonne (définitions 1.1.11 et 1.2.13).

dans lesquels on cherche à déterminer un certain x tel que Ax = b avec A une matrice et
b un vecteur colonne. La définition formelle se trouve à la définition 8.1.2 et les méthodes
de résolution sont vues dans le chapitre 8.

On montre à la définition 4.4.1 que le produit matrice-vecteur est la le résultat d’une
application linéaire.

Le théorème 1.2.1 qui suit permet d’envisager le produit matrice-vecteur sous un angle
di!érent : Ax est une combinaison linéaire des colonnes de A. Ce point de vue est illustré
à la figure 1.7.

Théorème 1.2.1 (le produit matrice-vecteur est une combinaison de colonnes)
Soient

↭ A = [c1 c2 · · · cn] une matrice réelle ou complexe de taille m↔ n où chaque cj
est donc un vecteur colonne réel ou complexe à m composantes ;

↭ x = (x1, x2, . . . , xn) un vecteur réel ou complexe à n composantes.
On a : Ax = x1c1 + x2c2 + . . .+ xncn .

Preuve. Il su"t de vérifier que les composantes de Ax sont les mêmes que celles de
x1c1 + x2c2 + · · ·+ xncn. Par définition du produit matrice–vecteur (définition 1.2.13), la
i-ième composante de Ax est

(Ax)i =
n

j=1

A(i, j)xj .
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A =



c1 c2 . . . cn



m

n

x =





x1
x2
...
xn




n

1

Ax = x1



c1



+ x2



c2



+ · · ·+ xn



cn



 m

11 1

Figure 1.7 – Produit matrice-vecteur Ax vu comme une combinaison des colonnes de A.
Lien avec le théorème 1.2.1.

D’autre part, la i-ième composante de la combinaison linéaire x1c1 + · · ·+ xncn est

(x1c1 + · · ·+ xncn)i =
n

j=1

xj (cj)i =
n

j=1

xj A(i, j) .

Les deux sommes étant égales pour tout i ≃ !1;m", il s’ensuit que Ax =
n

j=1 xjcn. ↬

En fait, le théorème 1.2.1 est central pour la compréhension de la majeure partie de cet
ouvrage, ce qui justifie son statut de théorème plutôt que de simple proposition.

La définition 1.2.13 et le théorème 1.2.1 o!rent donc deux points de vue du produit
matrice-vecteur qui sont illustrés dans l’exemple 1.2.7.

Exemple 1.2.7 (deux points de vue du produit matrice-vecteur)

Soient A =




1 0 ↓1 2

0 ↓1 1 3

3 0 ↓2 0



 et x = (1, 2, 2,↓1).

↭ Point de vue de la définition 1.2.13 :

Ax =




∝a1,x′
∝a2,x′
∝a3,x′



 avec a1 = (1, 0,↓1, 2), a2 = (0,↓1, 1, 3) et a3 = (3, 0,↓2, 0)

d’où : Ax =




1↔ 1 + 0↔ 2 + (↓1)↔ 2 + 2↔ (↓1)

0↔ 1 + (↓1)↔ 2 + 1↔ 2 + 3↔ (↓1)

3↔ 1 + 0↔ 2 + (↓2)↔ 2 + 0↔ (↓1)



 =




↓3

↓3

↓1



.

↭ Point de vue du théorème 1.2.1 :
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Ax = 1




1

0

3



+ 2




0

↓1

0



+ 2




↓1

1

↓2



↓ 1




2

3

0



 =




↓3

↓3

↓1



.

Tel qu’énoncé dans la proposition 1.2.4, le cas particulier du produit d’une matrice A
par une colonne de la matrice identité (définition 1.1.3) donne une colonne de la matrice
A.

Proposition 1.2.4 (produit matrice-colonne de l’identité)
Si A = [a1 a2 · · · an] ≃ Rm↔n ou Cm↔n alors Aej = aj pour j ≃ !1;n" .

Preuve. Une conséquence directe du théorème 1.2.1 et de la définition 1.1.3 est que

Aej = ej(1)a1 + ej(2)a2 + . . .+ ej(n)an = ej(j)aj = aj .

↬

1.2.6 Produit matriciel

Maintenant que le produit matrice-vecteur est défini, on peut introduire le produit AB 5

de deux matrices A et B.

Définition 1.2.14 (produit matriciel)
Soient

↭ A une matrice réelle ou complexe de taille m↔ p dont les lignes sont
a↑1 ,a

↑
2 , . . . ,a

↑
m ;

↭ B une matrice réelle ou complexe de taille p↔ n dont les colonnes sont
b1,b2, . . . ,bn.

Le produit matriciel AB qu’on prononce “A fois B” est une matrice de taille m ↔ n
définie par

AB(i, j) = a↑i bj pour i ≃ !1;m" et j ≃ !1;n".

Remarque

↭ Il est important de noter que le produit matriciel AB n’est possible que si le
nombre de colonnes de A est égale au nombre de lignes de B. Les exercices 1.9
et 1.11 traitent de cette problématique.

5. On n’utilise pas l’opérateur “→” qu’on réserve pour décrire la taille des matrices comme “m → n” et
pour multiplier des valeurs numériques, comme “2→ 3 = 6”.
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↭ Si A et B sont deux matrices réelles, les composantes du produit AB sont
obtenues pas produit scalaire puisque AB(i, j) = a↑i bj = ∝ai,bj′ pour i ≃

!1;m" et j ≃ !1;n". Ce n’est pas le cas pour les matrices complexes (voir la
définition 3.6.5).

Les notions de produit intérieur et de produit extérieur, liése au produit matriciel, sont
explicitées dans la remarque suivante.

Remarque
Étant donnés deux vecteurs x et y de Rn :

↭ Le produit scalaire ∝x,y′ = x↑y est le produit matriciel d’une matrice de taille
1↔n (une ligne) par une matrice de taille n↔ 1 (une colonne), et le résultat est
donc une matrice de taille 1↔1 qu’on assimile à un scalaire. Cette opération est
également appelée produit intérieur.

↭ Le produit matriciel xy↑, est le produit d’une matrice de taille n ↔ 1 (une
colonne) par une matrice de taille 1↔ n (une ligne), et le résultat est donc une
matrice de taille n↔n. Cette opération est également appelée produit extérieur.
Les colonnes de xy↑ sont toutes des multiples de x, ce qui implique que xy↑

est de de rang 1 (voir section 6.1.5). Les matrices de rang 1 sont formellement
introduites à la définition 6.1.6.

On peut étendre le produit à plus de deux matrices, tel qu’illustré dans l’exemple 1.2.8
où il est question de multiplier trois matrices entre elles.

Exemple 1.2.8 (produit de plus de deux matrices)

Soient A =

[
1 2 1

2 1 2

]
, B =




3 1 1

↓1 0 1

0 1 1



 et C =




2 1

1 ↓1

0 1



. On a

ABC = (AB)C =

[
1 2 4

5 4 5

]
C =

[
4 3

14 6

]
.

Lorsque l’on multiplie une matrice par elle-même plusieurs fois, on parle de puissance
de matrice. On ne peut pas diviser A par une matrice B, mais on peut parfois multiplier
A par l’inverse de B, tel qu’indiqué à la section 1.4. Ces notions de puissance et d’inverse
d’une matrice sont introduites dans la définition 1.2.15, et une illustration est donnée à
l’exemple 1.2.9 avec une matrice carrée de taille 2↔ 2.



P
R
O
T
O
T
Y
P
E

1.2. MATRICES 45

Définition 1.2.15 (puissances de matrices)
Étant donnés une matrice carrée A et un entier p ≃ N ⇒ {↓1}, la matrice Ap qu’on
prononce “A à la puissance p” est la matrice définie comme suit :

↭ Si p = ↓1, A↘1 est l’inverse de A, si elle existe (voir section 1.4).
↭ Si p = 0, par convention, A0

= I, la matrice identité (voir définition 1.2.16).
↭ Si p ↖ 1, Ap

= AA · · ·A︸ ︷︷ ︸
p termes

.

Exemple 1.2.9 (produits de matrices)

Avec A =

[
1 1

0 1

]
, on a

A↘1
=

[
1 ↓1

0 1

]
, A2

=

[
1 1

0 1

] [
1 1

0 1

]
=

[
1 2

0 1

]
et A3

=

[
1 2

0 1

] [
1 1

0 1

]
=

[
1 3

0 1

]
.

Le produit matriciel constitue une notion essentielle de cet ouvrage. Il est donc important
de maîtriser les quatre façons de le représenter, tel qu’indiqué à la proposition 1.2.5.

Proposition 1.2.5 (les quatre points de vue du produit matriciel)
Soient

↭ A une matrice de taille m↔ p dont les lignes sont a↑1 ,a↑2 , . . . ,a↑m et les colonnes
sont c1, c2, . . . , cp ;

↭ B une matrice de taille p↔ n dont les colonnes sont b1,b2, . . . ,bn et les lignes
sont d↑

1 ,d
↑
2 , . . . ,d

↑
p .

Le produit AB est donc une matrice m↔n qui peut être interprété des quatre manières
suivantes :

1. Produits intérieurs. La composante AB(i, j) est le produit intérieur de la i-ième
ligne de A avec la j-ième colonne de B :

AB(i, j) = a↑i bj pour i ≃ !1;m" et j ≃ !1;n" .

2. Matrice fois colonnes. Chaque colonne de AB est le produit de A par une
colonne de B, c’est-à dire que la j-ième colonne de AB est Abj :

AB = [Ab1 Ab2 · · · Abn].
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3. Lignes fois matrice. Chaque ligne de AB est le produit d’une ligne de A par B,
c’est-à-dire que la i-ième ligne de AB est a↑i B :

AB =





a↑1 B
a↑2 B

...
a↑mB





4. Produits extérieurs. Le produit AB est une somme de p matrices m↔n, chaque
terme de la somme étant un produit extérieur :

AB = c1d
↑
1 + c2d

↑
2 + . . .+ cpd

↑
p =

p

k=1

ckd
↑
k .

Preuve.
1 C’est la définition 1.2.14.
2 Les composantes de la j-ième colonne de AB sont AB(i, j) = a↑i bj avec i ≃ !1;m".

Il découle de la définition 1.2.13 que la j-ième colonne de AB est Abj .
3 Les composantes de la i-ième ligne de AB sont AB(i, j) = a↑i bj avec j ≃ !1;n".

La i-ième ligne de AB est donc la matrice [a↑i b1 a↑i b2 · · · a↑i bn] de taille 1 ↔ n,
c’est-à-dire a↑i B.

4 Il su"t de démontrer l’égalité pour chacune des composantes. La i-ième compo-
sante de la j-ième colonne du produit extérieur ckd↑

k est le scalaire ck(i)dk(j) =

A(i, k)B(k, j). La i-ième composante de la j-ième colonne de
p

k=1 ckd
↑
k est doncp

k=1A(i, k)B(k, j) = AB(i, j).
↬

Les quatre points de vue de la proposition 1.2.5 sont illustrés dans les figures 1.8, 1.9, 1.10
et 1.11 ainsi que dans l’exemple 1.2.10 où A et B sont de taille 2↔2. L’exercice 1.10 permet
de s’entraîner au calcul de ce produit matriciel.

Remarque

↭ Le point de vue 1 est le plus pratique pour calculer un produit matriciel à la
main. Il généralise aussi la définition 1.2.13 ;

↭ Les points de vue 2 et 3 sont essentiels pour de nombreuses preuves ;
↭ Le point de vue 2 permet de réaliser que chaque colonne de AB est une combi-

naison linéaire particulière des colonnes de A ;
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A =





a↑1
a↑2
...

a↑m




m

p

B =



 b1 b2 . . . bn



 p

n

AB =





a↑1 b1 a↑1 b2 . . . a↑1 bn

a↑2 b1 a↑2 b2 . . . a↑2 bn
...

... . . . ...
a↑mb1 a↑mb2 . . . a↑mbn




m

n

Figure 1.8 – Produits intérieurs. Point 1 de la proposition 1.2.5.

A =



 . . .



m

p

B =



 b1 b2 . . . bn



 p

n

AB =



Ab1 Ab2 . . . Abn



 m

n

Figure 1.9 – Matrice fois colonnes. Point 2 de la proposition 1.2.5.

A =





a↑1
a↑2
...

a↑m




m

p

B =



 . . .



 p

n

AB =





a↑1 B
a↑2 B

...
a↑mB




m

n

Figure 1.10 – Lignes fois matrice. Point 3 de la proposition 1.2.5.



P
R
O
T
O
T
Y
P
E

48 CHAPITRE 1. VECTEURS ET MATRICES

A =



c1 c2 . . . cp



m

p

B =





d↑
1

d↑
2
...
d↑
p




p

n

AB =



 c1d↑
1



+



 c2d↑
2



+ · · ·+



 cpd↑
p



 m

n n n

Figure 1.11 – Produits extérieurs. Point 4 de la proposition 1.2.5.

↭ Le point de vue 3 permet de réaliser que chaque ligne de AB est une combinaison
linéaire particulière de lignes de B ;

↭ Le point de vue 4 peut paraître moins intuitif, mais il permet de mieux com-
prendre certaines décompositions vues dans des chapitres ultérieurs. Il étend le
point de vue essentiel présenté dans le théorème 1.2.1.

Exemple 1.2.10 (quatre points de vue du produit matriciel)

Soient A =

[
1 4

1 5

]
et B =

[
3 2

1 0

]
. On a donc :

a1 =

[
1

4

]
, a2 =

[
1

5

]
, b1 =

[
3

1

]
, b2 =

[
2

0

]
, c1 =

[
1

1

]
, c2 =

[
4

5

]
, d1 =

[
3

2

]
et d2 =

[
1

0

]
.

↭ AB avec le point de vue 1 : AB =

[
a↑1 b1 a↑1 b2

a↑2 b1 a↑2 b2

]
. On a a↑1 b1 = 1↔3+4↔1 = 7,

a↑1 b2 = 1↔ 2+4↔ 0 = 2, a↑2 b1 = 1↔ 3+5↔ 1 = 8 et a↑2 b2 = 1↔ 2+5↔ 0 = 2.

D’où : AB =

[
7 2

8 2

]
.

↭ AB avec le point de vue 2 : AB =
[
Ab1 Ab2

]
. On a Ab1 =

[
a↑1 b1

a↑2 b1

]
=

[
7

8

]

et Ab2 =

[
a↑1 b2

a↑2 b2

]
=

[
2

2

]
. D’où : AB =

[
7 2

8 2

]
.

↭ AB avec le point de vue 3 : AB =

[
a↑1 B
a↑2 B

]
. On a a↑1 B =

[
a↑1 b1 a↑1 b2

]
=

[
7 2

]
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et a↑2 B =
[
a↑2 b1 a↑2 b2

]
=

[
8 2

]
. D’où : AB =

[
7 2

8 2

]
.

↭ AB avec le point de vue 4 : AB = c1d↑
1 + c2d↑

2 . On a les produits extérieurs

c1d↑
1 =

[
3 2

3 2

]
et c2d↑

2 =

[
4 0

5 0

]
. D’où : AB =

[
7 2

8 2

]
.

Le produit matriciel possède plusieurs propriétés énoncées au théorème 1.2.2.

Théorème 1.2.2 (propriétés du produit matriciel)
Soient A, B, C des matrices réelles ou complexes. On suppose que les tailles des
matrices sont telles que les opérations existent.

1. (AB)
↑
= B↑A↑.

2. (AB)
↘1

= B↘1A↘1 (si les matrices A et B sont inversibles).
3. A(B+C) = AB+AC.
4. (B+C)A = BA+CA.
5. A(BC) = (AB)C.
6. (Ap

)(Aq
) = Ap+q avec p et q des entiers naturels.

7. Le produit de matrices triangulaires supérieures (inférieures) donne une matrice
triangulaire supérieure (inférieure).

Preuve.

1 Supposons A de taille m ↔ p et B est de taille p ↔ n. Il su"t de vérifier que les
matrices des deux côtés de l’égalité ont les mêmes composantes, c’est-à-dire que
((AB)

↑
)(i, j) = (B↑A↑

)(i, j) pour tout i ≃ !1;m" et j ≃ !1;n". On a

↭ ((AB)
↑
)(i, j) = (AB)(j, i) =

p
k=1

A(j, k)B(k, i).

↭ (B↑A↑
)(i, j) =

p
k=1

(B↑
)(i, k)(A↑

)(k, j) =
p

k=1
B(k, i)A(j, k) =

p
k=1

A(j, k)B(k, i).

Les deux matrices ont donc bien les mêmes composantes.

2 Comme l’inverse d’une matrice n’a pas encore été introduite, ce résultat est prouvé à
la section section 1.4 (voir la proposition 1.4.1).

3 Supposons A de taille m ↔ p et B et C de taille p ↔ n. Il su"t de vérifier que
les matrices des deux côtés de l’égalité ont les mêmes composantes, c’est-à-dire que
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(A(B+C))(i, j) = (AB)(i, j) + (AC)(i, j). On a

(A(B+C))(i, j) =
p

k=1

A(i, k)(B+C)(k, j) =
p

k=1

A(i, k)(B(k, j) +C)(k, j)

=

p

k=1

A(i, k)B(k, j) +
p

k=1

A(i, k)C(k, j))

= (AB)(i, j) + (AC)(i, j).

4 On déduit des points 1 et 3 de ce théorème, ainsi que des points 1 et 3 de la proposi-
tion 1.2.1 que

(B+C)A = ((B↑
)
↑
+ (C↑

)
↑
)(A↑

)
↑
= (B↑

+C↑
)
↑
(A↑

)
↑
= (A↑

(B↑
+C↑

))
↑

= (A↑B↑
+A↑C↑

)
↑
= ((BA)

↑
+ (CA)

↑
)
↑
= ((BA)

↑
)
↑
+ ((CA)

↑
)
↑

= BA+CA.

5 Soient A de taille m ↔ p, B de taille p ↔ q et C de taille q ↔ n. Les deux produits
A(BC) et (AB)C sont bien définis et ont une taille m ↔ n. Il su"t de vérifier que
les matrices des deux côtés de l’égalité ont les mêmes composantes, c’est-à-dire que
(A(BC))(i, j) = ((AB)C)(i, j) pour tout i ≃ !1;m" et j ≃ !1; q" Pour tout i ≃ !1;m"
et j ≃ !1;n". Ceci découle de l’associativité et de la commutativité d’une somme finie.
En e!et, on a :

(A(BC))(i, j) =
p

k=1

A(i, k)(BC)(k, j) =
p

k=1

A(i, k)


q

ϑ=1

B(k, ⇀)C(⇀, j)



=

p

k=1

q

ϑ=1

A(i, k)B(k, ⇀)C(⇀, j) =
q

ϑ=1


p

k=1

A(i, k)B(k, ⇀)


C(⇀, j)

=

q

ϑ=1

(AB)(i, ⇀)C(⇀, j) = ((AB)C)(i, j).

6 Voici une preuve par induction sur p, qui s’appuie sur le point 5 de ce théorème.
↭ Si p = 0, on a Ap

= I et donc (Ap
)(Aq

) = IAq
= Aq

= Ap+q.
↭ Soit p > 0, et supposons le résultat valide pour p↓ 1. On a

(Ap
)(Aq

) = (Ap↘1A)(Aq
) = (Ap↘1

)(AAq
) = (Ap↘1

)(Aq+1
) = A(p↘1)+(q+1)

= Ap+q.

7 La preuve est faite tout d’abord pour les matrices triangulaires supérieures. Soient
donc A et B deux matrices de taille n↔n et triangulaires supérieures. Par définition,
on a A(i, j) = 0 et B(i, j) = 0 pour tout i > j. Soit C = AB. Il su"t de montrer que
C(i, j) = 0 pour tout i > j. Soit donc i > j. On a C(i, j) =

n
k=1A(i, k)B(k, j) :
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↭ si k < i, A(i, k) = 0 ;
↭ si k ↖ i, alors k > j (car i > j), et on a donc B(k, j) = 0.

Donc, quel que soit k ≃ !1;n", on a A(i, k)B(k, j) = 0, ce qui prouve que C(i, j) = 0.

Si A et B sont deux matrices triangulaires inférieures, alors A↑ et B↑ sont triangu-
laires supérieures, et on vient de voir que ceci implique que le produit B↑A↑

= (AB)
↑

est également une matrice triangulaire supérieure, ce qui implique que AB est une
matrice triangulaire inférieure.

↬

Remarque
Concernant les tailles des matrices :

↭ Pour le point 1 : B doit avoir le même nombre de lignes que le nombre de
colonnes de A.

↭ Pour le point 3 : B et C doivent être de même taille et doivent avoir le même
nombre de lignes que le nombre de colonnes de A.

↭ Pour le point 4 : B et C doivent être de même taille et doivent avoir le même
nombre de colonnes que le nombre de lignes de A.

↭ Pour le point 5 : B doit avoir le même nombre de lignes que le nombre de
colonnes de A et le même nombre de colonnes que le nombre de lignes de C.

↭ Pour le point 6 : A doit être carrée.

Les propriétés du théorème 1.2.2 peuvent être utilisées pour l’exercice 1.11. L’exemple 1.2.11
traite du point 1 pour une matrice complexe.

Exemple 1.2.11 (transposé d’un produit de matrices complexes)

Soient A =

[
1 + i 2

3i ↓1

]
et B =

[
2 ↓i

1 4i

]
deux matrices complexes. Montrons que

(AB)
↑
= B↑A↑.

↭ D’une part, on a :

‘AB =

[
(1 + i)↔ 2 + 2↔ 1 (1 + i)↔ (↓i) + 2↔ (4i)

(3i)↔ 2 + (↓1)↔ 1 (3i)↔ (↓i) + (↓1)↔ (4i)

]
.

La simplification des quatre composantes donne :
↭ (1 + i)↔ 2 + 2↔ 1 = 2 + 2i + 2 = 4 + 2i ;
↭ (1 + i)↔ (↓i) + 2↔ (4i) = ↓i↓ i

2
+ 8i = ↓i + 1 + 8i = 1 + 7i ;
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↭ (3i)↔ 2 + (↓1)↔ 1 = ↓1 + 6i ;
↭ (3i)↔ (↓i) + (↓1)↔ (4i) = ↓3i

2
↓ 4i = 3↓ 4i.

Donc
AB =

[
4 + 2i 1 + 7i

↓1 + 6i 3↓ 4i

]
et (AB)

↑
=

[
4 + 2i ↓1 + 6i

1 + 7i 3↓ 4i

]
.

↭ D’autre part, on a :

B↑
=

[
2 1

↓i 4i

]
et A↑

=

[
1 + i 3i

2 ↓1

]
.

Leur produit donne :

B↑A↑
=

[
2↔ (1 + i) + 1↔ 2 2↔ (3i) + 1↔ (↓1)

(↓i)↔ (1 + i) + (4i)↔ 2 (↓i)↔ (3i) + (4i)↔ (↓1)

]

La simplification des quatre composantes donne :
↭ 2↔ (1 + i) + 1↔ 2 = 2 + 2i + 2 = 4 + 2i ;
↭ 2↔ (3i) + 1↔ (↓1) = ↓1 + 6i ;
↭ (↓i)↔ (1 + i) + (4i)↔ 2 = ↓i↓ i

2
+ 8i = ↓i + 1 + 8i = 1 + 7i ;

↭ (↓i)↔ (3i) + (4i)↔ (↓1) = (↓3i
2
)↓ 4i = 3↓ 4i.

