5. Espaces vectoriels, bases et dimension

MTH1008

Sébastien Le Digabel Polytechnique Montréal

H25

2025-02-10

v4

Plan

Espaces de vecteurs

Sous-espaces vectoriels

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Liens avec le livre et exercices suggérés

- 4.1 Espaces vectoriels et sous espaces vectoriels
- 4.2 Noyau, image et applications linéaires
- 4.3 Familles libres et bases
- 4.5 Dimension d'un espace vectoriel
- 4.6 Rang

4.7 Changement de base

- 1, 3, 5, 7, 8, 10, 11, 13, 15, 19, 21, 22, 24, 25, 29, 31, 32, 33, 36
- 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 24, 26, 27, 29, 33, 35, 37, 39
- 1,3,5,7,11,13, 15, 19, 21, 23, 25,

27, 29, 31, 33, 35, 37

- 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
- 23, 25, 27, 29, 31, 32, 33
- 1, 3, 5, 7, 9, 11, 13, 14, 16, 17,
- 19, 21, 23, 25, 27, 28, 29, 30,
- 32, 33, 34

(compléter les exercices déjà faits en semaine 3)

1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19

Sous-espaces vectoriel

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Un *espace vectoriel* (réel) est un ensemble V muni de deux opérations : si $\mathbf u$ et $\mathbf v$ sont des éléments de V et $c\in\mathbb R$ alors on définit des éléments

- **1.** ${\bf u} + {\bf v} \in V$
- 6. $c\mathbf{u} \in V$

Ces deux opérations satisfont à 8 propriétés supplémentaires telles que la commutativité, l'associativité, etc.

Remarques:

- \blacktriangleright On peut aussi définir des espaces vectoriels avec des scalaires $c\in\mathbb{C}$
- ► Les 2+8 propriétés sont données ici avec la numérotation du livre

Les huit propriétés d'un espace vectoriel V

2. u + v = v + u

Sous-espaces

- 3. u + (v + w) = (u + v) + w
- **4.** V contient un vecteur **0** unique tel que $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- **5.** V contient un vecteur $-\mathbf{u}$ unique tel que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- **10.** $1 \times u = u$
 - **9.** $(c_1c_2)\mathbf{u} = c_1(c_2\mathbf{u})$
 - 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
 - 8. $(c_1 + c_2)\mathbf{u} = c_1\mathbf{u} + c_2\mathbf{u}$

(avec $\mathbf{u}, \mathbf{v} \in V$ et c_1, c_2, c des scalaires)

Exemples d'espaces vectoriels

- ▶ L'espace \mathbb{R}^n est formé de tous les vecteurs colonnes \mathbf{v} à n composantes réelles
- **Espace** \mathbb{C}^n : les composantes de $\mathbf{v} \in \mathbb{C}^n$ sont des nombres complexes
- ightharpoonup : matrices réelles $n \times n$
- ightharpoonup : fonctions de \mathbb{R}^n dans $\mathbb{R}:f(\mathbf{x})\in\mathbb{R}$ avec $\mathbf{x}\in\mathbb{R}^n$
- ightharpoonup : polynômes de degré $\leq n$
- $ightharpoonup \mathbb{Z} = \{0\}$: vecteur zéro uniquement

Espaces de vecteurs

Sous-espaces vectoriels

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Sous-espaces vectoriels (sev)

Un $\it sous-espace$ d'un espace vectoriel V est un sous-ensemble W de vecteurs de V qui satisfait à trois exigences :

1. $0 \in W$

et si ${\bf u}$ et ${\bf v}$ sont des vecteurs du sous-espace $W\subseteq V$ et si $c\in\mathbb{R}$ alors :

- 2. $\mathbf{u} + \mathbf{v}$ appartient à W (fermeture sous l'addition)
- 3. $c\mathbf{u}$ appartient à W (fermeture sous la multiplication par un scalaire)

on peut montrer 2. et 3. directement avec l'étude de $c\mathbf{u}+d\mathbf{v}$

1. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$

Espaces de vecteurs

- 1. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 2. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V.

