Globalization strategies for Mesh Adaptive Direct Search

Charles Audet, École Polytechnique de Montréal John Dennis, Rice University Sébastien Le Digabel, École Polytechnique de Montréal

July 2009

Thanks to: AFOSR, ExxonMobil, Boeing, LANL, FQRNT, NSERC, IREQ.

Presentation outline

Handling constraints in real problems

- Three types of constraints
- Strategies to deal with constraints
- Three instantiations of mesh adaptive direct searches
- Hierarchical convergence analysis

2 Numerical results on engineering problems

- Three real test problems
- A feasible starting point
- An infeasible starting point
- Multiple runs

3 Discussion

Blackbox optimization problems

My main research interest is nonsmooth optimization:

minimize f(x)subject to $x \in \Omega = \{x \in X : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$,

where

- $f, c_j : X \to \mathbb{R} \cup \{\infty\}$ for all $j \in J = \{1, 2, \dots, m\}$,
- X is a subset of \mathbb{R}^n ,
- evaluation of the functions are usually the result of a computer code (a black box) costly to evaluate.

Presentation outline

Handling constraints in real problems

- Three types of constraints
- Strategies to deal with constraints
- Three instantiations of mesh adaptive direct searches
- Hierarchical convergence analysis

2 Numerical results on engineering problems

- Three real test problems
- A feasible starting point
- An infeasible starting point
- Multiple runs

3 Discussion

Three types of constraints

The domain: $\Omega = \{x \in X : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$

• Unrelaxable constraints define X

Cannot be violated by any trial point.

For example, logical conditions on the variables indicating if the simulation may be launched.

Three types of constraints

The domain: $\Omega = \{x \in X : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$

- Unrelaxable constraints define X
- Relaxable constraints $c_j(x) \le 0$

Can be violated, and $c_j(x)$ provides a measure of how much the constraint is violated. A budget for example.

The domain: $\Omega = \{x \in X : c_j(x) \le 0, j \in J\} \subset \mathbb{R}^n$

- Unrelaxable constraints define X
- Relaxable constraints $c_j(x) \leq 0$
- Hidden constraints

Is a convenient term to exclude the set of points in the feasible region for the relaxable or unrelaxable constraints at which the black box fails to return a value for one of the problem functions. A typical example is when the simulation crashes unexpectedly.

• Extreme barrier (EB)

Treats the problem as being unconstrained, by replacing the objective function f(x) by

$$f_{\Omega}(x) := \begin{cases} f(x) & \text{if } x \in \Omega, \\ \infty & \text{otherwise.} \end{cases}$$

The problem

$$\min_{x \in \mathbb{R}^n} f_{\Omega}(x)$$

is then solved. Remark : If $x \notin X$ (the non-relaxable constraints), then the costly evaluation of f(x) is not performed.

- Extreme barrier (EB)
- Progressive barrier (PB)

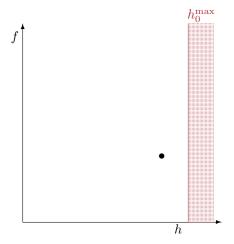
Defined for the relaxable constraints.

As in the filter methods of Fletcher and Leyffer, it uses the non-negative constraint violation function $h : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$

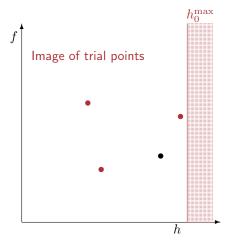
$$h(x) := \begin{cases} \sum_{j \in J} (\max(c_j(x), 0))^2 & \text{if } x \in X, \\ \infty, & \text{otherwise.} \end{cases}$$

At iteration k, points with $h(x)>h_k^{\max}$ are rejected by the algorithm, and $h_k^{\max}\to 0$ as $k\to\infty.$

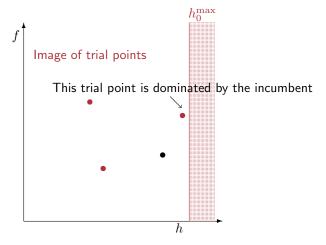
- Extreme barrier (EB)
- Progressive barrier (PB)



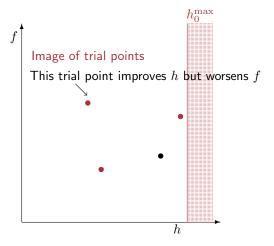
- Extreme barrier (EB)
- Progressive barrier (PB)