Donc :
B↑A↑

=

[
4 + 2i ↓1 + 6i

1 + 7i 3↓ 4i

]
.

On obtient bien
(AB)

↑
= B↑A↑.

Il convient de noter que AB n’est en général pas égal à BA. Si le nombre de colonnes
de A est égal au nombre de lignes de B alors que le nombre de lignes de A n’est pas
égal au nombre de colonnes de B, le produit AB est défini alors que BA ne l’est pas.
Mais même si les deux produits sont définis, ils peuvent être di!érents, tel qu’illustré dans
l’exemple 1.2.12.

Exemple 1.2.12 (le produit matriciel n’est pas commutatif )

Si A =

[
1 1

1 0

]
et B =

[
1 1

0 1

]
, on a AB =

[
1 2

1 1

]
alors que BA =

[
2 1

1 0

]
.

Il est intéressant cependant d’observer que si les deux produits AB et BA sont définis,
alors leur trace est la même, tel qu’établi dans la proposition 1.2.6 (cette propriété ayant
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déjà été énoncée au point 4 de la proposition 1.2.3).

Proposition 1.2.6 (trace du produit matriciel)
Si A est une matrice de taille m↔ n et B une matrice de taille n↔m, alors

tr(AB) = tr(BA).

Preuve. Étant donné que (AB)(i, i) =
n

k=1A(i, k)B(k, i), on a

tr(AB) =

m

i=1

(AB)ii =

m

i=1

n

k=1

A(i, k)B(k, i) .

On peut échanger l’ordre des sommes (car elles sont finies) ainsi que celui des produits, ce
qui donne

tr(AB) =

n

k=1

m

i=1

B(k, i)A(i, k) =
n

k=1

(BA)(k, k) = tr(BA) .

↬

La matrice identité introduite à la définition 1.2.16 est ce qu’on appelle l’élément neutre
de la multiplication, tel qu’expliqué à la proposition 1.2.7. Elle intervient, notamment,
lors de l’inversion d’une matrice (section 1.4) ou dans la définition d’une base canonique
(proposition 5.2.4).

Définition 1.2.16 (matrice identité)
La matrice identité, ou simplement l’l’identité, est une matrice carrée de taille n↔ n,
notée I, telle que :

I = In = [e1 e2 · · · en] =





e↑1
e↑2
...
e↑n




a .

a. on utilise In plutôt que I pour éviter des ambiguïtés.

Remarque
On remarque que I est symétrique, la i-ième colonne étant égale à la transposée de la
i-ième ligne, pour tout i ≃ !1;n".
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Proposition 1.2.7 (élément neutre du produit matriciel)
L’identité I est l’élément neutre du produit matriciel, ce qui signifie que :

↭ AI = A pour toute matrice A de taille p↔ n ;
↭ IA = A pour toute matrice A de taille n↔ p.

Preuve. Soit A une matrice de taille p↔ n dont les colonnes sont c1, c2, . . . , cn. En
utilisant le point de vue 2 de la proposition 1.2.5 ainsi que la proposition 1.2.4, on obtient :

AI = [Ae1 Ae2 · · ·Aen] = [c1 c2 · · · cn] = A .

Si A est une matrice de taille n↔p, sa transposée est de taille p↔n, et tel qu’on vient de
le voir, cela signifie que A↑I = A↑. En utilisant le point 1 du théorème 1.2.2 et le point 3
de la proposition 1.2.1, on a donc :

IA = (A↑I↑)↑ = (A↑I)↑ = (A↑
)
↑
= A.

↬

L’exemple 1.2.13 met en évidence certains pièges à éviter qui vont à l’encontre de l’in-
tuition.

Exemple 1.2.13 (pièges de la multiplication matricielle)

↭ Si AB = O, cela n’implique pas nécessairement que A = O ou B = O.

Par exemple, si A =

[
↓1 1

0 0

]
et B =

[
1 1

1 1

]
, on a A ↘= O, B ↘= O et AB = O.

↭ Si AB = B avec B ↘= O, cela n’implique pas nécessairement que A = I.

Par exemple, si A =

[
0 1

0 1

]
et B =

[
1 1

1 1

]
, on a AB = B et A ↘= I.

1.2.7 Multiplication par blocs

Il est parfois utile d’e!ectuer la multiplication de matrices par blocs (telles que définies
dans la section 1.2.3), comme dans l’exemple 1.2.14. La plupart des règles de la section
précédente s’appliquent naturellement aux matrices par blocs .

Il faut prendre garde à ne pas confondre Aij qui est un bloc de A et A(i, j) qui est une
composante de la matrice A. Notons que A11(1, 1) = A(1, 1) est la première composante
de la première ligne (ou colonne) de A.

Lorsqu’on e!ectue une multiplication par blocs, il est important de vérifier la compa-
tibilité des tailles des blocs. Dans l’exemple 1.2.14, pour que la multiplication par blocs
puisse être réalisée, il faut donc, entre autres, que le nombre de colonnes de A11 soit égal
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au nombre de lignes de B11 et que le nombre de colonnes de A12 soit égal au nombre de
lignes de B21. Il faut aussi que les sommes soient bien définies ce qui implique, par exemple,
que A11 et A12 doivent avoir le même nombre de lignes et que B11 et B21 doivent avoir le
même nombre de colonnes.

Exemple 1.2.14

AB =

[
A11 A12

A21 A22

] [
B11 B12 B13

B21 B22 B23

]

=

[
A11B11 +A12B21 A11B12 +A12B22 A11B13 +A12B23

A21B11 +A22B21 A21B12 +A22B22 A21B13 +A22B23

]
.

1.2.8 Produit scalaire et norme matricielle

Pour bien comprendre le contenu de cette section, il est préférable (mais pas néces-
saire) de connaître les définitions des vecteurs et matrices complexes (section 3.6). Ainsi,
par exemple, A→ est la transconjuguée de la matrice complexe A, et on a A→

= A↑ si
A est réelle. Il est également utile de connaître la définition d’un produit scalaire (voir
définition 5.3.1) ainsi que la définition d’un espace vectoriel (voir définition 5.1.1).

Tel qu’indiqué dans la définition 1.2.17, le produit scalaire matriciel considéré dans cet
ouvrage est défini grâce à la trace.

Définition 1.2.17 (produit scalaire matriciel)
Soient A et B deux matrices complexes ou réelles de taille m↔n, . Le produit scalaire
matriciel, noté ∝A,B′, est défini par

∝A,B′ = tr(A→B) = tr(BA→
).

Remarque

↭ Si les matrices A et B sont réelles, on a ∝A,B′ = tr(A↑B) = tr(BA↑
).

↭ Le produit scalaire matriciel n’est défini que pour deux matrices de même taille.
En e!et, si A et B sont toutes les deux de taille m↔ n, alors A→B est de taille
n↔ n et BA→ est de taille m↔m. Dans les deux cas, la matrice résultante est
carrée et on peut donc calculer sa trace.

Il conviendrait de vérifier toutes les propriétés de la définition 5.3.1 pour s’assurer que
la définition 1.2.17 correspond bien à un produit scalaire. Une preuve formelle n’est pas



P
R
O
T
O
T
Y
P
E

56 CHAPITRE 1. VECTEURS ET MATRICES

donnée ici car elle repose sur des notions introduites ultérieurement dans cet l’ouvrage. Elle
découle de la définition 1.2.14 du produit matriciel ainsi que de la définition 1.2.12 et des
propriétés de la proposition 1.2.6 portant sur la trace.

Exemple 1.2.15 (produit scalaire matriciel)

Soient A =

[
1 2

3 2

]
et B =

[
1 0

1 1

]
. De simples calculs donnent :

A↑B =

[
4 3

4 2

]
, B↑A =

[
4 4

3 2

]
, A↑A =

[
10 8

8 8

]
et B↑B =

[
2 1

1 1

]
.

On a donc bien ∝A,B′ = 6 = ∝B,A′, ∝A,A′ = 18 > 0 et ∝B,B′ = 3 > 0.

On pourrait étendre le concept d’orthogonalité à autre chose que des vecteurs colonnes.
Cette notion sera approfondie dans le chapitre 5. Il faut prendre garde cependant à ne pas
confondre la notion de matrice orthogonale vue à la définition 5.3.5 avec le fait que deux
matrices soient orthogonales entre elles.

L’introduction d’un produit scalaire sert souvent à définir une norme spécifique. On
peut donc maintenant définir une norme pour les matrices : le produit scalaire de la défi-
nition 1.2.17 donne la norme de Frobenius tel qu’indiqué ci-dessous à la définition 1.2.18.
L’exercice 1.29 traite de cette norme.

Définition 1.2.18 (norme de Frobenius)
La norme de Frobenius d’une matrice réelle ou complexe A de taille m↔ n est notée
△A△F et est définie par

△A△F =


∝A,A′ =


tr(A→A) =


tr(AA→) =


m

i=1

n

j=1

|A(i, j)|2 .

Remarque

↭ Si A est une matrice réelle de taille m↔ n, la formule se simplifie puisque
|A(i, j)|2 = A(i, j)2. Dans ce cas, on a donc

△A△F =


∝A,A′ =


tr(A↑A) =


tr(AA↑) =


m

i=1

n

j=1

A(i, j)2 .

↭ La formule de la définition 1.2.18 est très intuitive. En e!et, le carré de cette
norme pour une matrice réelle est égal à la somme des carrés de ses composantes,
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exactement comme pour les vecteurs. De plus, Si n = 1 (A est donc un vecteur
colonne réel ou complexe), on a la norme euclidienne définie en définition 1.1.13
pour les réels, et en définition 3.6.6 pour les complexes.

Exemple 1.2.16 (normes de matrices réelles et complexes)

↭ Si A =




1 2

3 1

1 3



, les calculs donnent ∝A,A′ = tr(A↑A) = tr

([
11 7

7 9

])
= 20.

On a donc △A△F =
↑
20 = 2

↑
5

↭ Si B =

[
1 2

i 1

]
, on a B→

=

[
1 ↓i

2 1

]
et ∝B,B′ = tr(B→B) = tr

[
2 2↓ i

2 + i 5

]
= 7.

On déduit que △B△F =
↑
7. C’est bien un réel !

D’autres produits scalaires et donc d’autres normes existent pour les matrices, mais cela
sort du cadre de cet ouvrage. Chaque norme a son utilité pour prouver certaines propriétés
utiles pour résoudre des problèmes. Un exemple d’utilisation de la norme de Frobenius se
retrouve dans l’étude de cas de la section 9.3. L’intérêt de minimiser la norme de Frobenius
de la hessienne d’un modèle quadratique est de pouvoir déterminer le modèle quadratique
de courbure minimale.
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1.3 Déterminant d’une matrice
Tout comme la trace, le déterminant d’une matrice est une des propriétés des matrices

utiles dans de nombreuses applications, notamment pour montrer qu’une matrice est inver-
sible (section 1.4). Le déterminant n’est défini que pour des matrices carrées.

Les matrices de cette section ne sont pas limitées aux réelles. Elle peuvent donc être
complexes. Pour un formalisme complet du déterminant des matrices complexes, le lecteur
est invité à consulter la section 3.6.4.

1.3.1 Définitions

Tel qu’indiqué dans la définition 1.3.1, le déterminant d’une matrice de taille 1 ↔ 1

est la valeur de son unique composante. Cette notion de déterminant est étendue dans la
définition 1.3.2 aux matrices de taille 2 ↔ 2 . En 2D, le déterminant d’une matrice peut
s’interpréter comme l’aire du parallélogramme engendré par les colonnes de la matrice. Plus
précisément, si A est une matrice de taille 2 ↔ 2 dont les colonnes sont c1 et c2, alors le
déterminant de A est l’aire du parallélogramme dont les extrémités sont 0, c1, c2 et c1+c2.

Le déterminant d’une matrice carrée quelconque peut être déterminé de manière récur-
sive, tel qu’indiqué dans la définition 1.3.4.

Définition 1.3.1 (déterminant d’une matrice de taille 1↔ 1)
Soit A =

[
a
]

une matrice n’ayant qu’une composante qui peut être réelle ou complexe.
Le déterminant det(A) de A est défini par det(A) = a.

La notion de déterminant d’une matrice de taille 2↔ 2, telle que décrite dans la défini-
tion 1.3.2, a d’abord été introduite par Cardan pour résoudre des systèmes d’équations à
deux inconnues et déterminer si le système considéré a une solution unique. La notion de
résolution de systèmes d’équations est abordée dans le chapitre 8.

Définition 1.3.2 (déterminant d’une matrice de taille 2↔ 2)

Soit A =

[
a b
c d

]
une matrice réelle ou complexe de taille 2↔ 2.

Le déterminant det(A) de A est défini par det(A) = ad↓ bc.

Exemple 1.3.1 (déterminant d’une matrice 2↔ 2)

Le déterminant det(A) de A =

[
2 ↓3

6 1

]
est égal à 2↔ 1↓ (↓3)↔ 6 = ↓15.
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La définition précédente peut être généralisée à tout type de matrice en utilisant le
concept de récursivité. Pour cette définition plus générale, il est nécessaire d’introduire
d’abord la notion de cofacteur décrite dans la définition 1.3.3 et illustrée dans l’exemple 1.3.2.

Définition 1.3.3 (cofacteur)
Les cofacteurs d’une matrice A de taille n↔ n sont les termes

ci,j = (↓1)
i+jA(i, j) det(Ai,j)

avec i ≃ !1;n", j ≃ !1;n" et où Ai,j est la sous-matrice de A obtenue en supprimant
la i-ième ligne et la j-ième colonne de A.

Remarque
Une matrice possède autant de cofacteurs que de composantes.

Exemple 1.3.2

Les neuf cofacteurs de A =




2 3 1

1 2 3

3 2 1



 sont :

c1,1 = (↓1)
1+1

↔ 2↔ det

([
2 3

2 1

])
= ↓8 c1,2 = (↓1)

1+2
↔ 3↔ det

([
1 3

3 1

])
= 24

c1,3 = (↓1)
1+3

↔ 1↔ det

([
1 2

3 2

])
= ↓4 c2,1 = (↓1)

2+1
↔ 1↔ det

([
3 1

2 1

])
= ↓1

c2,2 = (↓1)
2+2

↔ 2↔ det

([
2 1

3 1

])
= ↓2 c2,3 = (↓1)

2+3
↔ 3↔ det

([
2 3

3 2

])
= 15

c3,1 = (↓1)
3+1

↔ 3↔ det

([
3 1

2 3

])
= 21 c3,2 = (↓1)

3+2
↔ 2↔ det

([
2 1

1 3

])
= ↓10

c3,3 = (↓1)
3+3

↔ 1↔ det

([
2 3

1 2

])
= 1.

.

Tel que décrit dans la définition 1.3.4, on peut maintenant introduire la notion de
déterminant d’une matrice de taille quelconque.
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Définition 1.3.4 (déterminant d’une matrice)
Le déterminant det(A) d’une matrice A réelle ou complexe de taille n ↔ n peut se
calculer de manière récursive, à l’aide des cofacteurs ci,j , de deux façons di!érentes :

↭ en développant selon la ligne i : det(A) =

n
j=1

ci,j ;

↭ en développant selon la colonne j : det(A) =

n
i=1

ci,j .

Remarque
Les définitions 1.3.2 et 1.3.4 coïncident pour les matrices de taille 2↔ 2. En e!et, les
sous-matrices sont ici les composantes de la matrice. Par exemple, A1,1 = A(2, 2) et
donc c1,1 = A(1, 1)A(2, 2).

L’exemple 1.3.3 illustre le calcul de déterminant à l’aide des cofacteurs pour deux ma-
trices.

Exemple 1.3.3

↭ Soit A =




↓1 1 2

1 4 1

5 0 1



.

Pour simplifier les calculs, puisque la deuxième colonne contient un zéro, on peut
déterminer det(A) en développant selon cette colonne, ce qui donne :

det(A) =

3

i=1

(↓1)
i+2A(i, 2) det(Ai,2)

=(↓1)
1+2

↔ 1↔ det

([
1 1

5 1

])

+ (↓1)
2+2

↔ 4↔ det

([
↓1 2

5 1

])

+ (↓1)
3+2

↔ 0↔ det

([
↓1 2

1 1

])

=↓ (1↔ 1↓ 5↔ 1) + 4↔ (↓1↔ 1↓ 5↔ 2) = ↓40.

On peut également faire le calcul en développant selon la dernière ligne qui a
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aussi un zéro, ce qui donne :

det(A) =

3

j=1

(↓1)
3+jA(3, j) det(A3,j)

=(↓1)
3+1

↔ 5↔ det

([
1 2

4 1

])

+ (↓1)
3+2

↔ 0↔ det

([
↓1 2

1 1

])

+ (↓1)
3+3

↔ 1↔ det

([
↓1 1

1 4

])

=5(1↔ 1↓ 4↔ 2) + (↓1↔ 4↓ 1↔ 1) = ↓40.

Les deux calculs donnent bien des résultats identiques !
↭ Pour la matrice de l’exemple 1.3.2, on remarque que peu importe le développe-

ment, le résultat est identique :
↭ selon la première ligne, on a det(A) = c1,1+ c1,2+ c1,3 = ↓8+24↓4 = 12 ;
↭ selon la deuxième ligne, on a det(A) = c2,1+c2,2+c2,3 = ↓1↓2+15 = 12 ;
↭ selon la troisième ligne, on a det(A) = c3,1+ c3,2+ c3,3 = 21↓ 10+1 = 12 ;
↭ selon la première colonne, on a det(A) = c1,1+c2,1+c3,1 = ↓8↓1+21 = 12 ;
↭ selon la deuxième colonne, on a det(A) = c1,2+c2,2+c3,2 = 24↓2↓10 = 12 ;
↭ selon la troisième colonne, on a det(A) = c1,3+c2,3+c3,3 = ↓4+15+1 = 12.

1.3.2 Propriétés du déterminant

La connaissance du déterminant d’une matrice peut être utile pour déterminer le dé-
terminant d’autres matrices qui lui sont reliées d’une quelconque façon. Ceci fait l’objet de
cette section.

Le théorème 1.3.1 énonce la propriété importante que le déterminant d’une matrice est
invariant par transposition.

Théorème 1.3.1 (déterminant de la transposée d’une matrice)
Le déterminant d’une matrice carrée A est égal au déterminant de sa transposée, ce
qui veut dire que

det(A↑
) = det(A) .

Preuve. Soit A une matrice carrée de taille n↔n. La preuve se fait par induction sur n.

↭ Initialisation. Si n = 1, on a A = A↑
= [a] et la définition 1.3.1) indique que
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det(A) = det(A↑
) = a.

↭ Induction. Soit n > 1 et supposons que le théorème est valide pour les matrices
carrées de taille (n↓ 1)↔ (n↓ 1). Le développement selon la dernière ligne donne :

det(A↑
) =

n

j=1

(↓1)
n+jA↑

(n, j) det

(A↑

)n,j

)
.

Pour tout j ≃ !1;n", on a (Aj,n)
↑
= (A↑

)n,j , et comme la sous-matrice Aj,n est de
taille (n↓ 1)↔ (n↓ 1), on a det(Aj,n) = det


(A↑

)n,j

. De plus, A↑

(n, j) = A(j, n),
ce qui implique

det(A↑
) =

n

j=1

(↓1)
j+nA(j, n) det(Aj,n).

Le terme de droite de cette dernière égalité est la formule du déterminant de A
développé selon sa dernière colonne. La propriété est donc démontrée.

↬

Pour certaines matrices, comme les matrices triangulaires ou diagonales, le calcul du
déterminant est simplifié. En e!et, il su"t de considérer les éléments diagonaux. C’est
l’objet de la proposition 1.3.1 pour les matrices triangulaires qui donne le corollaire 1.3.1
pour les matrices diagonales.

Proposition 1.3.1 (déterminant d’une matrice triangulaire)
Le déterminant d’une matrice triangulaire A de taille n ↔ n est égal au produit des
composantes sur sa diagonale :

det(A) =

n∏

i=1

A(i, i) .

Preuve. Soit A une matrice triangulaire supérieure de taille n ↔ n. La preuve est pas
induction sur n.

↭ Initialisation. Si n = 1, on a A = [a] et la définition 1.3.1 indique que det(A) =

a = A(1, 1).

↭ Induction. Soit n > 1 et supposons que la proposition est valide pour les matrices
triangulaires supérieures de taille (n↓1)↔(n↓1). Le développement selon la dernière
ligne donne :

det(A) =

n

j=1

(↓1)
n+jA(n, j) det(An,j) .
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Comme A est triangulaire supérieure, le seul indice de colonne j tel que A(n, j) ↘= 0

est j = n, et on a donc :

det(A) = A(n, n) det(An,n).

Mais An,n est également triangulaire supérieure et de taille (n↓ 1)↔ (n↓ 1), ce qui

implique que det(An,n) =
n↘1∏
i=1

An,n(i, i) =
n↘1∏
i=1

A(i, i). On a donc

det(A) = A(n, n)
n↘1∏

i=1

A(i, i) =
n∏

i=1

A(i, i).

Si A st triangulaire inférieure, le théorème 1.3.1 indique que det(A) = det(A↑
), et

comme A↑ est triangulaire supérieure, on vient de démontrer que det(A↑
) =

n∏
i=1

A↑
(i, i).

Pour conclure, il su"t d’observer que A↑
(i, i) = A(i, i), ce qui donne

det(A) = det(A↑
) =

n∏

i=1

A↑
(i, i) =

n∏

i=1

A(i, i).

↬

L’exemple 1.3.4 illustre l’utilité de la proposition 1.3.1 dans le cas d’une matrice trian-
gulaire inférieure de taille 4↔ 4.

Exemple 1.3.4

Le déterminant de la matrice triangulaire inférieure A =





3 0 0 0

78 1 0 0

34 22 1 0

12 14 3 1



 est

det(A) = 3↔ 1↔ 1↔ 1 = 3.

Remarque
La matrice identité étant une matrice triangulaire avec uniquement des 1 sur la dia-
gonale, on a det(I) = 1.

Corollaire 1.3.1 (déterminant d’une matrice diagonale)
Le déterminant d’une matrice diagonale A de taille n ↔ n est égal au produit des
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composantes sur sa diagonale :

det(A) =

n∏

i=1

A(i, i) .

Preuve. Étant donné qu’une matrice diagonale est triangulaire, le résultat est une consé-
quence directe de la proposition 1.3.1. ↬

Une autre propriété fondamentale relie le déterminant à la multiplication d’une matrice
par un scalaire : multiplier une matrice n ↔ n par un facteur k revient à multiplier son
déterminant par k dans chacune des n dimensions, ce qui conduit à la proposition 1.3.2 et
à l’exemple 1.3.5

Proposition 1.3.2 (déterminant du produit d’une matrice par un scalaire)
Soit A une matrice carrée de taille n↔ n et soit k un scalaire. On a :

det(kA) = kn det(A) .