Espaces de vecteurs

- 1. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 2. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V. Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_j, j \in \{1, 2, \ldots, n\}$ et est noté $\mathrm{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$

Espaces de vecteurs

- 1. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 2. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V. Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_j, j \in \{1, 2, \ldots, n\}$ et est noté $\mathrm{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$
- **3.** Si V est un espace vectoriel alors V lui-même et $\mathbb{Z} = \{0\}$ sont des sev de V. On les appelle les *sous-espaces triviaux*

Changements de base

- 1. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 2. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V. Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_j, j \in \{1, 2, \ldots, n\}$ et est noté $\mathrm{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$
- **3.** Si V est un espace vectoriel alors V lui-même et $\mathbb{Z} = \{0\}$ sont des sev de V. On les appelle les *sous-espaces triviaux*
- 4. Un sev est un espace vectoriel

Exemples de sev

ightharpoonup Un plan dans \mathbb{R}^3 qui passe par l'origine

(un sous-espace de \mathbb{R}^n de dimension n-1 est appelé un hyperplan)

- ightharpoonup Une droite dans \mathbb{R}^3 qui passe par l'origine
- ▶ Deux sous-espaces de \mathbb{M}^n , l'ensemble des matrices $n \times n$:
 - ightharpoonup Toutes les matrices triangulaires supérieures de taille $n \times n$
 - ▶ Toutes les matrices diagonales de taille $n \times n$

Espaces de vecteurs

Sous-espaces vectoriel

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Changements de base

Noyau (rappel)

Espaces de vecteurs

Le *noyau* d'une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$ est l'ensemble des vecteurs qui sont solutions au SÉL $\mathbf{A}\mathbf{x} = \mathbf{0}$. On le note $N(\mathbf{A})$ ou $\mathrm{Ker}(\mathbf{A})$:

$$\mathrm{Ker}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^n$$

C'est un sous-espace de \mathbb{R}^n

Changements de base

Image

Espaces de vecteurs

L'image (ou l'espace des colonnes) de

$$\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \in \mathbb{R}^{m \times n}$$

est constituée de toutes les combinaisons linéaires des colonnes de ${\bf A}$ (vues comme des vecteurs)

- $lackbox{ }$ Ce sont tous les vecteurs $\mathbf{A}\mathbf{x}\in\mathbb{R}^m$ possibles, avec $\mathbf{x}\in\mathbb{R}^n$
- lacktriangle Elle est notée ${
 m Im}({f A})$ ou $C({f A})$. C'est un sous-espace de ${\mathbb R}^m$:

$$\begin{split} \operatorname{Im}(\mathbf{A}) &= & \left\{ \mathbf{A}\mathbf{x} \text{ pour tout } \mathbf{x} \in \mathbb{R}^n \right\} \\ &= & \left\{ \mathbf{b} \in \mathbb{R}^m \text{ tel qu'il existe } \mathbf{x} \in \mathbb{R}^n \text{ avec } \mathbf{A}\mathbf{x} = \mathbf{b} \right\} \\ &= & \operatorname{Vect}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \} \\ &\subset \mathbb{R}^m \end{split}$$

Le SÉL Ax = b possède (au moins) une solution

$$\iff$$

$$\mathbf{b} \in \operatorname{Im}(\mathbf{A})$$

Espaces de vecteurs

L'image de la matrice
$$\mathbf{A}=\begin{bmatrix}1&0\\2&5\\3&6\end{bmatrix}$$
 est représentée par un plan dans l'espace :



Exemple 1

Espaces de vecteurs

Décrire l'image des trois matrices suivantes :

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 4 \end{bmatrix}$$

Sous-espaces vectoriel

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Ensemble générateur et base

Rappel

Espaces de vecteurs

Un ensemble de vecteurs $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ engendre (ou génère) un espace vectoriel V si tout vecteur de V est combinaison linéaire des vecteurs \mathbf{v}_i avec $i \in \{1, 2, \dots, n\}$. Ceci est noté $V = \text{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

Définition

Un ensemble de vecteurs $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ est une *base* d'un espace vectoriel V si

- 1. les vecteurs \mathbf{v}_i sont linéairement indépendants
 - et
- **2.** $V = \text{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$

Théorème de la base extraite

Soit $V = \text{Vect}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ avec $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ un ensemble dépendant de vecteurs