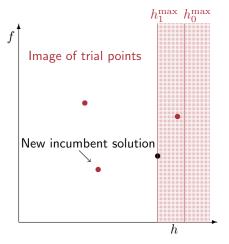
- Extreme barrier (EB)
- Progressive barrier (PB)



- Extreme barrier (EB)
- Progressive barrier (PB)



- Extreme barrier (EB)
- Progressive barrier (PB)

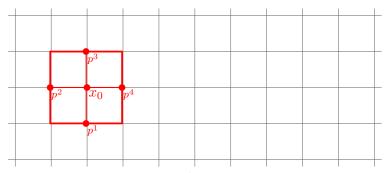


- Extreme barrier (EB)
- Progressive barrier (PB)
- Progressive-to-Extreme Barrier (PEB)

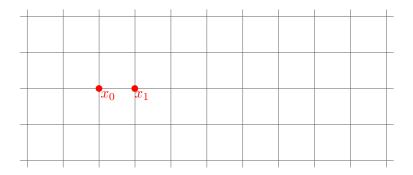
Initially treats a relaxable constraint by the progressive barrier. Then, if polling around the infeasible poll center generates a new infeasible incumbent that satisfies a constraint violated by the poll center, then that constraint moves from being treated by the progressive barrier to the extreme barrier.

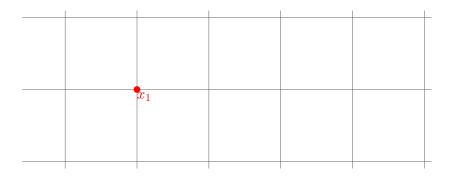
Infeasible starting point

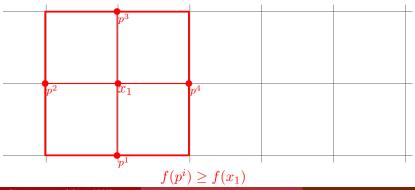
- The progressive and progressive-to-extreme barrier approaches allow initial points that violate the relaxable constraints $c_j(x) \leq 0$.
- A two-phase method can be ran on the relaxable constraints that we want to treat by the extreme barrier approach.
 - The first phase minimizes the constraint violation function subject to $x \in X$, the unrelaxable constraints.
 - Avoids expensive computations of *f*.
 - The first phase terminates as soon as a h = 0, providing an initial point for the second phase.

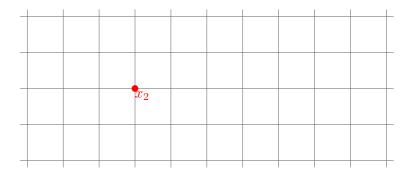


$$f(p^4) < f(x_0)$$

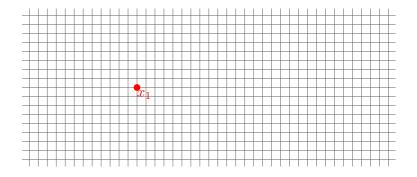




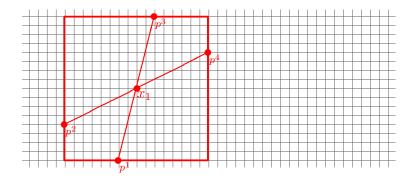




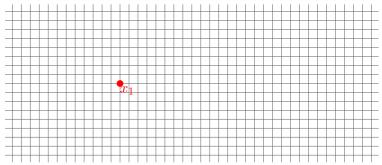
- GPS with coordinate search.
- LTMADS a non-deterministic implementation of MADS. Union of normalized polling directions grows dense in the unit sphere with probability one.



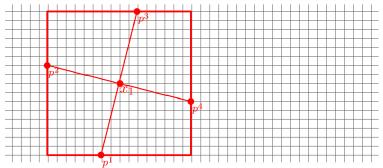
- GPS with coordinate search.
- LTMADS a non-deterministic implementation of MADS. Union of normalized polling directions grows dense in the unit sphere with probability one.



- GPS with coordinate search.
- LTMADS a non-deterministic implementation of MADS. Union of normalized polling directions grows dense in the unit sphere with probability one.
- ORTHOMADS a deterministic implementation of MADS with orthogonal polling directions. Union of normalized polling directions grows dense in the unit sphere.



- GPS with coordinate search.
- LTMADS a non-deterministic implementation of MADS. Union of normalized polling directions grows dense in the unit sphere with probability one.
- ORTHOMADS a deterministic implementation of MADS with orthogonal polling directions. Union of normalized polling directions grows dense in the unit sphere.