Preuve. Soit A une matrice carrée de taille n↔ n. Soient ci,j les cofacteurs de A et di,j
ceux de kA, avec i ≃ !1;n" et j ≃ !1;n". La preuve est par induction sur n.

↭ Initialisation. Si n = 1, on a A = [a] et kA = [ka]. La définition 1.3.1 indique que
det(kA) = ka = k det(A).

↭ Induction. Soit n > 1 et supposons que la proposition est valide pour les matrices
carrées de taille (n ↓ 1) ↔ (n ↓ 1), La définition 1.3.3 indique que le cofacteur di,j a
la valeur

di,j = (↓1)
i+j

(kA)(i, j) det ((kA)i,j)

Comme (kA)i,j est de taille (n↓ 1)↔ (n↓ 1), on a det ((kA)i,j) = kn↘1
det(Ai,j), ce

qui implique

di,j = kn

(↓1)

i+jA(i, j) det(Ai,j)

)
= knci,j .

On déduit le résultat souhaité puisque

det(kA) =

n

j=1

d1,j = kn
n

j=1

c1,j = kn det(A).

↬
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Exemple 1.3.5 (multiplication d’une matrice par un scalaire)

La matrice B =




↓2 2 4

2 8 2

10 0 2



 correspond à la matrice A de l’exemple 1.3.3 qui a

été multipliée par deux. Comme c’est une matrice de taille 3 ↔ 3 et qu’on a vu que
det(A) = ↓40, on déduit que det(B) = 2

3
det(A) = 8↔↓40 = ↓320.

On conclut cette section en citant trois propriétés importantes sur les déterminants qui
seront démontrées ultérieurement dans cet ouvrage.

↭ Théorème 2.4.3. Si A et B sont deux matrices carrées de même taille, alors det(AB) =

det(A) det(B).
↭ Théorème 2.4.4. Si A est une matrice inversible, alors det(A↘1

) =
1

det(A) .
↭ Proposition 7.1.3 : Le déterminant d’une matrice carrée complexe est le produit de

ses valeurs propres.
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1.4 Matrices inverses
Tel que déjà mentionné, une matrice peut posséder une inverse, et on dit alors qu’elle

est inversible. Cette section présente des conditions nécessaires et su"santes à l’existence
de l’inverse d’une matrice, ainsi que des propriétés de cette inverse. Par contre, cette section
ne décrit aucune technique permettant d’inverser une matrice, ce point faisant l’objet de la
section section 8.5.

Pour simplifier la présentation, on ne considère ici que l’inverse de matrices réelles.
L’inversion de matrices complexes est traitée dans la section 3.6.4.

1.4.1 Caractérisation des matrices inversibles

On expose ici des conditions nécessaires et su"santes pour qu’une matrice soit inver-
sible. La définition 1.4.1 qui suit n’est qu’une des nombreuses caractérisations possibles
des matrices inversibles. D’autres caractérisations sont données ultérieurement dans cette
section.

Définition 1.4.1
Si A et B sont deux matrices carrées de même taille telles que AB = BA = I, alors
A est dite inversible, ou non-singulière, et la matrice inverse de A, notée A↘1, est la
matrice B, c’est-à-dire que A↘1

= B.

Remarque

↭ Par symétrie de la définition, B est aussi inversible et son inverse est A.
↭ Si A est inversible, alors A↘1 l’est aussi, et (A↘1

)
↘1

= A.
↭ Une matrice non-singulière est une matrice inversible et une matrice singulière

est une matrice non-inversible.

Le théorème 1.4.1 énonce plusieurs caractérisations des matrices inversibles sous forme
de conditions nécessaires et su"santes. Certaines de ces caractérisations ainsi que certaines
notions qui leur sont associées font appel à des concepts qui ne sont abordés qu’ultérieure-
ment dans cet ouvrage. Mais par souci de regroupement, il a été décidé de toutes les réunir
dans un même théorème. Toutefois, les termes qui n’ont pas encore été définis à ce stade
sont indiqués en italique. Les renvois appropriés sont également fournis (en bleu) afin de
permettre au lecteur de retrouver chacune des démonstrations.
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Théorème 1.4.1 (caractérisations des matrices inverses)
La matrice carrée A ≃ Rn↔n est inversible si et seulement si :

1. Il existe B ≃ Rn↔n telle que AB = BA = I (et A↘1 est alors égale à B).
2. Il existe B ≃ Rn↔n telle que AB = I ou BA = I (et A↘1 est alors égale à B).
3. Il existe B ≃ Rn↔n inversible telle que B↘1

= A (et A↘1 est alors égale à B).
4. Le déterminant de A est di!érent de zéro : det(A) ↘= 0.
5. Toutes les valeurs propres de A sont non nulles (chapitre 7).
6. Les colonnes de A sont linéairement indépendantes.
7. Un algorithme d’élimination permet d’obtenir n pivots (non nuls) (chapitre 2).
8. A est de plein rang : rg(A) = n (section 6.1.5).
9. Le noyau de A est réduit au vecteur nul : Ker(A) = {0} (section 6.1.1).

10. L’image de A remplit tout l’espace : Im(A) = Rn (section 6.1.3).
11. L’application linéaire associée à A est bijective (section 4.4).
12. Le système d’équations linéaires Ax = b possède une solution unique quel que

soit le vecteur b (chapitre 8).

Preuve.

↭ Le point 1 est bien une condition nécessaire et su"sante pour que A soit inversible
puisqu’il s’agit de la définition 1.4.1 de l’inverse d’une matrice.

↭ Il est montré au chapitre 6 que les points 6 à 12 sont équivalents et que, tel que
prouvé dans le théorème 2.4.2, une matrice carrée A de taille n↔n est inversible si et
seulement si l’algorithme d’élimination produit n pivots (non nuls), ce qui correspond
au point 7. Ces sept points sont donc des caractérisations équivalentes des matrices
inversibles.

↭ Le point 7 indique que A est inversible si et seulement si les pivots générés par
l’algorithme d’élimination sont non nuls, et il est montré à la proposition 2.4.1 que
det(A) est égal au produit des pivots. On déduit donc que A est inversible si et
seulement si son déterminant est non nul. Mais il est également montré au chapitre 7
que det(A) est égal au produit des valeurs propres de A, ce qui implique que A est
inversible si et seulement si ses valeurs propres sont non nulles. Les points 4 et 5 sont
donc deux autres caractérisations des matrices inversibles.

↭ Le point 2 est également une condition nécessaire et su"sante pour que A soit inver-
sible. En e!et :

↭ Si A est inversible, on déduit de la définition 1.4.1 que A↘1A = AA↘1
= I, et

le point 2 est donc valide avec B = A↘1.
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↭ Si le point 2 est valide, alors il existe une matrice B telle que AB = I ou BA = I.
On a donc, d’après le théorème 2.4.3, que det(A) det(B) = det(I) = 1, ce qui
implique que det(A) ↘= 0 et donc que A est inversible (selon le point 4).

↭ Finalement, le point 3 caractérise aussi les matrices inversibles car :
↭ Si A est inversible, alors la matrice B = A↘1 est également inversible, ce qui

implique que B↘1
= (A↘1

)
↘1

= A, et donc que le point 3 est valide.
↭ Si le point 3 est valide, alors il existe une matrice B inversible telle que B↘1

= A.
Comme B est inversible, son inverse A l’est également, ce qui donne A↘1

=

(B↘1
)
↘1

= B.
↬

Remarque
Les conditions du théorème 1.4.1 étant équivalentes, on déduit que pour montrer que
des vecteurs sont linéairement indépendants, on peut calculer le déterminant de la
matrice dont les colonnes sont les vecteurs et s’assurer que celui-ci n’est pas nul. Cela
découle de l’équivalence des points 4 et 6.

Le point 2 est une simplification de la définition d’une matrice inverse. Il stipule qu’il
su"t de trouver une matrice B qui vérifie une seule des multiplications qui donne l’identité,
tel qu’illustré dans l’exemple 1.4.1.

Exemple 1.4.1 (stratégie intuitive pour trouver l’inverse d’une matrice)

Pour savoir si A =

[
1 2

0 2

]
est inversible et pour déterminer son inverse, si tel est le

cas, on peut bien sûr utiliser la proposition 8.5.1 qui indique comment inverser des
matrices de taille 2↔ 2. En cas d’incertitude sur les calculs à e!ectuer, il est possible
de s’appuyer sur l’intuition ou d’e!ectuer quelques opérations rapides sur un brouillon
pour, par exemple, obtenir la matrice

B =

[
1 ↓1

0 1/2

]
.

Pour s’assurer qu’il s’agit bien de l’inverse de A, il su"t de calculer AB et de vérifier
que ce produit matriciel donne bien l’identité :

AB =

[
1 2

0 2

] [
1 ↓1

0 1/2

]
=

[
1↔ 1 + 2↔ 0 1(↓1) + 2↔ 1/2
0↔ 1 + 2↔ 0 0(↓1) + 2↔ 1/2

]
=

[
1 0

0 1

]
= I.

Comme tel est bien le cas, on peut conclure que A est inversible et que B est son
inverse. Le point 2 du théorème 1.4.1 indique qu’il est inutile de vérifier que BA = I.
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Remarque
D’autres conditions que celles du théorème 1.4.1 permettent de caractériser une ma-
trice inversible, Il s’agit de variantes des propriétés déjà énoncées. Par exemple,
A ≃ Rn↔n est inversible si et seulement si

↭ ses lignes sont linéairement indépendantes (variation du point 6) ;
↭ ses lignes génèrent Rn (variation du point 10) ;
↭ le système Ax = b admet au moins une solution quel que soit le vecteur b

(variation du point 12) ;
↭ elle peut se réduire à l’identité (voir la proposition 2.1.2 sur la forme échelonnée

réduite) ;
↭ sa transposée est inversible (proposition 1.4.3).

Les preuves de ces points sont laissées en exercice.

Remarque
Si on s’intéresse à des matrices ayant certaines formes particulières, d’autres énoncés
sont possibles. Par exemple :

↭ Une matrice triangulaire est inversible si et seulement si toutes les composantes
sur sa diagonale sont non nulles. En e!et, il découle de la proposition 1.4.5
ainsi que du point 4 du théorème 1.4.1 qu’une telle matrice est inversible si et
seulement si son déterminant est non nul, et la proposition 1.3.1 indique que le
déterminant d’une matrice triangulaire est égal au produit des composantes sur
sa diagonale.

↭ Toutes les matrices d’élimination sont inversibles (voir la section 2.3.1).

1.4.2 Autres propriétés des matrices inverses

La section précédente contenait des conditions nécessaires et su"santes pour qu’une
matrice soit inversible. Cette section présente quelques propriétés de l’inverse d’une matrice.

La proposition 1.4.1 suivante, qui porte sur l’inverse d’un produit matriciel, a déjà été
énoncée au point 2 du théorème 1.2.2. On dispose désormais des outils permettant de la
prouver.

Proposition 1.4.1 (inverse d’un produit de matrices)
Si A et B sont deux matrices inversibles de même taille, leur produit AB l’est égale-
ment et (AB)

↘1
= B↘1A↘1.
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Preuve. Soit M = B↘1A↘1. On a (AB)M = ABB↘1A↘1
= AIA↘1

= AA↘1
= I. On

déduit du point 2 du théorème 1.4.1 que la matrice AB est inversible et que son inverse est
M. ↬

Le corollaire 1.4.1 est une généralisation de la proposition 1.4.1 et permet de déduire le
corollaire 1.4.2.

Corollaire 1.4.1 (inverse d’un produit de plusieurs matrices)
Si M1, M2, . . ., Mp sont p ↖ 2 matrices inversibles de même taille, leur produit est
également inversible et (M1M2 · · ·Mp)

↘1
= M↘1

p M↘1
p↘1 · · ·M

↘1
1 .

Preuve. La preuve est par induction sur p.

↭ Initialisation. Si p = 2, l résultat est valide puisqu’il s’agit de la proposition 1.4.1.
↭ Induction. Soit p > 2 et supposons que le résultat est vrai pour le produit de p↓ 1

matrices, c’est-à-dire que (M1M2 · · ·Mp↘1)
↘1

= M↘1
p↘1M

↘1
p↘2 · · ·M

↘1
1 . Il découle de

la proposition 1.4.1 que :

(M1M2 · · ·Mp)
↘1

= ((M1M2 · · ·Mp↘1)Mp)
↘1

= M↘1
p (M1M2 · · ·Mp↘1)

↘1

= M↘1
p M↘1

p↘1 · · ·M
↘1
1 .

↬

Corollaire 1.4.2 (inverse et puissance de matrice)
Si A est une matrice inversible et si p est un entier, alors Ap est également inversible
et (Ap

)
↘1

= (A↘1
)
p .

Preuve. C’est un cas particulier du corollaire 1.4.1 avec A = Mi pour tout i ≃ !1; p".
↬

La proposition 1.4.2 démontre que la multiplication une matrice carrée singulière par
une matrice de même taille donne toujours une matrice singulière.

Proposition 1.4.2 (A singulière implique AB singulière)
Si A et B sont deux matrices carrées de même taille et si A est singulière, alors AB
est également singulière.

Preuve. Il découle du théorème 2.4.3 que det(AB) = det(A) det(B). Si A est singulière,
on déduit du point 4 du théorème 1.4.1 que det(A) = 0 et donc que det(AB) = 0, ce qui
signifie que AB est singulière. ↬
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La proposition 1.4.3 indique que l’inverse de la transposée d’une matrice carrée A in-
versible est la transposée de l’inverse de A, d’où on déduit le corollaire 1.4.3 qui stipule que
l’inverse d’une matrice symétrique est symétrique.

Proposition 1.4.3 (transposée de l’inverse)

Si A est une matrice inversible, alors A↑ l’est également et

A↑↘1

=

A↘1

↑ .

Preuve. La proposition 1.2.1 montre que A↑ 
A↘1

↑
=


A↘1A

↑
= I↑ = I . On déduit

donc du point 2 du théorème 1.4.1 que A↑ est inversible et que son inverse est

A↘1

↑. ↬

Corollaire 1.4.3 (symétrie de l’inverse)
Si A est une matrice inversible et symétrique, alors A↘1 est également symétrique.

Preuve. Si A est une matrice inversible et symétrique, on déduit de la proposition 1.4.3
que


A↘1

↑
=


A↑↘1

= A↘1, ce qui signifie que A↘1 est symétrique. ↬

La proposition 1.4.4 montre qu’une matrice triangulaire inversible et son inverse ont la
même forme.

Proposition 1.4.4 (inverse d’une matrice triangulaire inversible)
L’inverse d’une matrice triangulaire inférieure (resp. supérieure) inversible est égale-
ment triangulaire inférieure (resp. supérieure).

Preuve.
Il su"t de faire la démonstration pour les matrices triangulaires inférieures. En e!et,

si la propriété est vraie pour les matrices triangulaires inférieures et si A est triangulaire
supérieure inversible, on déduit du théorème 1.3.1 que A↑ est inversible et que (A↘1

)
↑
=

(A↑
)
↘1. Étant donné que A↑ est triangulaire inférieure, la matrice (A↑

)
↘1 est également

triangulaire inférieure, ce qui signifie que A↘1 est triangulaire supérieure.
Soit donc A une matrice triangulaire inférieure inversible de taille n↔ n. On déduit du

point 2 du théorème 1.4.1 qu’il existe une matrice B telle que AB = I, et il découle alors du
théorème 2.4.3 que det(I) = det(AB) = det(A) det(B) = 1, ce qui implique det(A) ↘= 0.
La proposition 1.3.1 indique que le déterminant de A est égal au produit des composantes
sur sa diagonale, ce qui implique que A(i, i) ↘= 0 pour tout i ≃ !1;n". Il reste à montrer
que B est triangulaire inférieure. Il faut donc vérifier que quel que soit i ≃ !1;n", on a
B(i, j) = 0 pour tout i < j B n. La preuve est par induction sur i.

↭ Initialisation. Pour i = 1 et j ≃ !2;n", on a 0 = I(1, j) = (AB)(1, j) = A(1, 1)B(1, j)
et donc B(1, j) = 0.
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↭ Induction. Soit i > 1 et supposons que B(k, j) = 0 pour tout k < i B j. Si j > i, on
a 0 = I(i, j) = (AB)(i, j) =

i
k=1A(i, k)B(k, j) = A(i, i)B(i, j) et donc B(i, j) = 0.

↬

Le point 4 du théorème 1.4.1 indique qu’une matrice carrée est inversible si et seulement
si son déterminant est non nul. La proposition 1.4.5 donne une preuve alternative de ce
résultat pour les matrices triangulaires.

Proposition 1.4.5 (déterminant et inverse d’une matrice triangulaire inversible)
Une matrice triangulaire est inversible si et seulement si son déterminant est non nul.

Preuve. Si A une une matrice triangulaire inversible, on déduit du point 2 du théo-
rème 1.4.1 qu’il existe une matrice B telle que AB = I, et il découle alors du théorème 2.4.3
que det(I) = det(AB) = det(A) det(B) = 1, ce qui implique que det(A) ↘= 0. Il reste donc à
montrer que si A est une matrice triangulaire de déterminant non nul, alors A est inversible.

Il su"t de faire la démonstration pour les matrices triangulaires inférieures. En e!et,
si la propriété est vraie pour les matrices triangulaires inférieures et si A est triangulaire
supérieure de déterminant non nul, alors il découle du théorème 1.3.1 que det(A↑

) =

det(A) ↘= 0, et donc que A↑ est inversible (puisqueA↑ est triangulaire inférieure). On
déduit alors de la proposition 1.4.3 que A est également inversible.

Soit donc A une matrice triangulaire inférieure de taille n↔n telle que det(A) ↘= 0. On
a A(i, i) ↘= 0 pour tout i ≃ !1;n" car det(A) =

∏n
i=1A(i, i) (selon la proposition 1.3.1).

On déduit du point 2 du théorème 1.4.1 que pour prouver que A est inversible, il su"t
d’exhiber une matrice B telle que AB = I. Soit donc B une telle matrice. Il découle de la
proposition 1.4.4 que B est également triangulaire inférieure, et donc que pour tout j > i,
on a B(i, j) = 0 et (AB)(i, j) =

n
i=1A(i, k)B(k, j) = 0 = I(i, j). Il reste à montrer que

pour tout i ↖ j, en imposant (AB)(i, j) = I(i, j), les composantes B(i, j) peuvent être
déterminées quelles que soient les composantes de A.

↭ si i = j, on a (AB)(i, i) = A(i, i)B(i, i), et pour avoir (AB)(i, i) = I(i, i) = 1, on pose
donc B(i, i) = 1

A(i,i) (qui est bien défini puisque A n’a pas de zéro sur la diagonale).

↭ Les composantes B(i, j) pour i > j sont déterminées séquentiellement avec j allant
de 1 à n ↓ 1 et pour chacun de ces indices j de colonne, on considère les indices i
allant de j + 1 à n. Ainsi, pour avoir (AB)(i, j) = I(i, j) = 0, on a

i

k=j

A(i, k)B(k, j) = 0 C B(i, j) = ↓

i↘1
k=j

A(i, k)B(k, j)

A(i, i)

ce qui montre que B(i, j) peut facilement être calculé puisque A(i, i) ↘= 0 et que tous
les termes B(k, j) avec k allant de j à i↓ 1 sont connus lorsqu’on calcule B(i, j).
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↬

Tel qu’indiqué au point 12 du théorème 1.4.1, une matrice carrée A est inversible si et
seulement si il existe un unique vecteur x qui vérifie A = b, quel que soit le vecteur b. Le
théorème 1.4.2 donne plus de précisions sur ce vecteur x lorsque A est inversible.

Théorème 1.4.2 (solution unique d’un système)
Si A est une matrice inversible de taille n↔n et b un vecteur quelconque à n compo-
santes, alors l’unique vecteur x qui vérifie Ax = b est x = A↘1b.

Preuve. Si A est une matrice inversible, on déduit du point 12 du théorème 1.4.1 qu’il
existe un unique vecteur x qui vérifie Ax = b, et comme A(A↘1b) = (AA↘1

)b = Ib = b,
il s’ensuit que x = A↘1b est cet unique vecteur. ↬

Si A est une matrice inversible, le théorème 1.4.2 donne une formule directe pour dé-
terminer l’unique vecteur qui vérifie Ax = b. Cependant, en pratique, il est extrêmement
coûteux en termes de calculs d’inverser une matrice. Pour déterminer ce vecteur x, on
n’inverse donc jamais explicitement une matrice. On préfère utiliser les techniques vues au
chapitre 8 basées sur le principe d’élimination qui est le sujet du chapitre 2.

Pour conclure cette section, notons que lorsqu’une matrice n’est pas inversible, on peut
recourir à la notion de pseudo-inverse, qui est abordée à la section section 6.4.



P
R
O
T
O
T
Y
P
E

74 CHAPITRE 1. VECTEURS ET MATRICES

1.5 Étude de cas : Produit de Kro-
necker

Le produit de Kronecker de deux matrices A ≃ Rm↔n et B ≃ Rp↔q est défini par blocs
de la manière suivante :

A▽B =





A(1, 1)B A(1, 2)B · · · A(1, n)B
A(2, 1)B A(2, 2)B · · · A(2, n)B

...
... . . . ...

A(m, 1)B A(m, 2)B · · · A(m,n)B




≃ R(mp)↔(nq).

Pour rappel, A(i, j) ≃ R désigne l’entrée (i, j) de A, pour i ≃ !1;m" et j ≃ !1;n".
Bien que très utile dans de nombreux domaines, le produit de Kronecker est peu étudié

dans les premiers cours d’algèbre linéaire notamment parce que la plupart de ses propriétés
sont souvent considérées comme trop techniques pour être démontrées à ce stade. L’idée de
cette étude de cas n’est pas de prouver des propriétés mais plutôt de les énoncer et de les
illustrer par des exemples simples afin de mettre en lumière la puissance du produit de Kro-
necker. Ensuite, certaines de ces propriétés seront appliquées au contexte de l’apprentissage
automatique.

1.5.1 Propriétés utiles

Dans ce qui suit, les tailles des matrices sont supposées compatibles pour que les produits
puissent être e!ectués.

Les propriétés suivantes sont vérifiées pour tout A ≃ Rm↔n et B ≃ Rp↔q compatibles :

A▽B ≃ R(mp)↔(nq) (tailles) (1.1)
(A1 +A2)▽B = A1 ▽B+A2 ▽B (linéarité à droite) (1.2)
A▽ (B1 +B2) = A▽B1 +A▽B2 (linéarité à gauche) (1.3)

(cA)▽B = A▽ (cB) = c(A▽B) (scalaires) (1.4)

(A▽B)
↑
= A↑

▽B↑ (transposition) (1.5)
(A▽B)(M▽D) = (AM)▽ (BD) (produit mixte) (1.6)
(A▽ Ir)(Ir ▽B) = A▽B (cas particulier du produit mixte) (1.7)

rg(A▽B) = rg(A)↔ rg(B) (rang) (1.8)
tr(A▽B) = tr(A)↔ tr(B) (trace) (1.9)
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D’autres identités classiques incluent la suivante qui concerne les matrices carrées : pour
A ≃ Rm↔m et B ≃ Rp↔p on a

det(A▽B) = det(A)
p
det(B)

m.