 \triangleright Il existe \mathbf{v}_k qui est combinaison linéaire des autres vecteurs, avec $k \in \{1, 2, \dots, n\}$, et les autres vecteurs génèrent toujours V:

$$\operatorname{Vect}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_{k-1},\mathbf{v}_{k+1},\ldots,\mathbf{v}_n\}=V$$

ightharpoonup Si n>1, alors il existe un sous-ensemble (strict) de $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ qui forme une base de V

Espaces de vecteurs

Bases et colonnes de A

- Les colonnes d'une matrice génèrent son image
- **Pour une matrice A** de taille $n \times n$ qui est inversible :
 - Les colonnes sont linéairement indépendantes
 - $ightharpoonup \operatorname{Im}(\mathbf{A}) = \mathbb{R}^n$

Autrement dit, les colonnes de ${f A}$ forment une base de ${\Bbb R}^n$

- **Pour une matrice A de taille** $m \times n$:
 - Les colonnes ne sont pas nécessairement linéairement indépendantes
 - ightharpoonup Les colonnes pivots forment une base de $\operatorname{Im}(\mathbf{A})$

Lien avec un SÉL

Théorème

- ightharpoonup n vecteurs linéairement indépendants de \mathbb{R}^n engendrent \mathbb{R}^n
- ightharpoonup n vecteurs qui engendrent \mathbb{R}^n sont nécessairement linéairement indépendants

Ce théorème peut être reformulé comme suit en termes de SÉL :

- ▶ Si les colonnes d'une matrice A de taille $n \times n$ sont linéairement indépendantes, alors :
 - ightharpoonup elles engendrent \mathbb{R}^n
 - ightharpoonup elles forment une base de \mathbb{R}^n
 - $ightharpoonup \operatorname{Im}(\mathbf{A}) = \mathbb{R}^n$
 - $ightharpoonup \mathbf{A}\mathbf{x} = \mathbf{b}$ possède une solution unique

Dimension

Théorème

Si les vecteurs $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ forment une base de l'espace vectoriel V, alors tout vecteur de V s'écrit de façon **unique** comme combinaison linéaire des vecteurs \mathbf{v}_i avec $i \in \{1, 2, \dots, n\}$

Théorème

Si $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ et $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q\}$ sont deux bases d'un espace vectoriel donné alors p=q

Autrement dit, toute base d'un espace vectoriel contient le même nombre de vecteurs

Définition

La *dimension* d'un espace vectoriel V est le nombre de vecteurs dans une base de V. On la note $\dim(V)$ ou $\dim V$

Autres théorèmes

Théorème

Tout ensemble de strictement plus de n vecteurs d'un espace vectoriel de dimension n est nécessairement dépendant

Théorème de la base incomplète

Soit W un sev de V avec $\dim(V) = n$ (dimension finie). Alors

- \blacktriangleright tout ensemble de vecteurs indépendants de W peut être complété pour former une base de W
- $ightharpoonup \dim(W) \le \dim(V)$

Dimension finie vs infinie

Un espace vectoriel est de dimension finie s'il possède un ensemble générateur de cardinalité finie. Sinon, il est de dimension infinie

Exemple: \mathbb{P}_n vs \mathbb{P} (l'ensemble de tous les polynômes)

Espace \mathbb{Z}

- ▶ L'espace $\mathbb{Z} = \{\mathbf{0}\}$ est de dimension 0
- ▶ La seule base de Z est l'ensemble vide ∅
- ► Le vecteur nul 0 ne peut pas faire partie d'une base car l'indépendance linéaire serait alors perdue

Trouver trois vecteurs indépendants dans l'hyperplan x+2y-3z-t=0 de \mathbb{R}^4 . Pourquoi ne peut-on en trouver quatre? Donner une matrice dont le noyau est cet hyperplan.