Assumptions

- At least one initial point in X is provided
 - but not required to be in $\Omega.$
- All iterates belong to some compact set
 - it is sufficient to assume that level sets of f in X are bounded.

Key to the analysis

- These assumptions ensure that there is a convergent subsequence of poll centers on meshes that get infinitely fine.
- The analysis is divided in two: the limit of feasible poll centers, and the limit of infeasible poll centers.

• If nothing is known about f.

 $f(\bullet) \le f(\times)$

 \Rightarrow Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine,

×××

 \times

 $f(\bullet) \le f(\times)$

• If f is lower semi-continuous near \hat{x} ,

⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_{k} f(x_k)$.

 $f(\bullet) < f(\times)$

- If nothing is known about f.
- If f is lower semi-continuous near \hat{x} ,
- and if f is Lipschitz near \hat{x} ,

- ⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_k f(x_k)$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T^{H}_{\Omega}(\hat{x})$.

 $\hat{x} = \lim x_k \bullet$

 $f(\bullet) < f(\times)$

- If nothing is known about f.
- If f is lower semi-continuous near \hat{x} ,
- and if f is Lipschitz near \hat{x} ,
- and if the hypertangent cone $T^H_\Omega(\hat{x})$ is non-empty,

- ⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_k f(x_k)$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T^{H}_{\Omega}(\hat{x})$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T_{\Omega}^{Cl}(\hat{x})$.

 $f(\bullet) < f(\times)$

- If nothing is known about f.
- If f is lower semi-continuous near \hat{x} ,
- and if f is Lipschitz near \hat{x} ,
- and if the hypertangent cone $T^H_\Omega(\hat{x})$ is non-empty,
- and if f is regular near \hat{x} ,

- ⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_k f(x_k)$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T^{H}_{\Omega}(\hat{x})$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T_{\Omega}^{Cl}(\hat{x})$.
- $\Rightarrow \text{ Then } f'(\hat{x}; v) \geq 0 \text{ for all } v \in T_{\Omega}^{Cl}(\hat{x}).$

 $f(\bullet) < f(\times)$

- If nothing is known about f.
- If f is lower semi-continuous near \hat{x} ,
- and if f is Lipschitz near \hat{x} ,
- and if the hypertangent cone $T^H_\Omega(\hat{x})$ is non-empty,
- and if f is regular near \hat{x} ,
- and if f is strictly differentiable near \hat{x} ,
- ⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_k f(x_k)$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T_{\Omega}^{H}(\hat{x})$.
- $\Rightarrow \text{ Then } f^{\circ}(\hat{x}; v) \geq 0 \text{ for all } v \in T_{\Omega}^{Cl}(\hat{x}).$
- $\Rightarrow \mbox{ Then } f'(\hat{x};v) \geq 0 \mbox{ for all } v \in T^{Cl}_{\Omega}(\hat{x}).$
- $\Rightarrow \text{ Then } \nabla f(\hat{x})^T v \geq 0 \text{ for all } v \in T_\Omega^{Cl}(\hat{x}).$

 $f(\bullet) < f(\times)$

- If nothing is known about f.
- If f is lower semi-continuous near \hat{x} ,
- and if f is Lipschitz near \hat{x} ,
- and if the hypertangent cone $T^H_\Omega(\hat{x})$ is non-empty,
- and if f is regular near \hat{x} ,
- and if f is strictly differentiable near \hat{x} ,
- and if Ω is regular at \hat{x} .
- ⇒ Then \hat{x} is the limit of mesh local optimizers on meshes that get infinitely fine, and $f(\hat{x}) \leq \lim_k f(x_k)$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T_{\Omega}^{H}(\hat{x})$.
- \Rightarrow Then $f^{\circ}(\hat{x}; v) \ge 0$ for all $v \in T_{\Omega}^{Cl}(\hat{x})$.
- $\Rightarrow \mbox{ Then } f'(\hat{x};v) \geq 0 \mbox{ for all } v \in T^{Cl}_{\Omega}(\hat{x}).$
- $\Rightarrow \text{ Then } \nabla f(\hat{x})^T v \geq 0 \text{ for all } v \in T_\Omega^{Cl}(\hat{x}).$
- \Rightarrow Then $\nabla f(\hat{x})^T v \ge 0$ for all $v \in T_{\Omega}^{Co}(\hat{x})$: i.e., \hat{x} is a KKT point.

A similar hierarchical analysis holds for

 $\min_{x\in X} h(x)$

for the infeasible iterates.