Aussi, pour une matrice M ≃ Rm↔n quelconque, notons vec(M) le vecteur obtenu en
empilant les colonnes de M :

vec(M) =





M(1, 1)
M(2, 1)

...
M(m, 1)
M(1, 2)
M(2, 2)

...
M(m,n)





≃ Rmn.

Étant données A ≃ Rm↔n, B ≃ Rp↔q et M ≃ Rn↔p, on a

vec(AMB) = (B↑
▽A) vec(M),

Cette dernière identité est très utile pour vectoriser des égalités matricielles, par exemple
dans le contexte de la régression linéaire.
1.5.2 Exemple

Dans cette partie, quelques propriétés du produit de Kronecker sont vérifiées. Considé-
rons

A =

[
1 2

0 1

]
≃ R2↔2, B =

[
2 0

↓1 3

]
≃ R2↔2, I2 =

[
1 0

0 1

]
.

Par définition,

A▽B =

[
1B 2B
0B 1B

]
=





2 0 4 0

↓1 3 ↓2 6

0 0 2 0

0 0 ↓1 3



 .

On retrouve bien la propriété (1.1) qui indique que A▽B ≃ R4↔4.
Aussi, on vérifie aisément la propriété (1.9) puisque tr(A▽B) = 10 = 2↔ 5 = tr(A)↔

tr(B).
Pour vérifier la propriété (1.7) avec la matrice I2, on peut calculer A▽ I2 et I2 ▽B, et

ensuite multiplier ces deux matrices :

A▽I2 =





1 0 2 0

0 1 0 2

0 0 1 0

0 0 0 1



 I2▽B =





2 0 0 0

↓1 3 0 0

0 0 2 0

0 0 ↓1 3



 (A▽I2)(I2▽B) =





2 0 4 0

↓1 3 ↓2 6

0 0 2 0

0 0 ↓1 3



 .
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On constate que (A▽ I2)(I2 ▽B) = A▽B.

1.5.3 Applications

Imaginons, dans un cadre d’apprentissage automatique, que l’on souhaite utiliser sur
son ordinateur personnel un modèle de traitement du langage naturel tel que GPT-2. Le
problème est que le modèle est trop volumineux pour tenir dans la mémoire de l’ordinateur.
On peut dans ce cas utiliser ce qu’on appelle la factorisation tensorielle pour décomposer
le modèle en un produit de Kronecker de matrices plus petites, qui peuvent être chargées
en mémoire. C’est précisément l’objet de cette section

De façon schématique, le modèle de traitement du langage se compose de couches d’at-
tention qui constituent un mécanisme permettant de se concentrer sur les parties impor-
tantes d’un texte à analyser, de capturer les dépendances entre les mots, ce qui est essentiel
pour comprendre le contexte global d’un texte et générer des réponses appropriées. Pour
ceux qui souhaitent approfondir le sujet, cette architecture est à la base des modèles de
langage actuels (Gemini, Claude, Mistral, LLaMA, GPT, entre autres) comme expliqué
dans l’article Attention Is All You Need.

Les couches d’attention sont représentées par des matrices A1,A2, . . . ,Ac, avec Ai ≃

Rei↔si pour i ≃ !1; c". Les éléments de ces matrices, appelés paramètres, sont des réels.
Le théorème suivant, à admettre sans démonstration, établit que chaque matrice peut

être factorisée en une somme de produits de Kronecker de matrices plus petites, réduisant
ainsi l’espace mémoire nécessaire au modèle

Théorème 1.5.1 (factorisation de Kronecker d’une matrice)
Quelle que soit la matrice A ≃ Rm↔n, il existe k ≃ N→ ainsi que deux familles de
matrices {A1,i}i↗!1;k", {A2,i}i↗!1;k" telles que, pour tout i ≃ !1; k", A1,i ≃ Rm1↔n1 et
A2,i ≃ Rm2↔n2 , avec m1m2 = m et n1n2 = n, et

A = A1,1 ▽A2,1 +A1,2 ▽A2,2 + . . .+A1,k ▽A2,k.

En d’autres mots, le Théorème 1.5.1 établit que toute matrice peut être représentée
comme une somme finie de produits de Kronecker de matrices plus petites, ce qui réduit
l’espace mémoire requis. Il convient à présent d’examiner le gain de mémoire o!ert par une
telle factorisation.

Premier cas : GPT-2 base

Le modèle de base de GPT-2 est constitué de 48 couches d’attention, chacune de taille
768 ↔ 768. Le nombre total de paramètres liés à ces matrices est donc 48 ↔ 768 ↔ 768 =

28, 311, 552. La plupart du temps, ces paramètres sont stockés en 32 bits, soit 4 octets. Ces
paramètres occupent donc environ 113.2 Mo de mémoire

Supposons que chacune de ces couches est factorisable en une somme de k produits de

https://arxiv.org/pdf/1706.03762.pdf
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Kronecker, avec A1,i ≃ R16↔48, A2,i ≃ R48↔16 pour tout i. Le nombre total de paramètres
à stocker pour une seule factorisation est alors

k ↔ (16↔ 48 + 16↔ 48) = k ↔ 1536.

Pour 48 couches, le nombre total de paramètres devient

48↔ k ↔ 1536 = k ↔ 73, 728.

Si l’on choisit k = 10 (ce qui est assez réaliste), le nombre total de paramètres à mé-
moriser est donc 737, 280, ce qui requiert environ 3 Mo. Le taux de compression est donc
de

⇁ =
28, 311, 552

737, 280
↗ 38.4.

Second cas : GPT-2 XL

Le modèle de base de GPT-2 XL est constitué de 192 couches d’attention, chacune de
taille 1600↔ 1600. Le nombre total de paramètres liés à ces matrices est donc 192↔ 1600↔

1600 = 491, 520, 000, ce qui requiert environ 2 Go. de mémoire.
Supposons, que chacune de ces couches est factorisable en une somme de k produits de

Kronecker, avec A1,i ≃ R32↔50, A2,i ≃ R50↔32 pour tout i. Le nombre total de paramètres
à stocker pour une seule factorisation est alors

k ↔ (32↔ 50 + 32↔ 50) = k ↔ 3200.

Pour 192 couches, le nombre total de paramètres devient

192↔ k ↔ 3200 = k ↔ 614, 400.

Si on choisit k = 20 (ce qui est à nouveau, assez réaliste), le nombre total de paramètres
à mémoriser est 12, 288, 000, ce qui requiert environ 49.2 Mo. Le taux de compression est
donc de

⇁ =
491, 520, 000

12, 288, 000
= 40.0.

Ainsi, que l’on considère le modèle de base ou le modèle XL, la factorisation de Kronecker
permet de réduire significativement le nombre de paramètres à stocker. Évidemment, la
structure du modèle a été simplifiée pour l’exemple ; les modèles actuels comptent souvent
plusieurs centaines de milliards de paramètres. En pratique, le gain de compression sur
l’ensemble du modèle peut atteindre l’ordre de la centaine, voire davantage, car les couches
d’attention ne représentent qu’une fraction du total des paramètres.
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1.8 Exercices sur les vecteurs et les
matrices

Les exercices de ce chapitre se concentrent sur la manipulation de vecteurs et de ma-
trices. La résolution de systèmes et l’inversion matricielle ne sont pas concernées car vues
plus loin, au chapitre 8, même si ici on peut quand même manipuler des systèmes et des
inverses de matrices. Les solutions sont disponibles à l’annexe A.

Série d’exercices 1: Matrices et vecteurs

Exercice 1.1: vrai ou faux ? (ς)
Les énoncés suivants sont-ils vrais ou faux ?

1. Soient A et B dans Rm↔n. On a (A+B)
2
= A2

+ 2AB+B2.
2. Soient A et B dans Rm↔n. Avec B inversible, on a tr(B↘1AB) = tr(A).
3. Toute matrice triangulaire est inversible.
4. Soient A et B dans Rn↔n. Si AB est inversible, alors A et B sont inversibles.
5. Soient A une matrice quelconque et b un vecteur quelconque. Si le système Ax = b

possède une solution unique, alors la matrice A est inversible.

6. Soient A, B, C et D des matrices inversibles de Rn↔n. La matrice par blocs
[
A C
B D

]

est inversible et son inverse est donnée par
[
A↘1 C↘1

B↘1 D↘1

]
.

7. Trois opérations élémentaires sont e!ectuées sur une matrice A ≃ Rn↔n dans l’ordre
suivant :
(a) La deuxième ligne de A est multipliée par φ ≃ R→ ;
(b) La première et la deuxième ligne de A sont permutées ;
(c) La troisième ligne est ajoutée trois fois à la première ligne de A.

La matrice issue de ces trois transformations est notée A⇒, et on a

det(A⇒
) = ↓φ det(A) .

Exercice 1.2: (ς)

Soient A =




1 2 3

2 3 3

1 4 1



 ≃ R3↔3, b =




1

1

1



, et c =




6

8

6



 ≃ R3.



P
R
O
T
O
T
Y
P
E

1.8. EXERCICES SUR LES VECTEURS ET LES MATRICES 81

1. Vérifier que Ab = c ;
2. Écrire c comme une combinaison linéaire des colonnes de A ;

3. Sachant que 4b = ↓




1

2

1



+




2

3

4



+




3

3

1



, trouver une solution au système Ax = b.

Exercice 1.3: (ς)
Exprimer le produit Ax comme une combinaison linéaire des colonnes de A, avec A =



↓1 1 2

0 1 ↓3

1 ↓2 1

7 3 ↓1



 et x = (x1, x2, x3).

Exercice 1.4: (ς)
Exprimer la combinaison linéaire suivante comme le produit d’une matrice A et d’un vecteur
x :

x1

[
2

1

]
+ x2

[
1

1

]
+ x3

[
↓1

0

]
+ x4

[
6

↓4

]

Exercice 1.5: (ς)

Soient a =

[
2

0

]
,b =

[
3

3

]
et c =

[
↓
↑
3

1

]
≃ R2.

1. Calculer la norme de ces trois vecteurs.
2. Calculer ∝a,b′ et ∝a, c′ de deux façons di!érentes.

3. Sachant que b =
3
⇑
3+3
2 a+ 3c, en déduire ∝b, c′.

Exercice 1.6: théorème de Pythagore (ςς)
Soient x,y ≃ Rn.

1. Montrer que △x+ y△2 + △x↓ y△2 = 2 △x△2 + 2 △y△2.
2. Si, de plus, x et y sont orthogonaux, montrer que △x+ y△2 = △x△2 + △y△2.

Exercice 1.7: cas d’égalité de l’inégalité triangulaire (ς ς ς)
Soient x,y ≃ Rn non nuls.

1. Montrer que si y = φx avec φ > 0 alors △x+ y△ = △x△+ △y△.
2. Montrer que si y = φx avec 0 > φ > ↓1 alors △x+ y△ = △x△ ↓ △y△.
3. Montrer que si ∝x,y′ = △x△ △y△ alors x et y sont colinéaires en étudiant la norme de

y ↓
⇓x,y⇔
↖x↖2 x.
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4. Montrer que si △x+ y△ = △x△+ △y△ alors ∝x,y′ = △x△ △y△.
5. En déduire une condition nécessaire et su"sante sur la cas d’égalité de l’inégalité

triangulaire.

Exercice 1.8: équation d’un plan généré par deux vecteurs (ς)
Soient u = (1, 2, 3) et v = (0, 1, 1) deux vecteurs de R3. Donner l’équation du plan
Vect(u,v).

Exercice 1.9: produits et additions compatibles ? (ς)
Soient les matrices et vecteurs suivants :

A ≃ R3↔2, B ≃ R2↔4, x ≃ R2, y ≃ R3.

Pour chacune des expressions ci-dessous, indiquer si l’opération est bien définie. Si oui,
préciser le type (matrice ou vecteur) et les dimensions du résultat. Sinon, expliquer pourquoi
l’opération est impossible.

1. Ax

2. BA

3. A+ y

4. A↑y

5. x↑A

Exercice 1.10: (ς)

Soient A =

[
1 3 4

4 0 2

]
, et B =




↓2 3

1 2

6 0



.

1. Calculer AB selon les quatre points de vue du cours.
2. Calculer BA selon les quatre points de vue du cours.

Exercice 1.11: (ς)
Soient les matrices et vecteurs suivants :

A =




1 2 ↓1

0 3 2

↓1 1 4



 , B =




2 0

↓1 3

1 ↓2



 , C =

[
1 ↓1 2

3 0 1

]

u =




2

↓1

3



 , v =

[
1

4

]
, w =





↓2

1

0

3




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Pour chacune des expressions suivantes, déterminer si l’opération est bien définie. Si oui,
préciser les dimensions du résultat et le calculer. Si non, expliquer pourquoi.

1. A+B↑

2. (CB)
↑
+A

3. Au+Bv

4. C(Au)↓ 2v

5. (A+A↑
)u

Exercice 1.12: (ς)

Soient A =

[
cos(a) ↓ sin(a)
sin(a) cos(a)

]
,B =

[
↓ cos(b) ↓ sin(b)

sin(b) cos(b)

]
, avec a, b ≃ R.

1. Calculer AB.
2. Calculer A2.
3. Calculer An.

Exercice 1.13: (ςς)

Soit A =

[
1 1

1 1

]
≃ R2↔2. Trouver les matrices telles que AB = BA.

Exercice 1.14: (ςς)
Soit A ≃ Rn↔n avec des 1 sur la surdiagonale et des 0 ailleurs. Calculer Ak pour k ≃ N.

Exercice 1.15: structure de la matrice noyau (ς)

Soit R =

[
A F
C D

]
≃ Rm↔n et N =

[
↓F
B

]
≃ Rn↔(n↘r) avec r un entier tel que r B

min{m,n}.
1. Si A ≃ Rr↔r, donner les tailles de F, C, D, et aussi B si on veut que le produit RN

soit défini.
2. Exprimer le produit RN.
3. Si A et B sont des matrices identité, et si C et D sont des matrices nulles, exprimer

le produit RN.

Exercice 1.16: (ς)

Soient A =

[
↓2 3

6 3

]
,B =




↓1 3 1

0 4 1

1 2 2



 ,C =





↓1 ↓2 1 1

1 4 0 2

1 2 0 1

1 2 0 1



 ,D =





↓1 ↓2 1 1

1 4 0 2

1 2 0 1

1 0 0 1



,

calculer leur déterminant.
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Exercice 1.17: (ς)
Soient les matrices :

A =





↓1 1 4 2

↓2 5 13 2

↓3 18 42 ↓5

4 14 ↓21 ↓11



 ,L =





1 0 0 0

2 1 0 0

3 5 1 0

↓4 6 ↓7 1



 , et U =





↓1 1 4 2

0 3 5 ↓2

0 0 5 ↓1

0 0 0 2



 .

1. Vérifier que A = LU.
2. En déduire le déterminant de A.

3. Calculer le déterminant de B =





↓2 1 ↓4 2

↓4 5 ↓13 2

↓6 18 ↓42 ↓5

8 14 21 ↓11



.

Exercice 1.18: (ςς)

Soit A =




↓1 3 1

2 4 1

2 7 1



.

1. Calculer det(A).
2. Est-ce que A↑A est inversible ? Si oui, quel est le déterminant de (A↑A)

↘1 ?

Exercice 1.19: (ς ς ς)

Soit An =





4 4 0 . . . 0

1 4 4
. . . ...

0 1
. . . . . . 0

... . . . . . . . . . 4

0 . . . 0 1 4





≃ Rn↔n.

1. Montrer que det(An+2) = 4(det(An+1)↓ det(An)) pour tout n ≃ N.
2. En déduire det(An) pour tout n ≃ N.

Exercice 1.20: (ς ς ς)
Soient A ≃ Rn↔n, B ≃ Rn↔n, et D ≃ Rm↔m.

1. Soit la matrice diagonale par blocs définie par M1 =

[
A O
O D

]
.

Montrer que det(M1) = det(A) det(D).

2. Soit la matrice triangulaire par blocs définie par M2 =

[
A B
O D

]
.

En supposant que A est inversible, montrer que det(M2) = det(A) det(D).
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Exercice 1.21: (ς)

Soit A =

[
1 2 0

3 0 ↓1

]
≃ R2↔3.

1. La matrice A est-elle inversible ?
2. Calculer AA↑. La matrice est-elle inversible ?
3. Calculer A↑A. La matrice est-elle inversible ?
4. Calculer (A↑A)

↑.

Exercice 1.22: (ς)
Justifier d’au moins trois façons di!érentes que la matrice I2 est inversible.

Exercice 1.23: (ς)
Justifier d’au moins trois façons di!érentes que la matrice

A =

[
1 1

1 1

]

n’est pas inversible.

Exercice 1.24: (ςς)

LIEN AVEC exercice 8.22 ? ? On considère la matrice Ak =




2 ↓1 k
0 k 2

1 4 5



. Pour quelle(s)

valeur(s) de k ≃ R la matrice Ak n’est-elle pas inversible ?

Exercice 1.25: une histoire d’inverse (ςς)
Soient F ≃ Rn↔n une matrice inversible et u ≃ Rn, un vecteur colonne. Montrer que

(F↘1
+ uu↑

)
↘1

= F↓
Fuu↑F

1 + u↑Fu
(1.10)

Exercice 1.26: matrices nilpotentes et inversibilité (ςς)
Soit A une matrice telle qu’il existe n tel que An

= 0 avec A non nulle.
1. Donner un exemple en dimension 2 pour n = 2.
2. Montrer que A n’est pas inversible.
3. Calculer et simplifier au maximum l’expression suivante

n↘1

i=0

(Ai
↓Ai+1

).

4. Montrer que (I+A+A2
+ ...+An↘1

) est inversible.



P
R
O
T
O
T
Y
P
E

86 CHAPITRE 1. VECTEURS ET MATRICES

Exercice 1.27: (ςς)
Soient les matrices définies par blocs :

A =

[
I O
D I

]
, B =

[
I O

↓D I

]
, C =

[
I D
O I

]

avec I,A,D ≃ Rn↔n.
1. A est-elle triangulaire ? S’il existe, donner son déterminant.
2. Calculer le produit AB.
3. Donner l’inverse de A.
4. Calculer AC.

Exercice 1.28: (ςς)
Exercice à la bonne place ?

1. Soit A =




1 12 ↓6

0 1 0

0 4 ↓1



. A est-elle inversible ?

2. Montrer que :

(A↓ I3)(A+ I3) =




0 0 0

0 0 0

0 0 0





3. De manière générale, soit B ≃ Rn↔n une matrice vérifiant :

(B+ In)(B↓ In) = 0n

Montrer que B est inversible et que son inverse est B↘1
= B.

Exercice 1.29: (ςς)
Montrer qu’une matrice antisymétrique a seulement des zéros sur sa diagonale.

Exercice 1.30: (ςς)
Soient A et B deux matrices et x un vecteur tels que Ax = Bx. Peut-on en conclure que
A = B ?

Exercice 1.31: (ςς)

Soient A =

[
1 2

2 3

]
et B =

[
3 0

0 1

]
deux matrices de R3

1. Calculer la norme de Frobenius de ces matrices.
2. Vérifier que | ∝A,B′ | B △A△F △B△F.
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3. À quelle inégalité liée au produit scalaire réel vu dans la section 1.1.4 l’inégalité de la
question précédente est-elle similaire ?

4. Soient A,B ≃ Rn↔n deux matrices symétriques, montrer que tr(AB)
2
B tr(A2

) tr(B2
).

(Indication : s’aider de la démonstration utilisée pour démontrer l’inégalité cherchée
à la question précédente – LIEN.)
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Chapitre

5
Espaces vectoriels

Ce chapitre est consacré à l’étude des espaces vectoriels, qui constituent des structures
algébriques fondamentales en mathématique. Un espace vectoriel est un ensemble dont les
éléments, appelés vecteurs, peuvent être ajoutés entre eux et multipliés par des scalaires,
qui sont réels ou complexes dans ce document, selon des règles précises. Cette structure
permet de généraliser et d’abstraire les notions de vecteurs et de matrices introduites au
chapitre 1 et de formaliser le fait que les vecteurs des ensembles Rn et Cn, ainsi que les
matrices des ensembles Rm→n et Cm→n, sont des espaces vectoriels. Elle fournit un cadre
unifié pour définir et étudier des concepts essentiels tels que la dimension, les bases, ou
encore les sous-espaces vectoriels. Les espaces vectoriels se rencontrent dans une grande
variété de contextes mathématiques, allant des polynômes aux fonctions, en passant par les
suites, les matrices ou encore les solutions de certains types d’équations di!érentielles.
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5.1 Définitions
On commence par introduire la notion d’espace vectoriel, accompagnée de quelques

exemples illustratifs, avant d’explorer celle de sous-espace vectoriel.

5.1.1 Définition d’un espace vectoriel

La définition suivante formalise la notion d’espace vectoriel.

Définition 5.1.1 (espace vectoriel)
Un espace vectoriel V est un ensemble d’éléments, appelés vecteurs, muni des opéra-
tions :

• d’addition vectorielle, notée “+”, qui permet d’additionner deux vecteurs de V
afin d’obtenir un autre vecteur de V ;

• de multiplication par un scalaire, qui permet de multiplier tout vecteur de V par
un scalaire afin d’obtenir un autre vecteur de V ;

qui respectent les huit propriétés suivantes :
1. x+ y = y + x pour tous vecteurs x et y de V ;
2. x+ (y + z) = (x+ y) + z pour tous vecteurs x, y et z de V ;
3. il existe un vecteur de V , noté 0, appelé le vecteur nul ou l’élément nul de

l’addition, tel que x+ 0 = x pour tout vecteur x de V ;
4. pour tout vecteur x de V , il existe un vecteur de V , appelé l’opposé de x et noté

→x, tel que x+ (→x) = 0 (on pourra écrire x→ x = 0) ;
5. 1x = x pour tout vecteur x de V ;
6. (ωε)x = ω(εx) pour tous scalaires ω et ε et tout vecteur x de V ;
7. ω(x+ y) = ωx+ ωy pour tout scalaire ω et tous vecteurs x et y de V ;
8. (ω+ ε)x = ωx+ εx pour tous scalaires ω et ε et tout vecteur x de V .

On parlera d’espace vectoriel réel ou d’espace vectoriel complexe selon que le scalaire
considéré dans l’opération de multiplication par un scalaire est un nombre réel ou un nombre
complexe.

Parfois, un ensemble considéré peut être vu comme un espace vectoriel réel ou complexe
selon la façon de le modéliser. C’est par exemple le cas de C qui peut être vu comme un
espace vectoriel complexe ou un espace vectoriel réel. L’étude de cas de la section 5.4 traite
ce point plus en détail.

Les opérations d’addition vectorielle et de multiplication par un scalaire permettent
d’élargir la définition de combinaison linéaire introduite à la définition 1.1.9.
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Définition 5.1.2 (combinaison linéaire)
Soient v1,v2, . . . ,vp p vecteurs d’un espace vectoriel V , et ω1,ω2, . . . ,ωp p scalaires
(réels si V est considéré comme un espace vectoriel réel ou complexes si V est considéré
comme un espace vectoriel complexe) :

ω1v1 + ω2v2 + . . .+ ωpvp =

p∑

k=1

ωkvk

est une combinaison linéaire des vecteurs v1,v2, . . . ,vp.