Trouver une base de \mathbb{P}_3 , l'espace des polynômes p(x) de $\operatorname{degr\acute{e}} \leq 3$. Donner une base du sev de \mathbb{P}_3 où p(1) = 0

Sous-espaces vectoriel

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Image de A : Im(A) = C(A)

On considère une matrice ${\bf A}$ de taille $m \times n$ et ${\bf R}$ sa forme échelonnée réduite. Soit $r=r({\bf A})$

- 1. C'est le sous-espace de \mathbb{R}^m engendré par les colonnes de \mathbf{A}
- 2. En général, $\operatorname{Im}(\mathbf{A}) \neq \operatorname{Im}(\mathbf{R})$
- 3. Les r colonnes pivots de \mathbf{A} forment une base de $\mathrm{Im}(\mathbf{A})$
- 4. La dimension de ${\rm Im}({\bf A})$ et de ${\rm Im}({\bf R})$ est égale au rang r de ${\bf A}$:

$$\dim \operatorname{Im}(\mathbf{A}) = \dim \operatorname{Im}(\mathbf{R}) = r$$

Espace des lignes de $A : Im(A^{\top}) = C(A^{\top}) = Lgn(A)$

On considère une matrice ${\bf A}$ de taille $m \times n$ et ${\bf R}$ sa forme échelonnée réduite. Soit $r = r({\bf A})$

- 1. L'espace des lignes de \mathbf{A} , noté $\mathrm{Im}(\mathbf{A}^{\top})$, est le sous-espace de \mathbb{R}^n engendré par les lignes de \mathbf{A}
- **2.** A et \mathbf{R} ont le même espace des lignes : $\operatorname{Im}(\mathbf{A}^{\top}) = \operatorname{Im}(\mathbf{R}^{\top})$
- 3. Les lignes pivots de ${\bf R}$ et les lignes pivots de ${\bf A}$ forment deux bases de ${\rm Im}({\bf A}^\top)$
- 4. La dimension de $\operatorname{Im}(\mathbf{A}^{\top})$ et de $\operatorname{Im}(\mathbf{R}^{\top})$ est égale au rang r de \mathbf{A} :

$$\dim \operatorname{Im}(\mathbf{A}^{\top}) = \dim \operatorname{Im}(\mathbf{R}^{\top}) = r$$

Noyau de A : Ker(A) = N(A)

On considère une matrice ${\bf A}$ de taille $m \times n$ et ${\bf R}$ sa forme échelonnée réduite. Soit $r=r({\bf A})$

- 1. C'est le sous-espace de \mathbb{R}^n constitué des vecteurs \mathbf{x} tels que $\mathbf{A}\mathbf{x}=\mathbf{0}$
- **2.** A et \mathbf{R} ont le même noyau : $Ker(\mathbf{A}) = Ker(\mathbf{R})$
- 3. Les solutions spéciales forment une base de ${\rm Ker}({\bf A})$ et de ${\rm Ker}({\bf R})$
- **4.** On a

$$\dim \operatorname{Ker}(\mathbf{A}) = \dim \operatorname{Ker}(\mathbf{R}) = n - r$$

Noyau à gauche de A : $Ker(A^{\top}) = N(A^{\top})$

On considère une matrice A de taille $m \times n$ et B sa forme échelonnée réduite. Soit $r = r(\mathbf{A})$

- 1. Le noyau à gauche de A, noté $Ker(A^{\top})$, est le sous-espace de \mathbb{R}^m constitué des vecteurs \mathbf{y} tels que $\mathbf{A}^{ op}\mathbf{v} = \mathbf{0}$
- 2. On a

Espaces de vecteurs

$$\dim \operatorname{Ker}(\mathbf{A}^{\top}) = m - r$$

$$\operatorname{Im}(\mathbf{A})$$
 sous-espace de \mathbb{R}^m et $\dim \operatorname{Im}(\mathbf{A}) = r$ $\operatorname{Im}(\mathbf{A}^\top)$ sous-espace de \mathbb{R}^n et $\dim \operatorname{Im}(\mathbf{A}^\top) = r$ $\operatorname{Ker}(\mathbf{A})$ sous-espace de \mathbb{R}^n et $\dim \operatorname{Ker}(\mathbf{A}) = n - r$ $\operatorname{Ker}(\mathbf{A}^\top)$ sous-espace de \mathbb{R}^m et $\dim \operatorname{Ker}(\mathbf{A}^\top) = m - r$

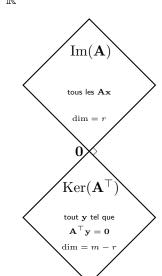
Théorème

Espaces de vecteurs

Pour toute matrice A de taille $m \times n$ on a :