A similar hierarchical analysis holds for

 $\min_{x\in X} h(x)$

for the infeasible iterates.

For the case where $\hat{x} \in \Omega$, to analyse

 $\min_{x\in\Omega} f(x),$

we need the constraint qualification:

Suppose that for every $v \in T_{\Omega}^{H}(\hat{x}) \neq \emptyset$, there exists an $\epsilon > 0$ for which $h^{\circ}(x; v) < 0$ for all $x \in X \cap B_{\epsilon}(\hat{x})$ such that h(x) > 0.

Presentation outline

Handling constraints in real problems

- Three types of constraints
- Strategies to deal with constraints
- Three instantiations of mesh adaptive direct searches
- Hierarchical convergence analysis

2 Numerical results on engineering problems

- Three real test problems
- A feasible starting point
- An infeasible starting point
- Multiple runs

Three engineering test problems

- Styrene production simulation JOGO 2008
 - Maximize the net present value while satisfying industrial and environmental regulations.
 - Written by a chemical engineer.
 - Uses some common methods such as Runge-Kutta, Newton, fixed points, secant, bisection, and many other chemical engineering related solvers.
 - 8 bound constrained variables,
 - 4 boolean unrelaxable constraints,
 - 7 relaxable constraints.
 - 14% of trial points violate a hidden constraint.
 - A surrogate is obtained by using greater tolerances and smaller maximum number of iterations in the numerical methods.

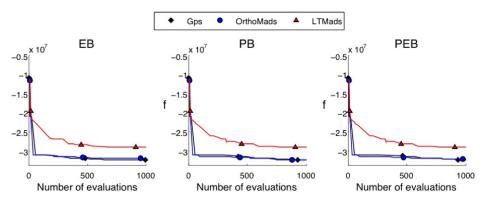
Three engineering test problems

- Styrene production simulation JOGO 2008
- Multidisciplinary design optimization AIAA/ISSMO 2004
 - Mechanical engineering literature.
 - Three coupled disciplines to maximize the aircraft range
 - structure aerodynamics propulsion.
 - Simplified aircraft model, with 10 bound constrained variables under 10 relaxable constraints.
 - Fixed point iterations through the different disciplines.
 - Surrogate consists in stopping the simulation at a larger relative error and a smaller limit on the number of fixed point iterations.

Three engineering test problems

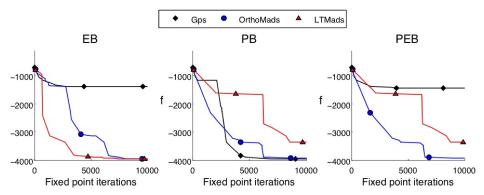
- Styrene production simulation JOGO 2008
- Multidisciplinary design optimization AIAA/ISSMO 2004
- Well positioning community problem Adv. Water Resources 2008
 - Fowler, Kelley and 13 others.
 - Minimize the cost to prevent an initial contaminant plume from spreading by using wells to control the direction and extent of advective fluid flow.
 - Requires running a Fortran solver to simulate groundwater flow.
 - Six wells and nonlinear head constraints.
 - Replace a linear constraint by an equality to eliminate the pumping rate of the sixth well as an explicit variable.
 - 17 bound constrained variables: locations and pumping rates 12 relaxable non-linear constraints on the allowable head.

Styrene problem from a feasible starting point



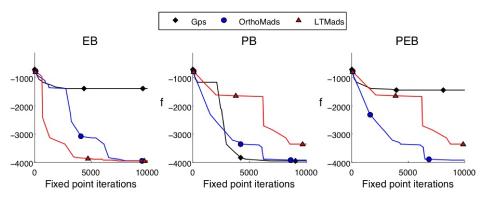
- $\bullet~\mathrm{GPS}$ and $\mathrm{ORTHOMADS}$ perform better than $\mathrm{LTMADS}.$
- Treatment of constraints has no significant effect because initial point is feasible.

MDO problem from a feasible starting point



Remark: The horizontal axis is the number of fixed points iterations of the truth and surrogate. 10000 corresponds to about 650 evaluations of f.

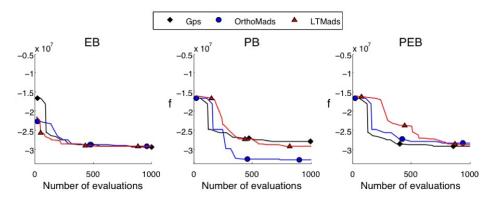
MDO problem from a feasible starting point



- ORTHOMADS performs well in all 3 cases.
- GPS gets stuck at a local solution.
- PB allows all three algorithms to escape the local solution at $f\approx -1500.$

This is where things get interesting...