Une combinaison linéaire est donc une somme finie pondérée de vecteurs, mais ces
vecteurs peuvent appartenir à des espaces vectoriels que Rn ou Cn ; ils sont, de façon
générale, les éléments d’espaces vectoriels.

Le résultat suivant découle naturellement de la notion de combinaison linéaire.

Proposition 5.1.1 (combinaison linéaire)
Toute combinaison linéaire de vecteurs d’un espace vectoriel V est également un vec-
teur de V .

Preuve. On considère la combinaison linéaire ω1x1 + ω2x2 + . . . + ωpxp des p vecteurs
x1,x2, . . . ,xp de V avec {ω1,ω2, . . . ,ωp} un ensemble de p scalaires. Selon la propriété de
la multiplication par un scalaire, chaque élément ωixi, pour i ↑ !1; p", est dans V . Ainsi, la
combinaison linéaire est une somme de vecteurs de V , ce qui, selon la propriété de l’addition
vectorielle, est également dans V . Donc ω1x1 + ω2x2 + . . .+ ωpxp ↑ V . ↭

Les huit propriétés de la définition 5.1.1 permettent de formaliser rigoureusement les
comportements que l’on associe intuitivement aux vecteurs du plan. L’addition peut ainsi
être comprise comme la combinaison de deux vecteurs, et la multiplication par un scalaire
comme une dilatation (ou contraction) du vecteur. Ces opérations, familières dans un cadre
géométrique, sont à la base des axiomes qui définissent un espace vectoriel. La structure
abstraite ainsi construite prolonge cette intuition et en o!re une généralisation puissante,
applicable bien au-delà du plan ou de l’espace à trois dimensions.

5.1.2 Exemples d’espaces vectoriels

Parmi les exemples d’espaces vectoriels donnés ci-dessous, les exemples I et II formalisent
le fait que l’ensemble des vecteurs à composantes réelles et l’ensemble des matrices réelles
forment des espaces vectoriels réels. Les mêmes principes s’appliquent pour Cm et Cm→n,
qui forment des espaces vectoriels complexes.
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Exemple 5.1.1 (ensembles qui sont des espaces vectoriels)

I Rn, l’ensemble des vecteurs colonne à n composantes réelles, est un espace vec-
toriel réel.

II Rm→n, l’ensemble des matrices réelles de taille m ↓ n, est un espace vectoriel
réel a.

III S, l’ensemble des suites numériques à valeurs réelles, est un espace vectoriel réel.
IV L’ensemble des fonctions réelles ou complexes est un espace vectoriel.
V L’ensemble des fonctions continues sur un intervalle est un espace vectoriel.

VI L’ensemble des fonctions bornées sur R est un espace vectoriel.
VII P2(R), l’ensemble des polynômes réels de degré inférieur ou égal à deux, est un

espace vectoriel.

a. Il est donc correct de dire que les matrices sont des vecteurs.

Preuve des points I, III, et IV.

I On note chaque élément de Rn comme x = (x1, x2, . . . , xn), avec xi ↑ R pour i ↑

!1;n". Pour deux éléments x = (x1, x2, . . . , xn) et y = (y1, y2, . . . , yn) de Rn et pour
un scalaire ω ↑ R, on considère les deux opérations définies comme suit :
↫ addition vectorielle : x+ y = (x1 + y1, x2 + y2, . . . , xn + yn) ;
↫ multiplication par un scalaire : ωx = (ωx1,ωx2, . . . ,ωxn).

On doit vérifier la validité des huit propriétés de la définition 5.1.1 :
1 x+ y = y + x car l’addition des réels est commutative ;
2 (x+ y) + z = x+ (y + z) car l’addition des réels est associative ;
3 le vecteur nul 0 = (0, 0, . . . , 0) ↑ Rn satisfait x+ 0 = x ;
4 pour tout x = (x1, x2, . . . , xn), le vecteur →x = (→x1,→x2, . . . ,→xn) vérifie
x+ (→x) = 0 ;

5 1x = x car 1xi = xi pour tout i ↑ !1;n" ;
6 (ωε)x = ω(εx) car (ωε)xi = ω(εxi) pour tout i ↑ !1;n" ;
7 ω(x+ y) = ωx+ ωy car ω(xi + yi) = ωxi + ωyi pour tout i ↑ !1;n" ;
8 (ω+ ε)x = ωx+ εx car (ω+ ε)xi = ωxi + εxi pour tout i ↑ !1;n".

On a donc montré que Rn est un espace vectoriel réel.
III Soit S = {(un)n↑N : un ↑ R} l’ensemble des suites numériques à valeurs réelles. Pour

deux éléments (un)n↑N et (vn)n↑N de S et pour un scalaire ω ↑ R, on considère les
deux opérations définies comme suit :
↫ addition : (un)n↑N + (vn)n↑N = (un + vn)n↑N ;
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↫ multiplication par un scalaire : ω(un)n↑N = (ωun)n↑N.

On doit vérifier la validité des huit propriétés de la définition 5.1.1 :

1 (un)n↑N +(vn)n↑N = (vn)n↑N +(un)n↑N car un + vn = vn + un pour tout n ↑ N ;
2 ((un)n↑N+(vn)n↑N)+(wn)n↑N = (un)n↑N+((vn)n↑N+(wn)n↑N) car (un+vn)+
wn = un + (vn + wn) pour tout n ↑ N ;

3 la suite nulle (0)n↑N est l’élément neutre ;
4 pour tout (un)n↑N ↑ S, la suite (→un)n↑N vérifie (un)n↑N+(→un)n↑N = (0)n↑N ;
5 1(un)n↑N = (un)n↑N car 1un = un pour tout n ↑ N ;
6 (ωε)(un)n↑N = ω(ε(un)n↑N) car (ωε)un = ω(εun)pour tout n ↑ N ;
7 ω((un)n↑N + (vn)n↑N) = ω(un)n↑N +ω(vn)n↑N car ω(un + vn) = ωun +ωvn pour

tout n ↑ N ;
8 (ω + ε)(un)n↑N = ω(un)n↑N + ε(un)n↑N car (ω + ε)un = ωun + εun pour tout
n ↑ N.

On a donc montré que S est un espace vectoriel réel.

IV Pour deux fonctions réelles ou complexes f et g et pour un scalaire ω, on considère
les deux opérations suivantes :

↫ addition : (f + g)(x) = f(x) + g(x) ;
↫ multiplication par un scalaire : (ωf)(x) = ωf(x).

Les huit propriétés de la définition 5.1.1 sont faciles à démontrer, en considérant le
vecteur nul comme la fonction nulle f = 0, 0 étant dans Rm

↔ Cm, et l’opposée d’une
fonction f étant →f (c’est-à-dire (→f)(x) = →f(x)).

↭

Les preuves des points II, V, VI et VII sont le sujet des exercices 5.3, 5.6, 5.7, et 5.8. De
nombreux ensembles ne satisfont pas les propriétés de la définition 5.1.1. À titre d’illustra-
tion, on donne ci-dessous deux exemples d’ensembles qui ne sont pas des espaces vectoriels.
La preuve du point II est le sujet de l’exercice 5.12.

Exemple 5.1.2 (ensembles qui ne sont pas des espaces vectoriels)

I L’ensemble des matrices inversibles n’est pas un espace vectoriel.
II L’ensemble des vecteurs du premier quadrant de R2 n’est pas un espace vectoriel.

Preuve du point I. La matrice nulle O est l’élément nul de l’addition entre matrices,
mais elle n’est pas inversible, ce qui contredit la troisième propriété de la définition 5.1.1
qui exige que cet élément nul soit dans l’ensemble. ↭
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Bien que, tel qu’on l’a vu, il soit possible de montrer qu’un ensemble forme un espace
vectoriel en vérifiant les propriétés de la définition 5.1.1, ceci peut être fastidieux. En pra-
tique, il peut s’avérer très utile d’utiliser la notion de sous-espace vectoriel, ce qui constitue
l’objet de la prochaine section.

5.1.3 Sous-espaces vectoriels

De nombreuses structures intéressantes en algèbre se révèlent être des sous-espaces vec-
toriels d’espaces vectoriels connus (voir section 6.1). Tel qu’illustré dans cette section, il est
possible de démontrer que certains de ces ensembles sont des espaces vectoriels, sans avoir
à vérifier les huit propriétés de la définition 5.1.1.

Définition 5.1.3 (sous-espace vectoriel)
Soit V un espace vectoriel, et soit U ↗ V un sous-ensemble de V . Si U , muni des
mêmes opérations d’addition vectorielle et de multiplication par un scalaire que V ,
est lui-même un espace vectoriel, alors U est appelé un sous-espace vectoriel de V .

Le théorème 5.1.1 o!re une caractérisation plus simple d’un sous-espace vectoriel, évitant
le recours à la définition 5.1.1. Il permet de démontrer qu’un ensemble U ↗ V est un sous-
espace vectoriel à l’aide de propriétés assez évidentes à vérifier.

Théorème 5.1.1 (caractérisation des sous-espaces vectoriels)
Soit V un espace vectoriel, et soit U un sous-ensemble de V muni des mêmes opérations
d’addition vectorielle et de multiplication par un scalaire que V . Alors U est un sous-
espace vectoriel de V si et seulement si les trois conditions suivantes sont satisfaites :

1. U contient le vecteur nul : 0 ↑ U ;
2. fermeture de l’addition : x+ y ↑ U pour tous vecteurs x et y dans U ;
3. fermeture de la multiplication par un scalaire : ωx ↑ U pour tout scalaire ω et

pour tout x ↑ U .

Preuve. Soit V un espace vectoriel, et soit U un sous-ensemble de V muni des mêmes
opérations d’addition vectorielle et de multiplication par un scalaire que V .

Si U est un espace vectoriel, alors il résulte de la définition 5.1.1 que 0 ↑ U , que x+y ↑ U
pour tous vecteurs x et y dans U , et que ωx ↑ U pour tout scalaire ω et pour tout x ↑ U .
Les trois conditions du théorème 5.1.1 sont donc satisfaites.

Supposons maintenant que les trois conditions du théorème 5.1.1 sont satisfaites, et
montrons que U est alors nécessairement un espace vectoriel. Il su"t de prouver que les
huit propriétés de la définition 5.1.1 sont vérifiées :

↫ les propriétés 1, 2, 5, 6, 7 et 8 sont vérifiées dans V et donc aussi dans U .
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↫ par la propriété 1 du théorème 5.1.1, on a 0 ↑ U . De plus, pour tout x ↑ U , on a
x+ 0 = x dans V , et donc aussi dans U .

↫ pour tout x ↑ U , son opposé dans V est donné par →x = (→1)x, et →x ↑ U par la
propriété 3 du théorème 5.1.1. De plus, x→ x = 0 dans V , et donc aussi dans U .

↭

L’exemple suivant illustre l’application du théorème 5.1.1. Plusieurs exercices le font
aussi, comme les exercices 5.10 et 5.9.

Exemple 5.1.3
L’ensemble U = {(x, y) ↑ R2

: x + y = 0} ↔ V = R2 est un sous-espace vectoriel de
R2. En e!et,

1. L’origine 0 = (0, 0) ↑ U car 0 + 0 = 0.
2. Si x = (x1, x2) ↑ U et y = (y1, y2) ↑ U , alors x1 + x2 = 0 et y1 + y2 = 0.

L’addition de x et y donne x+ y = (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) dont
la somme des composantes est x1 + y1 + x2 + y2 = 0. Ainsi x+ y ↑ U .

3. Si x = (x1, x2) ↑ U (et donc x1 + x2 = 0) et si ω ↑ R, alors ωx = (ωx1,ωx2)
dont la somme des composantes est ωx1+ωx2 = ω(x1+x2) = 0. Donc ωx ↑ U .

Toutes les conditions du théorème 5.1.1 sont ainsi satisfaites et l’ensemble des vecteurs
de R2 dont la somme des composantes est nulle forme bien un sous-espace vectoriel
de R2. Graphiquement, ce sous-espace est la droite d’équation y = →x.

Remarque
Quelques observations à propos du théorème 5.1.1 :

↫ Tout espace vectoriel V admet toujours deux sous-espaces vectoriels particuliers,
soit {0} (c’est-à-dire l’ensemble ne contenant que le vecteur nul) et V lui-même.
Ces sous-espaces vectoriels sont dits triviaux.

↫ Les conditions 2 et 3 du théorème 5.1.1 peuvent être remplacées par la seule
condition que pour toute paire (x,y) de U , et tous scalaires ω et ε, on a

ωx+ εy ↑ U

qui est plus directe à vérifier.
↫ Les conditions 2 et 3 du théorème 5.1.1 permettent également de réaliser qu’un

sous-espace vectoriel, tout comme un espace vectoriel, est un ensemble qui
contient toutes les combinaisons linéaires possibles de ses propres éléments. Cette
remarque permet d’exprimer le corollaire 5.1.1 sur l’opérateur Vect(·).
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↫ Le seul espace vectoriel qui ne contient pas une infinité de vecteurs est {0} a.
↫ Tout sous-espace vectoriel est un espace vectoriel, et tout espace vectoriel est

un sous-espace vectoriel (au moins de lui-même). L’exemple 5.1.4 illustre cela.
↫ Lorsqu’on mentionne un sous-espace vectoriel, il faut aussi mentionner le “sur-

espace”, c’est-à-dire l’espace vectoriel dans lequel est inclus le sous-espace vec-
toriel étudié. Dans l’exemple 5.1.3, le sur-espace est R2.

↫ Si on veut prouver qu’un ensemble est (ou n’est pas) un espace vectoriel, la
vérification prioritaire à faire est l’appartenance du vecteur nul à cet ensemble.

a. Pour les espaces vectoriels R et C.

Exemple 5.1.4

↫ R3, l’ensemble des vecteurs colonne de trois composantes, est un espace vectoriel,
d’où son appellation familière d’espace à trois dimensions, ou d’espace 3D. De
même R2 est un espace vectoriel (l’espace 2D). Cependant, R2 n’est pas un
sous-espace vectoriel de R3, car R2 n’est pas un sous-ensemble de R3. Ils sont en
fait fondamentalement di!érents car les vecteurs de R3 ont trois composantes,
et ceux de R2 ont deux composantes, et ces deux espaces ne partagent pas les
mêmes additions vectorielles ni les mêmes multiplications par un scalaire. Pour
résumer, R2 n’est pas un sous-espace vectoriel de R3, mais est un sous-espace
vectoriel de lui-même.

↫ Tout plan de R3 qui contient 0 est un sous-espace vectoriel de R3, et donc un
espace vectoriel. Toute droite (passant par 0) d’un plan de R3 est un sous-espace
vectoriel de ce plan, et aussi un sous-espace vectoriel de R3. Toute droite de R3

passant par l’origine 0 est donc aussi un espace vectoriel.
↫ Ainsi, dans R3, les espaces vectoriels possibles sont :

• R3 lui-même (un des deux sous-espaces vectoriels triviaux de R3) ;
• tous les plans de R3 qui passent par l’origine 0 ;
• toutes les droites de R3 qui passent par l’origine 0 ;
• {0}, l’autre sous-espace vectoriel trivial de R3.

Pour rappel, l’opérateur Vect(·) (voir définition 1.1.10) prend une famille de vecteurs
en entrée, et retourne l’ensemble de toutes les combinaisons linéaires de cette famille. Le
résultat suivant formalise la remarque qu’un sous-espace vectoriel est caractérisé par un
ensemble de combinaisons linéaires.
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Corollaire 5.1.1 (Vect(·) est un sous-espace vectoriel)
L’opérateur Vect(·) retourne un sous-espace vectoriel.

Preuve. Étant donnée une famille de vecteurs, l’opérateur Vect(·) retourne l’ensemble de
toutes les combinaisons linéaires de cette famille. Par conséquent, Vect(·) contient toutes les
combinaisons linéaires possibles de ses propres éléments, ce qui démontre, par la remarque
de la section 5.1.3, que Vect(·) est un espace vectoriel. ↭

Le corollaire 5.1.1 fournit un outil puissant pour prouver qu’un ensemble est un sous-
espace vectoriel, comme l’illustre l’exemple 5.1.5 (voir aussi l’exercice 5.5).

Exemple 5.1.5
Soit l’ensemble U = {(x, y) ↑ R2

: x+y = 0} ↔ R2 déjà étudié à l’exemple 5.1.3. On a
vu que U est la droite de R2 d’équation y = →x, dont un vecteur directeur est (1,→1).
Donc U = Vect((1,→1)), ce qui confirme que U est bien un sous-espace vectoriel de
R2.

La caractérisation des sous-espaces vectoriels peut être utilisée pour démontrer la pro-
position 5.1.2 qui suit.

Proposition 5.1.2 (les polynômes forment un espace vectoriel)
Les ensembles de polynômes P(R) et P(C) sont des espaces vectoriels.

Preuve. On a vu au point IV de l’exemple 5.1.1 que les fonctions réelles et complexes
forment des espaces vectoriels. P(R) est un sous-ensemble des fonctions réelles d’une va-
riable (n = 1) qui ne renvoient qu’un réel (m = 1) et P(C) est un sous-ensemble des
fonctions complexes d’une variable (n = 1) qui ne renvoient qu’un complexe (m = 1) (voir
la définition 4.2.1). Ils contiennent tous deux un élément nul (le polynôme nul) et toute
combinaison linéaire de polynômes est un polynôme. ↭

Cette section consacrée aux sous-espaces vectoriels s’achève par l’étude des intersections
et des unions de sous-espaces vectoriels.

Proposition 5.1.3 (intersection de sous-espaces vectoriels)
Si U1 et U2 sont deux sous-espaces vectoriels d’un espace vectoriel V , alors leur inter-
section U1 ↘ U2 est également un sous-espace vectoriel de V .

Preuve. Pour montrer que U1 ↘U2 est un sous-espace vectoriel de V , il su"t de vérifier
que les trois conditions du théorème 5.1.1 sont satisfaites :
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1 Le vecteur nul 0 appartient à U1 et à U2, et donc à leur intersection : 0 ↑ U1 ↘ U2 ;
2 si x et y sont dans U1 ↘ U2, alors x + y ↑ U1 (car x et y sont dans U1, et x + y

également, par la propriété de l’addition vectorielle de la définition 5.1.1) et x+y ↑ U2

(argument similaire). Donc x+ y ↑ U1 ↘ U2 ;
3 pour tout scalaire ω et tout x ↑ U1 ↘ U2, on a ωx ↑ U1 et ωx ↑ U2 par les propriétés

de la multiplication par un scalaire de la définition 5.1.1. Donc ωx ↑ U1 ↘ U2.

Les trois conditions étant satisfaites, U1 ↘ U2 est bien un sous-espace vectoriel de V .
↭

Remarque
L’union de deux sous-espaces vectoriels n’est en général pas un sous-espace vectoriel.
Par exemple, si U1 et U2 sont deux droites distinctes de R2 passant par l’origine, U1

et U2 sont des sous-espaces vectoriels de R2 mais pas leur union U1 ≃ U2. En e!et, il
est possible que la somme de deux vecteurs de l’union ne soit pas dans l’union, comme
l’illustre l’exemple 5.1.6. La propriété de fermeture de addition du théorème 5.1.1 n’est
donc pas vérifiée.

Exemple 5.1.6
Soient U1 = {(x, y) ↑ R2

: x + y = 0} et U2 = {(x, y) ↑ R2
: x → y = 0}. Ces deux

ensembles sont des sous-espaces vectoriels de R2 correspondant aux droites y = →x
et y = x. Leur intersection est réduite au vecteur nul : U1 ↘ U2 = {0}. L’intersection
de ces deux sous-espaces vectoriels est donc également un sous-espace vectoriel, en
accord avec la proposition 5.1.3. En revanche, leur union U1 ≃ U2 ne vérifie pas la
propriété de fermeture de l’addition du théorème 5.1.1. Par exemple, (→2, 2) ↑ U1 et
(1, 1) ↑ U2, mais (→2, 2) + (1, 1) = (→1, 3) /↑ U1 ≃ U2. Ainsi, U1 ≃ U2 n’est pas un
sous-espace vectoriel de R2. La figure 5.1 illustre ce propos.
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(→2,2) ↑ U1
(1,1) ↑ U2

(→1,3) /↑ U1 ≃ U2

Figure 5.1 – Deux sous-espaces vectoriels (définis dans l’exemple 5.1.6) dont l’union n’est
pas un sous-espace vectoriel.



234 CHAPITRE 5. ESPACES VECTORIELS

5.2 Bases
Une base d’un espace vectoriel est une famille aussi petite que possible d’éléments qui

permet de définir sans équivoque tout vecteur de cet espace. Une telle base permet, entre
autres, d’e!ectuer des opérations liant des vecteurs de l’espace. Afin d’exprimer rigoureuse-
ment la notion de base d’un espace vectoriel, il est nécessaire tout d’abord d’introduire les
notions d’indépendance linéaire (section 5.2.1) et d’ensembles générateurs (section 5.2.2).

5.2.1 Indépendance linéaire

La notion de famille “aussi petite que possible” prend ses racines dans le concept d’in-
dépendance linéaire. Cette notion se décline en plusieurs définitions vues ci-dessous, qui
donnent une grande flexibilité selon le contexte d’utilisation.

Définition 5.2.1 (indépendance linéaire)
Les p vecteurs v1,v2, . . . ,vp sont linéairement indépendants si la combinaison linéaire
ω1v1+ω2v2+ · · ·+ωnvp n’est égale au vecteur nul que lorsque les poids ω1,ω2, . . . ,ωp

sont tous égaux à zéro (c’est la combinaison triviale).

Définition 5.2.2 (dépendance linéaire)
Les p vecteurs v1,v2, . . . ,vp sont linéairement dépendants s’ils ne sont pas linéairement
indépendants. En d’autres termes, les p vecteurs sont linéairement dépendants s’il est
possible de les combiner pour obtenir le vecteur nul avec au moins un poids non nul
(on parle alors d’une combinaison non-triviale). Dans le cas p = 2, si les deux vecteurs
v1 et v2 sont linéairement dépendants, on dira qu’ils sont colinéaires a. L’un est alors
le multiple de l’autre : v1 = ωv2 avec ω un scalaire.

a. ceci est valide même quand un des vecteurs, ou les deux, sont nuls.

Pour résumer, des vecteurs sont linéairement indépendants si seule leur combinaison
triviale donne le vecteur nul, alors qu’ils sont linéairement dépendants s’il existe une com-
binaison non-triviale qui donne le vecteur nul.

Si les p vecteurs sont placés dans un ensemble E = {v1,v2, . . . ,vp}, alors on pourra
directement qualifier E d’ensemble indépendant ou d’ensemble dépendant. Si les vecteurs
sont placés dans la famille F = (v1,v2, . . . ,vp), on emploiera pour F les termes de famille
libre et de famille liée. Ceci est formalisé dans les quatre définitions suivantes.
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Définition 5.2.3 (ensemble indépendant)
Un ensemble de vecteurs est indépendant si les vecteurs qui le composent sont linéai-
rement indépendants.