- 1. $\dim \operatorname{Im}(\mathbf{A}^{\top}) + \dim \operatorname{Ker}(\mathbf{A}) = n$ théorème du rang
- 2. $\dim \operatorname{Im}(\mathbf{A}) + \dim \operatorname{Ker}(\mathbf{A}^{\top}) = m$

\mathbb{R}^m



 $Ker(\mathbf{A})$

tout x tel que Ax = 0

 $\dim = n$

Exemple 4

Espaces de vecteurs

Illustrer les différents concepts sur

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 5 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

Noyau et image

Bases et dimension

La dimension des quatre sous-espaces

Changements de base

Introduction, notations, exemple

- ▶ Soient \mathcal{B} et \mathcal{C} deux bases de l'espace vectoriel V de dimension n. Un vecteur $\mathbf{x} \in V$ peut s'écrire $[\mathbf{x}]_{\mathcal{B}}$ ou $[\mathbf{x}]_{\mathcal{C}}$
- **Exemple** avec n=2:

Avec

$$\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2) = ((1, 1), (0, 2)) \subseteq \mathbb{R}^2$$

et

$$C = (\mathbf{c}_1, \mathbf{c}_2) = ((-1, 3), (1, 12)) \subseteq \mathbb{R}^2$$

on aura

$$\mathbf{x} = (5,6) = 5\mathbf{b}_1 + \frac{1}{2}\mathbf{b}_2 = -\frac{54}{15}\mathbf{c}_1 + \frac{21}{15}\mathbf{c}_2 \in \mathbb{R}^2$$

et on note $[\mathbf{x}]_{\mathcal{B}} = (5, \frac{1}{2}) \in \mathbb{R}^2$ et $[\mathbf{x}]_{\mathcal{C}} = \frac{1}{15}(-54, 21) \in \mathbb{R}^2$

Contexte ·

Espaces de vecteurs

- \triangleright On a le vecteur \mathbf{x} exprimé dans la base \mathcal{B}
- ightharpoonup Si on se donne une nouvelle base C, alors on veut exprimer ${f x}$ dans cette base : $[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{C}}$
- Ce changement peut se faire à condition de pouvoir exprimer les vecteurs de $\mathcal B$ dans la base $\mathcal C$:

$$\mathbf{b}_1 = -\frac{11}{15}\mathbf{c}_1 + \frac{4}{15}\mathbf{c}_2$$
 et $\mathbf{b}_2 = \frac{2}{15}\mathbf{c}_1 + \frac{2}{15}\mathbf{c}_2$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 5\mathbf{b}_1 + \frac{1}{2}\mathbf{b}_2 \end{bmatrix}_{\mathcal{C}} = 5[\mathbf{b}_1]_{\mathcal{C}} + \frac{1}{2}[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \end{bmatrix} \begin{bmatrix} 5\\ \frac{1}{2} \end{bmatrix}$$

$$= \frac{1}{15} \begin{bmatrix} -11 & 2\\ 4 & 2 \end{bmatrix} \begin{bmatrix} 5\\ \frac{1}{2} \end{bmatrix} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathbf{P}} [\mathbf{x}]_{\mathcal{B}} = \frac{1}{15} \begin{bmatrix} -54\\ 21 \end{bmatrix}$$

Soient $\mathcal{B} = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n)$ et $\mathcal{C} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n)$ deux bases de V de dimension n

- $lackbox{f P}[{f x}]_{\mathcal{C}} = \mathop{f P}_{\mathcal{C}\leftarrow\mathcal{B}}[{f x}]_{\mathcal{B}} \in \mathbb{R}^n$
- ▶ $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \ \dots \ [\mathbf{b}_n]_{\mathcal{C}}] \in \mathbb{R}^{n \times n}$ est la matrice de changement de base (de \mathcal{B} à \mathcal{C}), définie de manière unique 1 et inversible
- $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}^{-1} = \mathbf{P}_{\mathcal{B} \leftarrow \mathcal{C}} = [[\mathbf{c}_1]_{\mathcal{B}} \ [\mathbf{c}_2]_{\mathcal{B}} \ \dots \ [\mathbf{c}_n]_{\mathcal{B}}]$
- Si $C = \mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$, alors $[\mathbf{b}_i]_C = [\mathbf{b}_i]_{\mathcal{E}} = \mathbf{b}_i$ pour $i \in \{1, 2, \dots, n\}$ et

$$\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = \mathbf{P}_{\mathcal{E} \leftarrow \mathcal{B}} = \mathbf{P}_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$$

