4. Espaces de vecteurs Section 3.1

MTH1007

J. Guérin, N. Lahrichi, S. Le Digabel Polytechnique Montréal

H2023

(v1)

Plan

- 1. Espaces de vecteurs
- 2. Sous-espaces

3. L'espace des colonnes

1. Espaces de vecteurs

- 2. Sous-espace
- 3. L'espace des colonnes

Espaces de vecteurs

Un *espace vectoriel* (réel) est un ensemble V muni de deux opérations : si $\mathbf u$ et $\mathbf v$ sont des éléments de V et $c\in\mathbb R$ alors on définit des éléments

- 1. $\mathbf{u} + \mathbf{v} \in V$
- 2. $c\mathbf{u} \in V$

Ces deux opérations satisfont à 8 propriétés telles que la commutativité, l'associativité, etc.

 $\mbox{\bf Remarque}:$ On peut aussi définir des espaces vectoriels avec des scalaires $c\in\mathbb{C}$

Les 8 propriétés d'un espace vectoriel V

- 1. u + v = v + u
- 2. u + (v + w) = (u + v) + w
- 3. Il existe un vecteur $\mathbf{0}$ unique tel que $\mathbf{u} + \mathbf{0} = \mathbf{u}$
- **4.** Il existe un vecteur $-\mathbf{u}$ unique tel que $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- 5. $1 \times \mathbf{u} = \mathbf{u}$
- **6.** $(c_1c_2)\mathbf{u} = c_1(c_2\mathbf{u})$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c_1+c_2)\mathbf{u} = c_1\mathbf{u} + c_2\mathbf{u}$

(avec $\mathbf{u}, \mathbf{v} \in V$ et c_1, c_2, c des scalaires)

Exemples d'espaces vectoriels

- ▶ L'espace \mathbb{R}^n est formé de tous les vecteurs colonnes \mathbf{v} à n composantes réelles
- ▶ Espace \mathbb{C}^n : les composantes de $\mathbf{v} \in \mathbb{C}^n$ sont des nombres complexes
- ightharpoonup : matrices réelles $n \times n$
- ightharpoonup : fonctions de \mathbb{R}^n dans $\mathbb{R}:f(\mathbf{x})\in\mathbb{R}$ avec $\mathbf{x}\in\mathbb{R}^n$
- $ightharpoonup \mathbb{Z} = \{0\}$: vecteur zéro uniquement

- 2. Sous-espaces
- 3. L'espace des colonnes

Sous-espaces vectoriels (sev)

Un *sous-espace* d'un espace vectoriel V est un sous-ensemble W de vecteurs de V, incluant $\mathbf{0}$, qui satisfait à deux exigences :

Si ${\bf u}$ et ${\bf v}$ sont des vecteurs du sous-espace $W\subseteq V$ et si $c\in \mathbb{R}$ alors :

- 1. $\mathbf{u} + \mathbf{v}$ appartient à W (fermeture sous l'addition)
- 2. $c{f u}$ appartient à W (fermeture sous la multiplication par un scalaire)

1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul

1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul

2/3

2. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$

- 1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul
- 2. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 3. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V

- 1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul
- 2. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 3. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_i, i \in \{1, 2, \dots, n\}$

- 1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul
- 2. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 3. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_i, i \in \{1, 2, \dots, n\}$
- **4.** Si V est un espace vectoriel alors V lui-même et $\mathbb{Z} = \{\mathbf{0}\}$ sont des sev de V. On les appelle les *sous-espaces triviaux*

- 1. Les exigences dans la définition d'un sev W impliquent que $\mathbf{0} \in W$. Autrement dit, un sev contient toujours le vecteur nul
- 2. Par définition, un sev ${\cal W}$ contient toutes les combinaisons linéaires de vecteurs provenant de ${\cal W}$
- 3. Réciproquement, si $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ sont des vecteurs de l'espace vectoriel V alors l'ensemble de toutes les combinaisons linéaires de ces vecteurs est un sev de V Ce sous-espace est appelé le sous-espace engendré par les vecteurs $\mathbf{v}_i, i \in \{1, 2, \dots, n\}$
- **4.** Si V est un espace vectoriel alors V lui-même et $\mathbb{Z} = \{\mathbf{0}\}$ sont des sev de V. On les appelle les sous-espaces triviaux
- 5. Un sev est un espace vectoriel

Exemples de sev

ightharpoonup Un plan dans \mathbb{R}^3 qui passe par l'origine

(un sous-espace de \mathbb{R}^n de dimension n-1 est appelé un hyperplan)

- ightharpoonup Une droite dans \mathbb{R}^3 qui passe par l'origine
- ▶ Deux sous-espaces de \mathbb{M}^n , l'ensemble des matrices $n \times n$:
 - ightharpoonup Toutes les matrices triangulaires supérieures de taille $n \times n$
 - ▶ Toutes les matrices diagonales de taille $n \times n$

- 1. Espaces de vecteurs
- 2. Sous-espace
- 3. L'espace des colonnes

Définition

- L'espace des colonnes (ou l'image) d'une matrice A de taille $m \times n$ est constitué de toutes les combinaisons linéaires des colonnes de A (vues comme des vecteurs)
- $lackbox{ }$ Ce sont donc tous les vecteurs $A\mathbf{x} \in \mathbb{R}^m$ possibles, avec $\mathbf{x} \in \mathbb{R}^n$
- ▶ Il est noté C(A). C'est un sous-espace de \mathbb{R}^m :

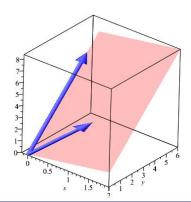
$$\begin{array}{lcl} C(A) & = & \{A\mathbf{x} \text{ pour tout } \mathbf{x} \in \mathbb{R}^n \} \\ \\ & = & \{\mathbf{b} \in \mathbb{R}^m \text{ tel qu'il existe } \mathbf{x} \in \mathbb{R}^n \text{ avec } A\mathbf{x} = \mathbf{b} \} \\ \\ & \subseteq \mathbb{R}^m \end{array}$$

▶ Important : Le SÉL $A\mathbf{x} = \mathbf{b}$ possède (au moins) une solution si et seulement si $\mathbf{b} \in C(A)$

Exemple

L'espace des colonnes de la matrice $A=\left[\begin{array}{cc} 1 & 0 \\ 2 & 5 \\ 3 & 6 \end{array}\right]$ est représenté

par un plan dans l'espace :



Exemple

Décrire l'espace des colonnes des trois matrices suivantes :

$$I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \qquad A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 4 \end{array} \right] \qquad B = \left[\begin{array}{cc} 1 & 0 & 3 \\ 0 & 2 & 4 \end{array} \right]$$