Définition 5.2.4 (ensemble dépendant)
Un ensemble de vecteurs est dépendant s’il n’est pas indépendant.

Définition 5.2.5 (famille libre)
Une famille de vecteurs est libre si les vecteurs qui la composent sont linéairement
indépendants.

Définition 5.2.6 (famille liée)
Une famille de vecteurs est liée si elle n’est pas libre.

Ces concepts sont illustrés à l’aide des deux exemples suivants.

Exemple 5.2.1
Considérons les trois vecteurs e1 = (1, 0, 0), e2 = (0, 1, 0) et e3 = (0, 0, 1) dans R3.
Étudier l’indépendance linéaire de ces vecteurs revient à examiner les solutions de
l’équation ω1e1 + ω2e2 + ω3e3 = 0 dont le développement donne

ω1e1+ω2e2+ω3e3 = ω1




1

0

0



+ω2




0

1

0



+ω3




0

0

1



 =




ω1

0

0



+




0

ω2

0



+




0

0

ω3



 =




ω1

ω2

ω3



 =




0

0

0



 .

On a donc ω1 = ω2 = ω3 = 0 comme solution unique. L’indépendance linéaire de ces
trois vecteurs est ainsi établie.

Exemple 5.2.2
Soient les vecteurs v1 = (1, 1), v2 = (0, 2) et v3 = (1, 3). Comme v3 = v1 + v2, et
donc v1 + v2 → v3 = 0, on en déduit que v1,v2,v3 sont linéairement dépendants et
que (v1,v2,v3) est une famille liée.

Il convient de noter, pour conclure cette section, que les ensembles indépendants et les
familles libres ne peuvent pas contenir le vecteur nul, ce qui est formalisé par la proposi-
tion 5.2.1 suivante.
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Proposition 5.2.1 (le vecteur 0 rend tout ensemble dépendant et toute famille liée)
Un ensemble de vecteurs qui contient le vecteur nul est dépendant. De même, une
famille de vecteurs qui contient le vecteur nul est liée.

Preuve. Soit E l’ensemble de vecteurs {0,v1,v2, . . . ,vp} contenant le vecteur nul, et
soit F = (0,v1,v2, . . . ,vp). On peut facilement combiner ces vecteurs pour obtenir 0 en

utilisant un poids ω0 non nul : ω00+

p∑
k=1

0vk = ω00 = 0 . ↭

5.2.2 Ensembles générateurs

La deuxième notion nécessaire à la définition d’une base est celle d’ensemble générateur,
qui s’exprime aussi pour les familles. Elle permet de comprendre comment un ensemble fini
de vecteurs permet d’exprimer tous les vecteurs possibles d’un espace vectoriel.

Définition 5.2.7 (famille génératrice)
Une famille de vecteurs F = (v1,v2, . . . ,vp) est une famille génératrice d’un espace
vectoriel V si chaque vecteur x ↑ V peut s’exprimer comme une combinaison linéaire
de vecteurs de F . On dit alors que F génère V , et V = Vect(F ).

Définition 5.2.8 (ensemble générateur)
Un ensemble de vecteurs E = {v1,v2, . . . ,vp} génère un espace vectoriel V si chaque
vecteur x ↑ V peut s’exprimer comme une combinaison linéaire de vecteurs de E.

On note à nouveau l’usage de l’opérateur Vect(·) de la définition définition 1.1.10 qui
prend une famille de vecteurs en entrée et qui renvoie un ensemble qui est toujours un
espace vectoriel.

On pourra dire que “des vecteurs génèrent un espace”, ce qui signifie que l’ensemble (ou
la famille) constitué de ces vecteurs génère l’espace en question.

Exemple 5.2.3
La famille (v1,v2,v3) ↔ R2 avec v1 = e1 = (1, 0), v2 = e2 = (0, 1) et v3 = (1, 1)
génère R2, ce qui s’écrit par l’équation Vect(v1,v2,v3) = R2. En e!et, pour tout
x = (x1, x2) ↑ R2, on a x = x1v1 + x2v2 + 0v3.

La proposition 5.2.2 qui suit énonce le résultat évident que toute famille génératrice est
contenue dans l’espace qu’elle génère.
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Proposition 5.2.2 (les vecteurs d’une famille appartiennent à l’espace qu’elle génère)
Si la famille F génère l’espace vectoriel V , alors F ↗ V .

Preuve. Soit F une famille de vecteurs, soit V = Vect(F ), et soit v un vecteur de F .
Étant donné que l’espace vectoriel V est l’ensemble de toutes les combinaisons linéaires des
vecteurs de F , y compris la combinaison 1v, on déduit que v ↑ V . Comme ceci est vrai
pour tout v ↑ F , il s’ensuit que F ↗ V . ↭

5.2.3 Bases

Les notions d’indépendance linéaire et d’ensembles générateurs ayant été introduites, il
est maintenant possible de définir ce qu’est une base d’un espace vectoriel.

Définition 5.2.9 (base d’un espace vectoriel)
Une famille B forme une base de l’espace vectoriel V si les deux conditions suivantes
sont satisfaites :

1. les vecteurs de B sont linéairement indépendants ;
2. les vecteurs de B génèrent V .

Une base B d’un espace vectoriel est donc une famille génératrice libre. L’exemple 5.2.4
illustre le fait que les bases ne sont pas uniques. Une autre façon de faire ce constat est de
simplement remarquer que si (v) est une base d’un espace vectoriel V , alors (ωv) aussi,
pour tout ω ⇐= 0. Cela signifie que si un espace vectoriel admet une base non vide (voir
proposition 5.2.3 pour l’autre cas), alors cet espace possède une infinité de bases.

Exemple 5.2.4
La famille (v1,v2,v3) de l’exemple 5.2.3 n’est pas une base de R2 car elle n’est pas
libre (car v3 = v1 + v2). On a constaté que chaque vecteur x = (x1, x2) ↑ R2 peut
s’écrire comme x = x1v1 + x2v2, donc Vect(v1,v2) = R2. De plus, comme v1 = e1
et v2 = e2 sont indépendants, (v1,v2) = (e1, e2) = E est une base de R2, appelée
base canonique. La famille (v1,v3) est une autre famille génératrice de R2. En e!et,
chaque vecteur x = (x1, x2) ↑ R2 peut s’écrire comme

x = (x1 → x2)v1 + x2v3 = (x1 → x2)

[
1

0

]
+ x2

[
1

1

]
=

[
x1 → x2 + x2

0 + x2

]
=

[
x1
x2

]
.

De plus, (v1,v3) est une famille libre car les vecteurs v1 et v3 ne sont pas colinéaires.
On peut donc conclure que (v1,v3) est une autre base de R2.
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Proposition 5.2.3 (base de {0})
L’espace vectoriel {0} possède une unique base qui est ⇒ (c’est-à-dire l’ensemble vide).

Preuve. Soit B une base de {0}. B est donc une famille génératrice de {0}, et selon la
proposition 5.2.2, B ↗ {0} : les vecteurs de B ne peuvent être que le vecteur nul. Or, B est
aussi une famille libre, et selon la proposition 5.2.1, aucune famille libre ne peut contenir
le vecteur nul. La seule option possible est donc d’avoir B = ⇒. ↭

Le théorème 5.2.1 qui suit est fondamental car il montre, en particulier, que chaque
vecteur d’un espace vectoriel peut s’écrire de façon unique dans une base donnée de cet
espace.

Théorème 5.2.1
Soit B = (b1,b2, . . . ,bp), une famille de vecteurs de l’espace vectoriel V , et soit x ↑ V
un vecteur quelconque de V . La famille B est une base de V si et seulement s’il existe
une unique famille de scalaires [x]B = (ω1,ω2, . . . ,ωp) telle que

x =

p∑

i=1

ωibi .

La notation [x]B désigne les coordonnées uniques de x dans la base B.

Preuve. On montre tout d’abord que si B est une base, alors [x]B est unique, quel que
soit x ↑ V . On raisonne par contradiction. Supposons qu’il existe deux familles de scalaires
(ω1,ω2, . . . ,ωp) et (ε1,ε2, . . . ,εp) distinctes telles que

x =

p∑

i=1

ωibi , (5.1a)

x =

p∑

i=1

εibi . (5.1b)

En soustrayant l’équation (5.1a) à (5.1b), on obtient

x→ x = 0 =

p∑

i=1

(εi → ωi)bi

avec au moins un coe"cient (εi → ωi) ⇐= 0 pour i ↑ !1; p" car les deux familles de scalaires
sont distinctes. On a donc une combinaison linéaire non triviale des éléments de B qui donne
le vecteur nul. La famille B est donc liée, ce qui contredit le fait que B est une base.
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Réciproquement, supposons que pour tout vecteur x ↑ V , il existe une unique famille
de scalaires (ω1,ω2, . . . ,ωp) ↗ V telle que

x =

p∑

i=1

ωibi . (5.2)

Pour montrer que B est une base, il est d’abord aisé de remarquer que B est une famille
génératrice de V car tout x ↑ V peut s’exprimer comme combinaison linéaire de vecteurs
de B. Il reste à montrer que B est libre. Pour cela, exploitons le fait que (5.2) est valide
pour tout x ↑ V , incluant 0. La combinaison triviale est donc l’unique combinaison linéaire
des vecteurs de B donnant le vecteur nul, ce qui prouve que B est une famille libre en plus
d’être génératrice de V . C’est donc une base de V . ↭

Remarque
Pour que le résultat énoncé dans le théorème précédent soit valide, il est important de
conserver l’ordre des vecteurs b1, b2, . . ., bp dans B, ceci afin de s’assurer que chaque
ωi, pour i ↑ !1; p", corresponde au bi de même indice dans la combinaison linéaire
qui donne x. Ceci justifie le fait que les bases sont des familles (avec ordre) et non des
ensembles (sans ordre).

Il est à noter que la section 5.2.5 porte sur les coordonnées de vecteurs dans plusieurs
bases, et indique comment exprimer un même vecteur dans des bases di!érentes.

Proposition 5.2.4 (base canonique de Rn)
La famille E = (e1, e2, . . . , en) (notée aussi En en cas d’ambiguïté), où ej est la j-ième
colonne de I, pour j ↑ !1;n", est une base de Rn, appelée la base canonique de Rn.

Preuve. Soit x un vecteur quelconque de Rn. Selon le théorème 5.2.1, E est une base
de Rn s’il n’existe qu’une seule combinaison linéaire des vecteurs de E qui donne x. Une
telle combinaison s’écrit x1e1 + x2e2 + . . .+ xnen = x, avec (x1, x2, . . . , xn) une famille de
scalaires, et elle correspond au système d’équations linéaires

I





x1
x2
...
xn




=





x1
x2
...
xn




= x

qui fait apparaître les coordonnées de x comme étant x1, x2, . . ., xn. L’écriture unique de
x = (x1, x2, . . . , xn) est donc une preuve que E est une base de Rn. ↭
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Par défaut, la base canonique est celle utilisée pour les coordonnées d’un vecteur de Rn :

x = [x]E = (x1, x2, . . . , xn) = x1e1 + x2e2 + . . .+ xnen ↑ Rn .

Remarque (base canonique de Cn)
La proposition 5.2.4 est tout aussi valable pour Cn en tant qu’espace vectoriel com-
plexe : la base canonique En est une base de Cn. La preuve est identique.

L’exemple 5.2.5 suivant illustre cela.

Exemple 5.2.5
z = (1, i + 2,→1→ i) ↑ C3 est la combinaison unique suivante des vecteurs de E3 :

z = [z]E3 = 1e1 + (i + 2)e2 + (→1→ i)e3 = 1




1

0

0



+ (i + 2)




0

1

0



+ (→1→ i)




0

0

1





=




1

0

0



+




0

i + 2

0



+




0

0

→1→ i



 =




1

i + 2

→1→ i



 = (1, i + 2,→1→ i) .

On termine cette section en définissant la base canonique des polynômes. Cette définition
est utilisée pour l’exercice 5.11.

Définition 5.2.10 (base canonique des polynômes)
La famille (1, x, x2, . . . , xn), notée E ou En en cas d’ambiguïté, est appelée la base
canonique de Pn(R) ou Pn(C).

Les bases orthogonales, particulièrement pratiques, seront introduites à la section 5.3.2.

5.2.4 Dimension d’un espace vectoriel

La dimension d’un espace vectoriel est une notion fondamentale de l’algèbre. Ce concept
est simple et intuitif, mais il faut prendre garde au fait que le terme “dimension” appartient
au langage courant dans bien des contextes di!érents. Il faut donc l’utiliser adéquatement.
Par exemple, la notion de dimension est toujours associée à un espace vectoriel. Il ne faut
donc pas utiliser ce terme pour parler de la taille d’un vecteur ou d’une matrice.

La définition de la dimension est basée sur le résultat important du lemme 5.2.1 qui
indique que les familles libres d’un espace vectoriel ne contiennent jamais plus de vecteurs
que les familles génératrices de cet espace. Ce lemme est une version simplifiée du théorème
de l’échange, aussi appelé lemme de Steinitz. La conséquence directe de ce résultat, exposée
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au corollaire 5.2.1, est que toutes les bases d’un espace vectoriel possèdent exactement le
même nombre de vecteurs, et ce nombre est la dimension de l’espace.

Lemme 5.2.1 (lemme de l’échange)
Soit U ↗ V une famille libre d’un espace vectoriel V , comportant m vecteurs, et soit
W ↗ V une famille génératrice de n vecteurs de V . Alors

m ⇑ n .

La preuve du lemme 5.2.1 ci-dessous se fait par récurrence. Elle est d’un niveau avancé,
et exige que la section B.6 soit maîtrisée.
Preuve du lemme de l’échange. Soit U = (u1,u2, . . . ,um) une famille libre de V et
soit W = (w1,w2, . . . ,wn) une famille génératrice de V . On établit par récurrence sur m
que m ⇑ n et que, après ré-ordonnancement éventuel des wj , pour j ↑ !1;n", la famille
Vm = (u1,u2, . . . ,um,wm+1,wm+2, . . . ,wn) génère V .

↫ Initialisation. Si m = 0, l’énoncé est immédiat car n ⇓ 0, V0 = W , et Vect(W ) = V .

↫ Hypothèse de récurrence. On suppose la propriété vraie pour m → 1 ⇓ 0, ce qui
implique m→ 1 ⇑ n. Aussi, on réordonne les wj , pour j ↑ !1;n", de sorte que

Vect(Vm↓1) = Vect(u1,u2, . . . ,um↓1,wm,wm+1, . . . ,wn) = V .

↫ On montre que la propriété est vraie pour m. On note tout d’abord que m ⇑ n.
En e!et, si tel n’était pas le cas, on aurait m→ 1 = n et Vm↓1 = (u1,u2, . . . ,um↓1),
ce qui impliquerait que um ↑ V = Vect(Vm↓1), et um serait donc une combinaison
linéaire des vecteurs u1,u2, . . . ,um↓1, ce qui est impossible car U est une famille libre.
Étant donné que um appartient à Vect(Vm↓1), il existe des scalaires ω1,ω2, . . . ,ωn

tels que

um =

m↓1∑

i=1

ωiui +

n∑

j=m

ωjwj .

Au moins un des poids ωj , pour j ⇓ m, est non nul, sinon cette égalité contredirait
l’indépendance linéaire des u1, u2, . . ., um. En réordonnant si nécessaire les wj , pour
j ↑ !m;n" , on peut supposer ωm ⇐= 0 et on obtient

wm =
1

ωm

(
um →

m↓1∑

i=1

ωiui →

n∑

j=m+1

ωjwj

)
.

Ainsi, wm ↑ Vect(u1,u2, . . . ,um,wm+1,wm+2, . . . ,wn) = Vect(Vm). De plus, les
autres vecteurs u1,u2, . . . ,um↓1,wm+1,wm+2, . . . ,wn de la famille Vm↓1 sont dans
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Vm ↗ Vect(Vm). Par conséquent, Vect(Vm↓1) ↗ Vect(Vm). Comme Vm↓1 génère V
(par hypothèse de récurrence), on déduit que

V = Vect(Vm↓1) ↗ Vect(Vm) ↗ V

et donc Vect(Vm) = V . La propriété est ainsi démontrée.
↭

Il est désormais simple d’énoncer le corollaire 5.2.1 selon lequel toutes les bases d’un
espace vectoriel possèdent le même nombre de vecteurs.

Corollaire 5.2.1
Si B et C sont deux bases d’un même espace vectoriel V , alors

|B| = |C| .

Preuve. Étant donné que B est une famille libre et que C est une famille génératrice de
V , on déduit du lemme 5.2.1 que |B| ⇑ |C|. De même, comme C est libre et B génère V , on
déduit que |C| ⇑ |B|. Ainsi |B| = |C|. ↭

La définition de la dimension d’un espace vectoriel peut maintenant être donnée.

Définition 5.2.11 (dimension d’un espace vectoriel)
La dimension d’un espace vectoriel V est notée dim(V ) et correspond au nombre de
vecteurs de n’importe quelle base de V .

Illustrons cette définition sur le simple exemple suivant.

Exemple 5.2.6 (dimension d’un espace vectoriel)
Soit V = Vect(v1,v2,v3) un espace vectoriel où v1 = (1, 2, 1), v2 = (3, 2, 1) et
v3 = (2, 0, 0). Pour déterminer la dimension de V , il su"t de donner une base de
cet espace. La famille (v1,v2,v3) n’est pas libre puisque v3 = v2 → v1. Donc V =

Vect(v1,v2,v3) = Vect(v1,v2), et comme (v1,v2) est une famille libre (car v1 et v2

ne sont pas colinéaires), on déduit que (v1,v2) est une base de V . La dimension de V
est donc dim(V ) = 2 (V est un plan de R3).

Remarque (dimension de {0})
On a vu à la proposition 5.2.3 que la seule base de l’espace vectoriel {0} est l’ensemble
vide dont la cardinalité est zéro. Ainsi {0} est de dimension 0 : dim({0}) = |⇒| = 0.
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Le concept de dimension permet, entre autres, de définir formellement certaines notions
intuitives. Par exemple :

↫ dim(Rn
) = dim(Cn

) = n car |En| = n (voir proposition 5.2.4) ;
↫ l’espace 2D est R2 et l’espace 3D est R3 (“D” est bien sûr pour “dimension”) ;
↫ tout sous-espace vectoriel de Rn de dimension 1 est une droite de Rn (passant par

l’origine) ;
↫ tout sous-espace vectoriel de Rn de dimension 2 est un plan de Rn (passant par

l’origine) ;
↫ tout sous-espace vectoriel de Rn de dimension n→ 1 est un hyperplan de Rn ;
↫ les hyperplans de R3 sont donc des plans.
À des fins de simplicité, dans cet ouvrage, les droites, plans, et hyperplans, sont toujours

des espaces vectoriels, et contiennent donc toujours le vecteur nul.
Cette section se termine par une série de résultats intuitifs découlant directement du

concept de dimension. Tout d’abord, la proposition 5.2.5 prouve qu’un espace vectoriel de
dimension n ne peut pas contenir plus de n vecteurs linéairement indépendants.

Proposition 5.2.5
Si V est un espace vectoriel de dimension n, alors toute famille libre de V contient au
plus n vecteurs.

Preuve. Soit F ↗ V une famille libre de V . Selon le lemme 5.2.1, toute famille libre de
V possède moins de vecteurs que toute famille génératrice de V . Comme dim(V ) = n, on
peut trouver des familles génératrices de n vecteurs. Ainsi |F | ⇑ dim(V ) = n. ↭

Remarque
Il découle de la proposition 5.2.5 que l’espace 3D (c’est-à-dire R3) ne peut pas avoir
plus de trois vecteurs linéairement indépendants. De même, dans l’espace 2D, qui est
R2, on ne peut avoir plus de deux vecteurs linéairement indépendants.

De façon générale, la proposition 5.2.5 est très utile pour, parfois, prouver simplement
qu’une famille de vecteurs est liée.

La proposition 5.2.6 stipule qu’il est impossible de générer un espace vectoriel de di-
mension n avec moins de n vecteurs.

Proposition 5.2.6
Si V est un espace vectoriel de dimension n, alors toute famille génératrice de V doit
contenir au moins n vecteurs.
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Preuve. Soit F ↗ V une famille génératrice de V . Selon le lemme 5.2.1, toute famille libre
de V possède moins de vecteurs que toute famille génératrice de V . Comme dim(V ) = n,
on peut trouver des familles libres de n vecteurs. Ainsi |F | ⇓ dim(V ) = n. ↭

Le résultat suivant est un corollaire direct du lemme 5.2.1. On ne le mentionne qu’ici
car il est très utile pour prouver la proposition 5.2.7.

Corollaire 5.2.2 (de la base incomplète)
Si U = (u1,u2, . . . ,um) est une famille libre d’un espace vectoriel V dont une base
est B = (b1,b2, . . . ,bn), alors il existe une sous-famille de vecteurs B ↗ B telle que
|B| = |B|→ |U | et B ≃U est une base de V (c’est à dire qu’il est possible de compléter
la famille U avec la famille B pour obtenir une base de V ).

Preuve. Poser B = Vm \ U = (bm+1,bm+2, . . . ,bn) dans la preuve du lemme 5.2.1. Il
faut noter que dans la preuve, W = B est bien génératrice car c’est une base de V . ↭

La proposition qui suit permet de prouver qu’une famille libre est une base, sans avoir à
montrer qu’elle est génératrice. Elle est utilisée, par exemple, pour répondre à l’exercice 5.13.

Proposition 5.2.7
Une famille libre de p vecteurs d’un espace vectoriel de dimension p est nécessairement
une base de cet espace.

Preuve. Puisqu’une famille libre de p vecteurs est déjà de la même taille que la dimension
de l’espace, elle est nécessairement une base. Si elle ne l’était pas, elle pourrait être complétée
en une base, mais cela impliquerait d’ajouter des vecteurs, selon le corollaire 5.2.2, ce
qui n’est pas possible car on a déjà atteint le nombre maximal de vecteurs linéairement
indépendants pour cet espace. ↭

La proposition 5.2.8 suivante formalise le fait que si un sous-espace vectoriel est de
même dimension que son sur-espace, alors il est nécessairement égal à son sur-espace.

Proposition 5.2.8
Si W est un sous-espace vectoriel d’un espace vectoriel V et si dim(W ) = dim(V ),
alors W = V .

Preuve. Soit V un espace vectoriel et soit W ↗ V un sous-espace vectoriel de V tel
que dim(W ) = dim(V ). Soit B une base quelconque de W . On a donc W = Vect(B).
Comme tous les vecteurs de B sont aussi dans V , B est une famille libre de V . Et selon la
proposition 5.2.7, c’est aussi une base de V , et V = Vect(B). Donc W = V . ↭
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La proposition 5.2.8 permet, par exemple, de déduire que si un sous-espace vectoriel de
R3 est de dimension trois, ce sous-espace est R3 lui-même.
5.2.5 Changements de base

Il a été établi au théorème 5.2.1 que pour n’importe quel espace vectoriel V et n’importe
quelle base B ↗ V , il est possible d’exprimer chaque vecteur x ↑ V de façon unique à l’aide
du vecteur [x]B dont les composantes sont les coordonnées de x dans la base B. Certaines
bases sont assurément plus pratiques que d’autres, et il convient donc de savoir exprimer
des vecteurs dans plusieurs bases di!érentes. Ainsi, si on considère une autre base C de V ,
les coordonnées de x dans C seront di!érentes des coordonnées de x dans B : [x]B ⇐= [x]C .
Cette section introduit le concept de changement de base, pour des espaces vectoriels dans
Rn ou dans Cn. Ces changements de base permettent d’obtenir [x]B à partir de [x]C , et
inversement. Pour simplifier la présentation, le reste de cette section sur les changements
de base se concentre sur Rn, mais tous les résultats peuvent aussi s’appliquer à Cn, ainsi
qu’illustré dans l’exemple 5.2.9.