1. si on utilise les parenthèses pour lister les vecteur d'une base

Espaces de vecteurs

Calcul de la matrice de changement de base

 $[\mathbf{b}_1]_{\mathcal{C}}$ est la solution du SÉL :

$$[\mathbf{c}_1 \ \mathbf{c}_2 \ \dots \ \mathbf{c}_n][\mathbf{b}_1]_{\mathcal{C}} = \mathbf{b}_1$$

Comme

Espaces de vecteurs

$$\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} = [[\mathbf{b}_1]_{\mathcal{C}} \ [\mathbf{b}_2]_{\mathcal{C}} \ \dots \ [\mathbf{b}_n]_{\mathcal{C}}]$$

On considère le système augmenté

$$\left[\mathbf{c}_1 \; \mathbf{c}_2 \; \dots \; \mathbf{c}_n \; \mathbf{b}_1 \; \mathbf{b}_2 \; \dots \; \mathbf{b}_n
ight] \sim \left[\mathbf{I} \; egin{matrix} \mathbf{P} \ \mathcal{C} \leftarrow \mathcal{B} \end{matrix}
ight]$$

Soient les bases
$$\mathcal{B}=(\mathbf{b}_1,\mathbf{b}_2)$$
 et $\mathcal{C}=(\mathbf{c}_1,\mathbf{c}_2)$ de \mathbb{R}^2 , avec $\mathbf{b}_1=(1,-3),\ \mathbf{b}_2=(-2,4),$ et $\mathbf{c}_1=(-7,9),\ \mathbf{c}_2=(-5,7)$

Montrer que

$$\mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 2 & -3/2 \\ -3 & 5/2 \end{bmatrix}$$

Bases et dimension

et

$$\mathbf{P}_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} 5 & 3\\ 6 & 4 \end{bmatrix}$$

Trouver une base à partir d'une autre avec la matrice de changement de base

Avec $\mathbf{P}_{\mathcal{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$ et $\mathbf{P}_{\mathcal{C}} = [\mathbf{c}_1 \ \mathbf{c}_2 \ \dots \ \mathbf{c}_n]$, pour tout \mathbf{x} :

$$\left\{egin{align*} & [\mathbf{x}]_{\mathcal{C}} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}[\mathbf{x}]_{\mathcal{B}} \ & \mathbf{P}_{\mathcal{C}}[\mathbf{x}]_{\mathcal{B}} = \mathbf{P}_{\mathcal{C}}[\mathbf{x}]_{\mathcal{C}} = \mathbf{x} \ & \mathbf{P}_{\mathcal{C}}^{-1}\mathbf{x} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1}\mathbf{x} \Rightarrow \mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1} \ & \mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1} \ & \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1} \ & \mathbf{P}_{\mathcal{C}}\mathbf{P}_{\mathcal{B}}\mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1} \ & \mathbf{P}_{\mathcal{C}}\mathbf{P}_{\mathcal{B}}\mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}^{-1} \ & \mathbf{P}_{\mathcal{C}}\mathbf{P}_{\mathcal{C}}\mathbf{P}_{\mathcal{B}}\mathbf{P}_{\mathcal{C}}^{-1} = \mathbf{P}_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{P}_{\mathcal{B}}\mathbf{P}_{\mathcal{C}}^{-1} \ & \mathbf{P}_{\mathcal{C}}\mathbf{P$$

et donc

$$\mathbf{P}_{\mathcal{B}} = \mathbf{P}_{\mathcal{C}} \mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}} \text{ et } \mathbf{P}_{\mathcal{C}} = \mathbf{P}_{\mathcal{B}} \mathbf{P}_{\mathcal{B} \leftarrow \mathcal{C}}$$

Illustrer sur l'exemple 5