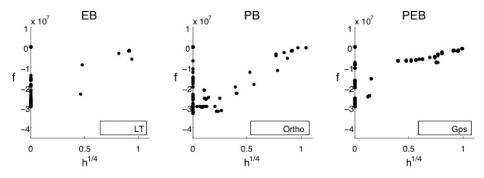
Styrene problem from an infeasible starting point



- Feasibility is reached rapidly.
- Only ORTHOMADS PB escapes from a local solution.

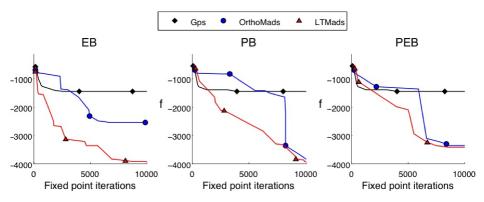
Styrene problem from an infeasible starting point

Plots of the objective function value versus the constraint violation.



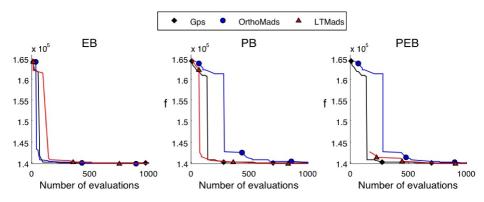
- Feasible solutions are where h = 0.
- PB finds a way to move across the infeasible region to a better solution.
- PEB moves across the infeasible region, but switches to EB.

MDO problem from an infeasible starting point



- GPS gets stuck at a local solution with the three approaches.
- \bullet PB allows the $\rm MADS$ instances to approach the best known solution.

WELL problem from an infeasible starting point



- It took a long time for LTMADS-PEB to reach feasibility, but it did at a very good solution.
- All approaches reach the same solution.

Multiple runs

Problem	EB		PB		PEB	
 Method 	worst	best	worst	best	worst	best
	(out of 60 runs)		(out of 90 runs)		(out of 90 runs)	
Styrene	$\times 10^7$					
• LT	-2.89	-3.31	-2.60	-3.36	-2.60	-3.35
• Ortho	-2.88	-3.31	-2.64	-3.32	-2.64	-3.32
MDO						
• LT	Ø	-3964.1	Ø	-3963.6	Ø	-3962.9
• Ortho	Ø	-3964.0	Ø	-3963.6	Ø	-3964.1
Well	$\times 10^5$					
• LT	1.402	1.399	1.403	1.399	1.403	1.399
• Ortho	1.602	1.399	1.602	1.399	1.602	1.399

- \emptyset indicates that no feasible solution was found.
- Little difference in the best solutions (though there is some).
 - $\bullet~{\rm ORTHOMADS}$ found a better solution than ${\rm LTMADS}$ only once.
 - $\bullet~{\rm LTMADS}$ found a better solution than ${\rm ORTHOMADS}$ 3 times.
- Strategies are comparable in a worst case scenario.

- We have tested
 - $\bullet\,$ three algorithms $\rm GPs,\,LTMADs$ and $\rm ORTHOMADs,\,$
 - using three strategies to handle the constraints EB, PB and PEB,
 - on three real test problems Styrene, MDO and Well.

- We have tested
 - \bullet three algorithms $\operatorname{GPS},$ LTMADS and $\operatorname{ORTHOMADS},$
 - using three strategies to handle the constraints EB, PB and PEB,
 - on three real test problems Styrene, MDO and Well.
- The main differences show up with an infeasible initial point.
 - The progressive barrier gives the best results, as it moves across the infeasible region, while trying to retain good values of *f*.

- We have tested
 - \bullet three algorithms GPS , LTMADS and $\operatorname{ORTHOMADS}$,
 - using three strategies to handle the constraints EB, PB and PEB,
 - on three real test problems Styrene, MDO and Well.
- The main differences show up with an infeasible initial point.
 - The progressive barrier gives the best results, as it moves across the infeasible region, while trying to retain good values of *f*.
- For a single run, ORTHOMADS gave the best results. It is less sensitive to randomness than LTMADS.
- In a multi-start framework, this sensitivity turns into an advantage for LTMADS (however, for these types of problems, we cannot usually afford multi-starts).
- www.gerad.ca/nomad