Étant donné un vecteur de R2 dont on connaît les composantes dans la base canonique
E , l’exemple suivant illustre comment exprimer ce vecteur dans une autre base B de R2.

Exemple 5.2.7 (exprimer x dans une autre base que la base canonique)
Soit B = (b1,b2) = ((1, 1), (0, 2)). Étant donné que b1 et b2 ne sont pas colinéaires,
B est une famille libre de dimension 2, ce qui prouve que B est une base de R2.
Soit x = (5, 6) ↑ R2 dont les composantes sont les coordonnées de x dans la base
canonique : x = [x]E . On veut déterminer [x]B, c’est-à-dire les coordonnées de x dans
B, et pour cela, on doit trouver les scalaires ω1 et ω2 tels que

x = ω1b1 + ω2b2

ce qui s’écrit sous forme matricielle

[b1b2]

[
ω1

ω2

]
= x .

C’est un système d’équations linéaires, dont la résolution est le sujet du chapitre 8,
mais celui-ci peut déjà être résolu grâce au théorème 1.4.2, car la matrice B =

[b1 b2] =

[
1 0

1 2

]
est inversible. Son inverse est facile à calculer (voir la proposi-

tion 8.5.1), ce qui donne
[
ω1

ω2

]
= B↓1x =

1

2

[
2 0

→1 1

] [
5

6

]
=

[
5
1
2

]

et donc
x = 5b1 +

1

2
b2 ,
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c’est-à-dire [x]B =
(
5, 12

)
.

La proposition qui suit indique comment généraliser l’exemple ci-dessus afin d’exprimer
les vecteurs d’un sous-espace vectoriel de Rn dans n’importe quelle base de ce sous-espace.

Proposition 5.2.9 (liens entre x et [x]B)
Soit x ↑ V avec V un sous-espace vectoriel de dimension p de Rn, dont une base est
B = (b1,b2, . . . ,bp). Ce vecteur x peut s’exprimer comme

x = B[x]B

avec B = [b1 b2 · · · bp] ↑ Rn→p et [x]B ↑ Rp, les coordonnées de x dans B.
Si de plus p = n, alors B est une base de Rn et

[x]B = B↓1
[x]E = B↓1x ↑ Rn .

Preuve. Dans la base B, les coordonnées de x ↑ V sont [x]B = (ω1,ω2, . . . ,ωp) et
on a x = ω1b1 + ω2b2 + . . . + ωpbp, ce qui correspond au produit d’une matrice par un
vecteur vu à la section 1.2.5, soit x = B[x]B. Si p = n, alors la proposition 5.2.7 nous
assure que B est une base de Rn, de plus B est carrée et ses colonnes sont linéairement
indépendantes (car B est une base). B est donc inversible selon le cas 6 du théorème 1.4.1.
Il découle du théorème 1.4.2 qu’il existe une solution unique au système B[x]B = x donnée
par [x]B = B↓1x. De plus, en considérant la base canonique E = (e1, e2, . . . , en), on a
x = I[x]E = [x]E . ↭

Considérons maintenant une base C, et supposons qu’on s’intéresse à obtenir les coor-
données d’un vecteur dans cette base, en connaissant ses coordonnées dans une autre base
B. Ce processus est illustré sur l’exemple 5.2.8, qui est la suite de l’exemple 5.2.7. Tout ceci
sera par la suite formalisé à l’aide du lemme 5.2.2 et du théorème 5.2.2.

Exemple 5.2.8 (exprimer x dans deux bases autres que la base canonique)
Soient B = ((1, 1), (0, 2)) et x = (5, 6) la base et le vecteur de R2 de l’exemple 5.2.7.
Soit C = (c1, c2) = ((→1, 3), (1, 12)) une autre base de R2. On veut exprimer x dans
la base C connaissant ses coordonnées dans la base B. Une option consiste à utiliser
la proposition 5.2.9 pour avoir

[x]C = C↓1x (5.3)
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avec C = [c1 c2], ce qui donne

[x]C =
1

15

[
→12 1

3 1

] [
5

6

]
=

1

15

[
→54

21

]
.

Pour exprimer [x]C en fonction de [x]B, il su"t d’injecter x = B[x]B dans (5.3) et on
obtient

[x]C = C↓1B[x]B

c’est-à-dire

[x]C =
1

15

[
→12 1

3 1

] [
1 0

1 2

] [
5
1
2

]
=

1

15

[
→11 2

4 2

] [
5
1
2

]
=

1

15

[
→54

21

]
.

La matrice qui permet de “passer” de [x]B à [x]C est notée PC↔B, et on a donc

PC↔B = C↓1B =
1
15

[
→11 2

4 2

]
.

Avant de généraliser l’exemple 5.2.8 au théorème 5.2.2, il convient de réaliser que les
bases en jeu dans cet exemple sont des bases de R2, ce qui signifie que les matrices étudiées
sont carrées. Dans le cas général, on s’intéresse à des bases de sous-espaces vectoriels de Rn

de dimension p ⇑ n, comme par exemple à l’exercice 5.13.

Le lemme 5.2.2 suivant est utile pour prouver le théorème 5.2.2. Il établit, d’une certaine
manière, une propriété de “distributivité” des coordonnées d’une combinaison linéaire dans
une certaine base.

Lemme 5.2.2 (distributivité de [·]B)
Soient p vecteurs v1, v2, . . ., vp d’un espace vectoriel V dont B est une base, et soient
p scalaires ω1, ω2, . . ., ωp. On a

[ω1v1 + ω2v2 + . . .+ ωpvp]B = ω1[v1]B + ω2[v2]B + . . .+ ωp[vp]B .

La preuve du lemme 5.2.2 est technique et demande d’absolument maîtriser l’usage de
l’opérateur de somme

∑
, ainsi que les double sommes

∑∑
.

Preuve. On exprime tout d’abord v1, v2, . . ., vp dans la base B = (b1,b2, . . . ,bn) de
V , où n = dim(V ) :

v1 = ϑ11b1 + ϑ12b2 + . . .+ ϑ1nbn =

n∑

i=1

ϑ1i bi
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v2 = ϑ21b1 + ϑ22b2 + . . .+ ϑ2nbn =

n∑

i=1

ϑ2i bi

...

vp = ϑp1b1 + ϑp2b2 + . . .+ ϑpnbn =

n∑

i=1

ϑpi bi

où ϑji est un scalaire pour tout i ↑ !1;n" et pour tout j ↑ !1; p". Considérons maintenant
le vecteur x = ω1v1 + ω2v2 + . . .+ ωpvp. Il peut s’écrire comme suit :

x = ω1

(
n∑

i=1

ϑ1i bi


+ ω2

(
n∑

i=1

ϑ2i bi


+ . . .+ ωp

(
n∑

i=1

ϑpi bi



=

p∑

j=1

ωj

(
n∑

i=1

ϑji bi



=

p∑

j=1

n∑

i=1

ωjϑ
j
i bi

=

n∑

i=1

p∑

j=1

ωjϑ
j
i bi

=

n∑

i=1




p∑

j=1

ωjϑ
j
i



bi .

On a ainsi réussi à exprimer x comme combinaison linéaire des vecteurs de B :

[x]B =




p∑

j=1

ωjϑ
j
1,

p∑

j=1

ωjϑ
j
2, . . . ,

p∑

j=1

ωjϑ
j
n



 =





p∑
j=1

ωjϑ
j
1

p∑
j=1

ωjϑ
j
2

...
p∑

j=1
ωjϑ

j
n





.

Il ne reste plus qu’à développer ω1[v1]B +ω2[v2]B + . . .+ωp[vp]B et à vérifier qu’on obtient
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[x]B. C’est bien le cas, car

ω1





ϑ11
ϑ12
...
ϑ1n




+ ω2





ϑ21
ϑ22
...
ϑ2n




+ · · ·+ ωp





ϑp1
ϑp2
...
ϑpn




=





ω1ϑ11 + ω2ϑ21 + . . .+ ωpϑ
p
1

ω1ϑ12 + ω2ϑ22 + . . .+ ωpϑ
p
2

...
ω1ϑ1n + ω2ϑ2n + . . .+ ωpϑ

p
n




=





p∑
j=1

ωjϑ
j
1

p∑
j=1

ωjϑ
j
2

...
p∑

j=1
ωjϑ

j
n





= [x]B .

↭

Il est désormais aisé d’introduire formellement la matrice de changement de base.

Théorème 5.2.2 (matrice de changement de base)
Soit V un sous-espace vectoriel de dimension p de Rn, soit x ↑ V et soient B =

(b1,b2, . . . ,bp) et C = (c1, c2, . . . , cp) deux bases de V . Les coordonnées de x dans C

sont données par
[x]C = PC↔B[x]B ↑ Rp

avec
PC↔B =


[b1]C [b2]C · · · [bp]C


↑ Rp→p

qui est appelée la matrice de changement de base de B à C.
Si de plus p = n, alors PC↔B = C↓1B, avec B = [b1 b2 · · · bn] et C = [c1 c2 · · · cn]
dans Rn→n.

Preuve. Soient ω1,ω2, . . . ,ωp les coordonnées de x dans la base B : [x]B = (ω1,ω2, . . . ,ωp).
La proposition 5.2.9 donne x = B[x]B. On a donc

[x]C =

B[x]B


C =


B(ω1,ω2, . . . ,ωp)


C =


ω1b1 + ω2b2 + . . .+ ωpbp


C

ce qui, d’après le lemme 5.2.2, donne

[x]C = ω1[b1]C + ω2[b2]C + . . .+ ωp[bp]C =

[b1]C [b2]C · · · [bp]C







ω1

ω2
...
ωp




= PC↔B[x]B .

Si p = n, alors [x]C = C↓1x (proposition 5.2.9) et comme x = B[x]B (par la même
proposition 5.2.9), on a [x]C = C↓1B[x]B, et donc PC↔B = C↓1B. ↭

On peut constater que le théorème 5.2.2 généralise la proposition 5.2.9, lorsque C = E . En
e!et, on a alors [x]C = [x]E = x et PC↔B = PE↔B =


[b1]E [b2]E · · · [bp]E


= [b1 b2 · · ·bp] =
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B, et donc x = B[x]B. On montrera à la proposition 5.2.10 que la matrice de changement
de base est inversible et que son inverse est aussi une matrice de changement de base.

Remarque (calcul de la matrice de changement de base)
Pour calculer PC↔B =


[b1]C [b2]C · · · [bp]C


, il faut exprimer les vecteurs de B dans

la base C. On commence par [b1]C qui est la solution du système d’équations linéaires
C[b1]C = b1. On doit ensuite résoudre C[b2]C = b2 pour trouver [b2]C , et ainsi de
suite. Il faut donc résoudre p systèmes. Dans cette situation, on peut résoudre tous
ces systèmes en parallèle, en considérant la matrice augmentée


C | B


=


c1 c2 · · · cp | b1 b2 · · ·bp


⇔


I | PC↔B


.

Les matrices augmentées sont formellement définies à la définition 8.1.6. Elles repré-
sentent des systèmes dont la résolution est expliquée à la section 8.2. Un exemple est
donné à l’exercice 5.14.

L’exemple 5.2.9 suivant illustre le concept de changement de base pour des bases de
l’espace vectoriel complexe C3.

Exemple 5.2.9 (changement de base dans un espace complexe)
Soient B et C deux bases de C3 avec

B=(b1,b2,b3)=








i

→i

i



 ,




0

1

3



 ,




0

0

→2i







 et C=(c1, c2, c3)=








i

0

0



 ,




0

→2

0



 ,




0

0

3







 .

Pour trouver la matrice de changement de base PC↔B, il faut exprimer les vecteurs
de la base B selon les vecteurs de la base C.
Pour cela, il faut résoudre le système [C | B] avec B = (b1 b2 b3) et C = (c1 c2 c3),
qui est évident à résoudre car C est diagonale. On obtient alors

PC↔B = [[b1]C [b2]C [b3]C ] =




1 0 0

i/2 →1/2 0

i/3 1 →2i/3



 .

Pour avoir PB↔C , il su"t d’exprimer les vecteurs de C selon la base B ou de prendre
l’inverse de PC↔B. La première option est la plus simple car B est triangulaire, mais
dans les deux cas, on obtient

PB↔C = [[c1]B [c2]B [c3]B] = P↓1
C↔B =




1 0 0

i →2 0

2 3i 3i/2



 .
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Les résultats qui suivent sont des extensions pratiques du théorème 5.2.2. La proposi-
tion 5.2.10 caractérise l’inverse des matrices de changement de base, et la proposition 5.2.11
permet de considérer les changements de base avec trois bases.

Proposition 5.2.10 (inverse d’une matrice de changement de base)
Si B et C dont deux bases d’un même espace vectoriel V de dimension p. Alors la
matrice p ↓ p de changement de base de B à C est inversible et son inverse est la
matrice de changement de base de C à B :

P↓1
C↔B = PB↔C .

Preuve. Soit x ↑ V . Tel qu’établi dans le théorème 5.2.2, on a [x]C = PC↔B[x]B ainsi
que [x]B = PB↔C [x]C . On a donc les deux égalités suivantes :

[x]C = PC↔BPB↔C [x]C (5.4)

[x]B = PB↔CPC↔B[x]B . (5.5)

Ces deux égalités (5.4) et (5.5) sont vraies pour tout x ↑ V et en particulier pour bi et ci qui
sont tels que [ci]C = [bi]B = ei pour tout i ↑ !1; p". Ainsi, PC↔BPB↔C = PB↔CPC↔B = Ip,
ce qui, selon le cas 1 du théorème 1.4.1, montre que PC↔B est inversible et que son inverse
est PB↔C . ↭

Proposition 5.2.11 (composition de matrices de changement de base)
Si B, C et D sont trois bases d’un espace vectoriel V , alors PD↔B = PD↔CPC↔B.

Preuve. Soit x un vecteur quelconque de V , Il résulte du théorème 5.2.2 qu’on peut ob-
tenir [x]D à l’aide de [x]B : [x]D = PD↔B[x]B. Aussi, [x]D = PD↔C [x]C = PD↔CPC↔B[x]B.
On a donc PD↔B = PD↔CPC↔B. ↭

Un cas particulier intéressant de la proposition 5.2.11 est d’utiliser la base euclidienne
de la sorte :

PC↔B = PC↔EPE↔B

= P↓1
E↔CPE↔B

et si p = n, on retombe sur
PC↔B = C↓1B .
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Résumé des formules de changements de base

Pour conclure cette section, on donne ci-dessous un résumé des di!érentes formules de
changement de base, pour le cas p = n.

↫ B = (b1,b2, . . . ,bn) C = (c1, c2, . . . , cn) E = (e1, e2, . . . , en)

↫ B = PE↔B = [b1 b2 . . . bn]

C = PE↔C = [c1 c2 . . . cn]

↫ x = B[x]B = C[x]C

↫ [x]C = PC↔B[x]B

[x]B = PB↔C [x]C = P↓1
C↔B[x]C

↫ PC↔B =

[b1]C [b2]C . . . [bn]C


= C↓1B

PB↔C =

[c1]B [c2]B . . . [cn]B


= B↓1C = P↓1

C↔B

↫

C B


=


c1 c2 . . . cn b1 b2 . . . bn


⇔


I PC↔B




B C


=


b1 b2 . . . bn c1 c2 . . . cn


⇔


I PB↔C


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Annexe

A
Solutions des exercices

0. Notations : Section ix.
1. Matrices et vecteurs : Section 1.8.
2. Élimination : Section 2.8.
3. Complexes : Section 3.8.
4. Fonctions : Section 4.9.
5. Espaces vectoriels : Section 5.7.
6. Espaces fondamentaux : Section 6.7.
7. Valeurs propres : Section 7.4.
8. Systèmes : Section 8.10.
9. Projections et moindres carrés : Section 9.4.

10. Orthogonalisation : Section 10.5.
11. Diagonalisation : Section 11.4.
12. Signe des matrices : Section 12.8.
13. Décomposition en valeurs singulières (SVD) : Section 13.8.

Série d’exercices 0: Notations

Solution 0.1: (énoncé)
Les expressions valides sont :
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1 x ≃ A ;
2 x ≃ F ;
5 {x,y} = A ;

7 {x,y} ⇐ A ;
8 x ≃ R2 ;

13 x = (1, 2) ;

18 x = [1 2]
↑ ;

19 x =

[
1

2

]
.

Solution 0.2: (énoncé)

1. ↭ (5, 2, 5) est une famille et cette écriture est déjà correcte. Attention, ce n’est pas
la même famille que (2, 5, 5) ni (2, 5) car avec les familles, l’ordre des éléments
et les répétitions sont pris en compte ;

↭ {e2, e1, e3} est un ensemble. Cette écriture est correcte mais il est plus intuitif
d’écrire {e1, e2, e3} même si l’ordre des vecteurs n’est pas pris en compte ;

↭ {p, p+ 1, . . . , n} = !p;n" est un ensemble.

2. {↓3,↓2, . . . , 4} = !↓3; 4".
3. E est une famille.

Solution 0.3: (énoncé)

1. A est un ensemble et B une famille.

2. On a

(a) A ⇒B = {1, 3, 4, 5} ;
(b) A ⇑B = {1, 3} ;
(c) B \A = {4} ;
(d) A \B = {5}.

Ces opérations mélangent des ensembles et des familles, et par convention, on consi-
dère que les résultats sont des ensembles.

Solution 0.4: (énoncé)
Comme l’opérateur Vect(·) prend une famille en entrée et retourne un ensemble, seules les
formulations suivantes sont valides :

2 Vect(F ) = A (famille en entrée, ensemble en sortie) ;

6 Vect(x,y) → A (un ensemble sous-ensemble d’un autre) ;

7 Vect(x,y) = A (deux ensembles égaux) ;

9 Vect((x,y)) = A (idem).
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Solution 0.5: (énoncé)

1. 2 ≃ B ;
2. {2} → A ;
3. Aucun lien ;
4. {1, 6} → A ;
5. Aucun lien ;
6. B → A.

Solution 0.6: (énoncé)

1. 2 ≃ G ;
2. (2) → F ;
3. Aucun lien ;
4. G → F ;
5. Aucun lien (l’ordre di!ère).
6. F → (1, 2, 2, 4, 6).

Solution 0.7: (énoncé)

1. u3 ≃ G ;
2. ↓1 ≃ u2 ;
3. (u2) → F ;
4. Aucun lien ;
5. G → F ;
6. Aucun lien (l’ordre di!ère) ;
7. F → (u1,u2,u2,u3).

Série d’exercices 1: Matrices et vecteurs

Solution 1.1: (énoncé)

1. Faux. Le produit AB n’est pas défini ;
2. Vrai. tr(B↘1AB) = tr(ABB↘1

) = tr(AI) = tr(A) ;
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3. Faux. Un contre-exemple simple est la matrice
[
0 1

0 0

]
qui est triangulaire mais pas

inversible ;

4. Vrai. Avec C = (AB)
↘1, BC est l’inverse de A et CA celle de B. On peut aussi le

montrer avec le déterminant ;

5. Faux. Un contre-exemple est A =




1 0

0 1

0 1



 et b = (1, 1, 1) ; Le système Ax = b

possède l’unique solution x = (1, 1) et pourtant A n’est pas inversible (elle n’est pas
carrée) ;

6. Faux. Pour construire un contre-exemple simple, on peut voir qu’un seul nombre
définit un bloc de taille 1 ↔ 1. Si a ↘= 0, la matrice [a] est inversible : son inverse est

donnée par [a]↘1
= [a↘1

] = [1/a]. On peut ainsi considérer la matrice
[
1 1

1 1

]
dont les

quatre blocs [1] sont inversibles, mais qui n’est pas inversible. Remarquer que l’énoncé

est également faux en supposant la matrice entière inversible : considérer
[
1 1

1 ↓1

]
qui

est inversible mais son inverse n’est pas obtenue en inversant les blocs ;

7. Vrai. Les opérations élémentaires sur les lignes d’une matrice A ≃ Rn↔n a!ectent
son déterminant de manière bien définie :

↭ Multiplier une ligne par un scalaire non nul φ ≃ R→ multiplie le déterminant par
φ ;

↭ Permuter deux lignes multiplie le déterminant par ↓1 ;
↭ Ajouter un multiple d’une ligne à une autre laisse le déterminant inchangé.

Appliquer successivement les opérations suivantes à la matrice A :

(a) La deuxième ligne est multipliée par φ : le déterminant devient φ det(A) ;
(b) La première et la deuxième ligne sont permutées : le déterminant devient ↓φ det(A) ;
(c) Trois fois la troisième ligne sont ajoutées à la première : le déterminant reste

↓φ det(A).

La matrice A⇒ issue de ces trois transformations vérifie donc det(A⇒
) = ↓φ det(A).

L’égalité mentionnée dans l’énoncé est correcte, ce qui rend l’a"rmation vraie.

Solution 1.2: (énoncé)

1. Ab =




1 2 3

2 3 3

1 4 1








1

1

1



 = 1




1

2

1



+ 1




2

3

4



+ 1




3

3

1



 =




6

8

6



 = c ;
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2. D’après ce qu’on vient d’écrire, on peut déduire que c est égal à la somme des colonnes

de A : c =




1

2

1



+




2

3

4



+




3

3

1



 ;

3. D’après l’énoncé, b est une combinaison linéaire des colonnes de A, qui s’exprime
comme 4b = A(↓1, 1, 1). On a donc b =

1
4A(↓1, 1, 1) et x =

1
4(↓1, 1, 1).

Solution 1.3: (énoncé)

Ax = x1





↓1

0

1

7



+ x2





1

1

↓2

3



+ x3





2

↓3

1

↓1





Solution 1.4: (énoncé)

A =

[
2 1 ↓1 6

1 1 0 ↓4

]
, x =





x1
x2
x3
x4





Solution 1.5: (énoncé)

1. △a△ = 2, △b△ = 3
↑
2 et △c△ = 2

2. ∝a,b′ = 2D3+0D3 = 2D3
↑
2Dcos(

ϖ
4 ) = 6 ∝a, c′ = ↓

↑
3D2+1D0 = 2D2Dcos(

5ϖ
6 ) = ↓2

↑
3

3. ∝b, c′ = 3
⇑
3+3
2 ∝a, c′+ 3 ∝c, c′ = ↓(3

↑
3 + 3)

↑
3 + 3 D 2 = ↓3 + 3

↑
3.

Solution 1.6: (énoncé)

1. △x+ y△2 = ∝x+ y,x+ y′ = △x△2 + △y△2 + 2 ∝x,y′ △x↓ y△2 = ∝x↓ y,x↓ y′ =

△x△2 + △y△2 ↓ 2 ∝x,y′

2. On reprend la première expression mais ici, on sait ∝x,y′ = 0.

Solution 1.7: (énoncé)

1. x+ y = (1 + φ)x, donc △x+ y△ = |1 + φ| △x△ = (1 + φ) △x△ (puisque 1 + φ > 0). De
plus, △y△ = |φ| △x△ = φ △x△. Ainsi, △x+ y△ = (1+φ) △x△ = △x△+φ △x△ = △x△+△y△ .

2. Si y = φx avec ↓1 < φ < 0. Ici, △y△ = |φ| △x△ = ↓φ △x△ et 1 + φ > 0. △x+ y△ =

(1 + φ) △x△ = △x△+ φ △x△ = △x△ ↓ △y△ .



P
R
O
T
O
T
Y
P
E

430 ANNEXE A. SOLUTIONS DES EXERCICES

3. On pose φ =
∝x,y′

△x△2
. Alors, ∝y ↓ φx,y ↓ φx′ = ∝y,y ↓ φx′↓φ ∝x,y ↓ φx′ = ∝y,y′↓

φ ∝y,x′ ↓φ ∝x,y′+φ2
∝x,x′ = △y△2 ↓ ⇓x,y⇔2

↖x↖2 = 0 par définition de φ et hypothèse de
l’énoncé. De fait, le seul vecteur de norme 0 est le vecteur nul donc : y = φx.

4. On développe l’équation au carré des deux côté pour retrouver l’égalité.
5. On a égalité si et seulement si il existe φ ↖ 0 tel que y = φx. (Les cas triviaux x = 0

ou y = 0 sont inclus.)

Solution 1.8: (énoncé)
On commence par remarquer u et v ne sont pas colinéaires, donc Vect(u,v) est bien un
plan de R3. Puis, si x = (x, y, z) ≃ Vect(u,v), alors

x = φu+ ↼v = φ




1

2

3



+ ↼




0

1

1



 =




φ

2φ+ ↼
3φ+ ↼



 =




x
y
z





avec φ et ↼ deux réels.
↭ Méthode 1 : z = 3φ+ ↼ = φ+ 2φ+ ↼ = x+ y est l’équation du plan.
↭ Méthode 2 : u∋v = (↓1,↓1, 1) est orthogonal au plan, donc son équation est donnée

par ↓x↓ y + z = 0, soit z = x+ y.

Solution 1.9: (énoncé)

1. Ax :
A ≃ R3↔2, x ≃ R2, donc le produit est bien défini (multiplication d’une matrice 3↔ 2

par un vecteur colonne de taille 2).
Résultat : vecteur colonne dans R3.

2. BA :
B ≃ R2↔4 et A ≃ R3↔2.
Ici, les dimensions internes ne coïncident pas : 4 ↘= 3.
BA n’est pas définie, car le nombre de colonnes de B ne correspond pas au nombre
de lignes de A.

3. A+ y :
A ≃ R3↔2, y ≃ R3.
Irréalisable : A est une matrice 3↔ 2, y un vecteur colonne de taille 3.
Il n’est pas possible de les additionner.
A+ y n’est pas définie.

4. A↑y :
A ≃ R3↔2

∈ A↑
≃ R2↔3, y ≃ R3.
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Le produit A↑y est bien défini : 2↔ 3 par 3↔ 1.
Résultat : vecteur colonne de taille 2, donc dans R2.

5. x↑A :
x ≃ R2

∈ x↑
≃ R1↔2, A ≃ R3↔2.

Ici, les tailles ne sont pas compatibles pour un produit direct (on a 1↔ 2 et 3↔ 2), il
faudrait que le nombre de colonnes de x↑ (2) corresponde au nombre de lignes de A
(3).
Ainsi x↑A n’est pas définie.

Solution 1.10: (énoncé)

1. AB =

[
25 9

4 12

]

2. BA =




10 ↓6 ↓2

9 3 8

6 18 24





Solution 1.11: (énoncé)

1. La matrice A est de taille 3↔ 3 et B↑ est de taille 2↔ 3. Ces matrices n’ont pas les
mêmes tailles. L’opération A+B↑ n’est donc pas définie.

2. Le produit CB est défini puisque C est 2 ↔ 3 et B est 3 ↔ 2. Le résultat est une
matrice 2↔ 2. Ainsi, (CB)

↑ est de taille 2↔ 2. La matrice A est de taille 3↔ 3, donc
l’addition (CB)

↑
+A n’est pas définie car les tailles ne sont pas compatibles.

3. Le produit Au est défini : A est 3↔3 et u est 3↔1. Le résultat est un vecteur colonne
3 ↔ 1. Le produit Bv est aussi défini : B est 3 ↔ 2 et v est 2 ↔ 1, donc le produit
donne un vecteur colonne 3↔ 1. L’addition Au+Bv est donc bien définie et donne
un vecteur 3↔ 1 :

Au =




1 2 ↓1

0 3 2

↓1 1 4








2

↓1

3



 =




1 · 2 + 2 · (↓1) + (↓1) · 3

0 · 2 + 3 · (↓1) + 2 · 3

↓1 · 2 + 1 · (↓1) + 4 · 3



 =




2↓ 2↓ 3

↓3 + 6

↓2↓ 1 + 12



 =




↓3

3

9





Bv =




2 0

↓1 3

1 ↓2




[
1

4

]
=




2 · 1 + 0 · 4

↓1 · 1 + 3 · 4

1 · 1 + (↓2) · 4



 =




2

↓1 + 12

1↓ 8



 =




2

11

↓7





Au+Bv =




↓3

3

9



+




2

11

↓7



 =




↓1

14

2




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4. Le produit Au donne un vecteur 3↔1 comme vu ci-dessus. La matrice C est de taille
2↔ 3, donc C(Au) est défini et donne un vecteur 2↔ 1. Ensuite, 2v est également un
vecteur 2↔ 1. L’opération C(Au)↓ 2v est donc bien définie :

C(Au) =

[
1 ↓1 2

3 0 1

]


↓3

3

9



 =

[
1 · (↓3) + (↓1) · 3 + 2 · 9

3 · (↓3) + 0 · 3 + 1 · 9

]
=

[
↓3↓ 3 + 18

↓9 + 9

]
=

[
12

0

]

2v = 2 ·

[
1

4

]
=

[
2

8

]
∈ C(Au)↓ 2v =

[
12

0

]
↓

[
2

8

]
=

[
10

↓8

]

5. La somme A + A↑ est définie car A est carrée (3 ↔ 3). Le résultat est une matrice
symétrique 3 ↔ 3. Le produit (A + A↑

)u est donc bien défini et donne un vecteur
3↔ 1 :

A+A↑
=




1 2 ↓1

0 3 2

↓1 1 4



+




1 0 ↓1

2 3 1

↓1 2 4



 =




2 2 ↓2

2 6 3

↓2 3 8





(A+A↑
)u =




2 2 ↓2

2 6 3

↓2 3 8








2

↓1

3



 =




2 · 2 + 2 · (↓1) + (↓2) · 3

2 · 2 + 6 · (↓1) + 3 · 3

↓2 · 2 + 3 · (↓1) + 8 · 3



 =




4↓ 2↓ 6

4↓ 6 + 9

↓4↓ 3 + 24



 =




↓4

7

17





Solution 1.12: (énoncé)

1. AB =

[
↓ cos(a) cos(b)↓ sin(a) sin(b) ↓ cos(a) sin(b)↓ sin(a) cos(b)
↓ sin(a) cos(b) + cos(a) sin(b) ↓ sin(a) sin(b) + cos(a) cos(b)

]
=

[
↓ cos(a↓ b) ↓ sin(a+ b)

sin(b↓ a) cos(a+ b)

]

2. A2
=

[
cos(2a) ↓ sin(2a)
sin(2a) cos(2a)

]

3. Par récurrence : An
=

[
cos(na) ↓ sin(na)
sin(na) cos(na)

]

Solution 1.13: (énoncé)

On cherche une matrice de cette forme pour que le produit existe : B =

[
a b
c d

]
.

On veut :
[
a+ c b+ d
a+ c b+ d

]
=

[
a+ b a+ b
c+ d c+ d

]
. On veut donc : a + b = a + c, a + b = b + d,

c+ d = a+ c, b+ d = c+ d. Ce sont donc des matrices de la forme :
[
a b
b a

]
.
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Solution 1.14: (énoncé)
ai,i+1 = 1 pour i = 1, . . . , n↓ 1 et ai,j = 0 ailleurs.
Pour k = 2, Donc pour A2 si n > 2, les seuls coe"cients ai,j non nuls sont ceux tels que
i↓ j = 2, et si n = 2, A2

= O.
Pour k = 3, Donc pour A3 si n > 3, les seuls coe"cients ai,j non nuls sont ceux tels que
i↓ j = 3, et si n = 3, A3

= O.
etc.

Solution 1.15: (énoncé)

1. F ≃ Rr↔(n↘r), C ≃ R(m↘r)↔r, D ≃ R(m↘r)↔(n↘r), et B ≃ R(n↘r)↔(n↘r).

2. RN =

[
↓AF+ FB
↓CF+DB

]
≃ Rm↔(n↘r).

3. On donne d’abord A = Ir, B = In↘r, C = Om↘r,r et D = Om↘r,n↘r, puis

RN =

[
↓IrF+ FIn↘r

↓Om↘r,rF+Om↘r,n↘rIn↘r

]
=

[
↓Or,n↘r

Om↘r,n↘r

]
= Om,n↘r .

Solution 1.16: (énoncé)

1. det(A) = ↓2 · 3↓ 6 · 3 = ↓24

2. det(B) = ↓1 · (4 · 3↓ 5 · 1) = ↓7 en additionnant les lignes 1 et 3 et en développant
par rapport à la première colonne.

3. det(C) = 0. La deuxième et la troisième lignes de C sont égales donc la matrice n’est
pas inversible donc le déterminant est nul.

4. det(C) = 1 det(D) = (↓1)
1+2

4(1·1↓1·1)+(↓1)
2+2

2(1·1↓2·1) = ↓2 en développant

par rapport à la troisième colonne avec D =




1 4 2

1 2 1

1 0 1



, en développant ensuite par

la deuxième colonne de D.

Solution 1.17: (énoncé)

1. C’est la décomposition LU de A vue au chapitre chapitre 6
2. Comme L et U sont triangulaires leur déterminants sont simples à calculer det(A) =

det(L) det(U) = 1 · (↓1) · 3 · 5 · 2 = ↓30

3. La première colonne de A est multipliée par 2 et la troisième par -1 pour obtenir B
donc det(B) = 2 · (↓1) · det(A) = 60
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Solution 1.18: (énoncé)

1. On applique le développement par les cofacteurs sur la première ligne de A =




↓1 3 1

2 4 1

2 7 1



 :

det(A) = ↓1 · (4 · 1↓ 1 · 7)↓ 3 · (2 · 1↓ 1 · 2) + 1 · (2 · 7↓ 4 · 2)

= ↓1(↓3)↓ 3(0) + 1(14↓ 8) = 3 + 6 = 9

2. A est inversible car son déterminant est non nul, de plus A↑ l’est aussi car son
déterminant est égal à celui de A, enfin A↑A est inversible comme produit de matrices
inversibles. On a :

det((A↑A)
↘1

) =
1

det(A↑A)
=

1

det(A)2
=

1

81

Solution 1.19: (énoncé)

1. On développe An+2 d’abord par la première ligne, cela donne le facteur 4 det(An+1)

puis pour obtenir le deuxième il faut développer la matrice résultante par la première
colonne.

2. Par récurrence : det(An) = (n+ 1)2
n

Solution 1.20: (énoncé)
Attention ! Il est impossible d’appliquer la formule du déterminant d’une matrice 2↔ 2 sur
des matrices construites par blocs. Généralement, on aura :

[
A B
C D

]
↘= det(A) det(D)↓ det(C) det(B).

1. L’objectif est de se ramener à une forme sur laquelle on peut s’imaginer appliquer un
développement selon une ligne/colonne. Observer d’abord que

M1 =

[
A O
O Im

] [
In O
O C

]
.

Traiter d’abord la première matrice : un développement récursif selon la dernière ligne
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donne
[
A O
O Im

]
= 1 ·

[
A O
O Im↘1

]

= 1 · 1 ·

[
A O
O Im↘2

]

= . . .

= 1 · 1 · . . . · 1︸ ︷︷ ︸
m fois

· det(A)

= det(A).

La même logique (selon la première ligne cette fois) donne :
[
In O
O C

]
= 1 ·

[
In↘1 O

O C

]

= 1 · 1 ·

[
In↘2 O

O C

]

= . . .

= 1 · 1 · . . . · 1︸ ︷︷ ︸
n fois

· det(C)

= det(C).

Finalement,

det(M1) =

[
A O
O Im

]
·

[
In O
O C

]
= det(A) · det(C).

2. En observant que

M =

[
A O
O C

] [
In A↘1B
O Im

]
,

on peut écrire :

det(M) =

[
A O
O C

]
·

[
In A↘1B
0 Im

]

︸ ︷︷ ︸
=1

,

et ceci vaut bien det(A) · det(C) par la question précédente.

Solution 1.21: (énoncé)

1. La matrice A =

[
1 2 0

3 0 ↓1

]
≃ R2↔3 n’est pas carrée, donc elle n’est pas inversible.
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2.

AA↑
=

[
1 2 0

3 0 ↓1

]


1 3

2 0

0 ↓1



 =

[
5 3

3 10

]

Cette matrice est inversible car son déterminant est non nul :

det(AA↑
) = 5 · 10↓ 3 · 3 = 50↓ 9 = 41 ↘= 0

3. A↑A =




10 2 ↓3

2 4 0

↓3 0 1



 n’est pas inversible car son déterminant est nul.

4. On a
(A↑A)

↑
= A↑

(A)
↑
= A↑A

Solution 1.22: (énoncé)
Note : quand les notes seront écrites sur la caractérisation des matrices inversibles, il serait
bon de revoir cette correction pour mentionner les numéros des propriétés donnés dans les
notes de cours. Il faut d’abord noter que I2 est carrée, première étape obligatoire pour
qu’elle puisse être inversible.

1. I2 peut être réduite en elle-même par une élimination de Gauss, qui n’e!ectue aucune
étape. Elle est donc inversible. : ce n’est pas dans la caractérisation

2. Chacun des coe"cients non nuls de I2 est un pivot. Il y en a évidemment 2, soit un
pivot par colonne. I2 est donc inversible. (point 7)

3. En cherchant à résoudre I2x = 0, on peut :
(a) Remarquer que I2x = x, d’où I2x = 0 C x = 0 et donc Ker(I2) = {0}

(b) Observer que la matrice augmentée du système est déjà sous forme échelonnée :
[
1 0 0

0 1 0

]

et donc, la seule solution à I2x = 0 est x = 0, d’où Ker(A) = {0}.
Donc I2 est inversible. (point 9)

4. Les colonnes de I2 sont les vecteurs (1, 0) et (0, 1), qui sont évidemment linéairement
indépendantes. (point 6)

5. Si b ≃ R2, l’équation I2x = b se réduit en x = b, elle admet donc la solution x = b.
Puisque cette équation admet au moins une solution pour tout b ≃ R2 (et que I2 est
carrée), I2 est inversible. (point 12)

6. Il est mentionné plus haut que les colonnes de I2 sont linéairement indépendantes.
Elles constituent donc une famille de deux vecteurs linéairement indépendants dans
R2. Elles engendrent donc R2, ainsi I2 est inversible. (point 10)
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7. det(I2) = 1 car c’est une matrice diagonale avec des 1 sur la diagonale, donc I2 est
inversible. (point 4)

8. En posant C = I2, on constate que I2C = CI2 = I2, donc I2 est inversible, et elle est
sa propre inverse. (point 1)

Solution 1.23: (énoncé)
Note : quand les notes seront écrites sur la caractérisation des matrices inversibles, il serait
bon de revoir cette correction pour mentionner les numéros des propriétés donnés dans les
notes de cours. Il faut d’abord noter que A est carrée, ce qui oblige à justifier qu’elle n’est
pas inversible d’une autre façon.

1. En appliquant l’élimination de Gauss sur A, on obtient la forme échelonnée
[
1 1

0 0

]
.

A ne peut donc pas être réduite à I2, elle n’est pas inversible. idem : pas vu dans le
caractérisation

2. La forme échelonnée ci-dessus montre bien que A n’admet qu’une seule position de
pivot. Puisqu’elle a deux colonnes, elle n’est pas inversible. (point 7)

3. En cherchant à résoudre Ax = 0, on obtient la matrice augmentée suivante sous
forme échelonnée : [

1 1 0

0 0 0

]
.

Le système est donc réalisable, et admet une infinité de solutions, dont par exemple
(1,↓1). Puisque Ker(A) ↘= {0}, A n’est pas inversible. (point 9)

4. Les deux colonnes de A sont identiques, donc elles sont évidemment linéairement
dépendantes. A n’est donc pas inversible. (point 6)

5. Avec b = (1, 0), le système Ax = b se réduit en la matrice augmentée suivante :
[
1 1 1

0 0 ↓1

]
.

Ce système est donc irréalisable. Puisqu’il existe un b ≃ R2 tel que Ax = b n’admette
aucune solution, A n’est pas inversible. (point 12)

6. Les colonnes de A sont linéairement dépendantes. Deux vecteurs linéairement dépen-
dants ne peuvent pas engendrer R2, donc les colonnes de A n’engendrent pas R2. A
n’est donc pas inversible. (point 10)

7. Supposons qu’il existe une matrice

C =

[
c1 c3
c2 c4

]
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telle que AC = I2. En appliquant la règle ligne-colonne, cette égalité se réécrit sous
la forme : 





c1 + c3 = 1

c1 + c3 = 0

c2 + c4 = 1

c2 + c4 = 0

,

qui est évidemment irréalisable. Puisqu’une telle matrice C n’existe pas, A n’est pas
inversible. (point 2)

8. det(A) = 1↔ 1↓ 1↔ 1 = 0 donc A n’est pas inversible. (point 4)

Solution 1.24: (énoncé)

1. On calcule le déterminant de A en développant selon la deuxième ligne :

det(A) = k det

[
2 k
1 5

]
↓ 2 det

[
2 ↓1

1 4

]
= k(10↓ k)↓ 2(8 + 1) = ↓k2 + 10k ↓ 18.

Les racines de ce polynôme sont k = 5↓
↑
7 et k = 5 +

↑
7.

Conclusion : A n’est pas inversible si et seulement si k ≃ {5↓
↑
7, 5 +

↑
7}.

Solution 1.25: (énoncé)
On prend le terme de droite et on le multiplie à droite par (F↘1

+ uu↑
). On obtient :

(
F↓

Fuu↑F

1 + u↑Fu

)
( F↘1

+ uu↑
) = FF↘1

+ Fuu↑
↓

Fuu↑F

1 + u↑Fu
F↘1

↓
Fuu↑F

1 + u↑Fu
uu↑,

= I+ Fuu↑
↓

Fuu↑

1 + u↑Fu
↓

Fuu↑F

1 + u↑Fu
uu↑,

= I+ Fuu↑
↓ Fu

1

1 + u↑Fu
u↑

↓ Fu
u↑Fu

1 + u↑Fu
u↑,

= I.

On a trouvé une matrice telle que le produit des deux est la matrice identité donc elles sont
bien inverses l’un de l’autre.

Solution 1.26: (énoncé)
Soit A une matrice carrée telle qu’il existe n tel que An

= 0 avec A non nulle.

1. A =

[
0 1

0 0

]
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2. On a det(An
) = 0, c’est-à-dire : det(A)

n
= 0 donc det(A) = 0. Alors A n’est pas

inversible.
3.

n↘1
i=0 (A

i
↓Ai+1

) =
n↘1

i=0 (A
i
)↓

n↘1
i=0 (A

i+1
) =

n↘1
i=0 (A

i
)↓

n
i=1(A

i
) = I↓An

4. (I↓A)(I+A+A2
+ ...+An↘1

) = I.

Solution 1.27: (énoncé)

1. La matrice A =

[
I O
D I

]
est triangulaire inférieure. Tous les blocs diagonaux sont

égaux à I, donc det(A) = det(I) det(I) = 1.
2.

AB =

[
I O
D I

] [
I O

↓D I

]
=

[
I O

D↓D I

]
=

[
I O
O I

]

3. Puisque AB = I, on a A↘1
= B.

4.

AC =

[
I O
D I

] [
I D
O I

]
=

[
I D
D D2

+ I

]

Solution 1.28: (énoncé)

1. Son déterminant est égal à 1 donc elle est inversible.
2. Montrons que (A↓ I3)(A+ I3) = 03.

(A↓ I3)(A+ I3) =




0 12 ↓6

0 0 0

0 4 ↓2








2 12 ↓6

0 2 0

0 4 0



 =




0 0 0

0 0 0

0 0 0





3. Soit B ≃ Rn↔n telle que (B+ In)(B↓ In) = On.

(B+ In)(B↓ In) = B2
↓ In = On ∈ B2

= In

Donc B↘1
= B, c’est-à-dire que B est inversible et que son inverse est elle-même.

Solution 1.29: (énoncé)
Soit A ≃ Rn↔n. Lors de la transposition, les termes de la diagonale restent les mêmes. Pour
avoir A↑

= ↓A, sur la diagonale, on doit avoir A(i, i) = ↓A(i, i) pour tout i ≃ !1;n" en
regardant les deux côtés de l’équation. Ce qui veut dire que 2A(i, i) = 0 pour tout i ≃ !1;n".
en ajoutant A(i, i) de chaque côté de l’équation. Et donc, A(i, i) = 0 pour tout i ≃ !1;n".
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Solution 1.30: (énoncé)

Non, ce n’est vrai que si A et B sont inversibles. Par exemple, si A = O =

[
0 0

0 0

]
,

B =

[
1 ↓1

1 ↓1

]
, et x = (1, 1), alors Ax = Bx = 0 = (0, 0) et A et B sont di!érentes (et non

inversibles).

Solution 1.31: (énoncé)

1. △A△F =


tr(A↑A) =

↑
18 = 3

↑
2 et △B△F =


tr(B↑B) =

↑
10

2. ∝A,B′ = tr(A↑B) = 9 et on a bien 9 B 3
↑
2
↑
10 = 12

↑
5

3. Cauchy-Schwarz.

4. Même démonstration que le théorème 1.1.1 mais avec la norme matricielle (défini-
tion 1.2.18) et en utilisant le fait que les matrices sont symétriques.

Série d’exercices 2: Élimination

Solution 2.1: (énoncé)
TODO.

Solution 2.2: (énoncé)
TODO.

Solution 2.3: (énoncé)
TODO.

Solution 2.4: (énoncé)
TODO.

Solution 2.5: (énoncé)
TODO.

Solution 2.6: (énoncé)
Pour chacun des exemples suivant, on s’autorise à faire plusieurs opérations d’élimination
à la fois. Les pivots sont encadrés.
Pour M1 :
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