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Sébastien Le Digabel, École Polytechnique de Montréal
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Blackbox optimization problems

My main research interest is nonsmooth optimization:

minimize f(x)
subject to x ∈ Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn,

where

f, cj : X → R ∪ {∞} for all j ∈ J = {1, 2, . . . ,m},
X is a subset of Rn,

evaluation of the functions are usually the result of a computer
code (a black box) – costly to evaluate.
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Three types of constraints

The domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

Unrelaxable constraints define X

Cannot be violated by any trial point.
For example, logical conditions on the variables indicating if the
simulation may be launched.
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Three types of constraints

The domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

Unrelaxable constraints define X

Relaxable constraints cj(x) ≤ 0
Can be violated, and cj(x) provides a measure of how much the
constraint is violated. A budget for example.
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Three types of constraints

The domain: Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn

Unrelaxable constraints define X

Relaxable constraints cj(x) ≤ 0
Hidden constraints

Is a convenient term to exclude the set of points in the feasible
region for the relaxable or unrelaxable constraints at which the
black box fails to return a value for one of the problem functions.
A typical example is when the simulation crashes unexpectedly.
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Three strategies to deal with constraints

Extreme barrier (EB)

Treats the problem as being unconstrained,
by replacing the objective function f(x) by

fΩ(x) :=
{
f(x) if x ∈ Ω,
∞ otherwise.

The problem
min
x∈Rn

fΩ(x)

is then solved.
Remark : If x 6∈ X (the non-relaxable constraints), then the
costly evaluation of f(x) is not performed.
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Three strategies to deal with constraints

Extreme barrier (EB)

Progressive barrier (PB)

Defined for the relaxable constraints.
As in the filter methods of Fletcher and Leyffer, it uses the
non-negative constraint violation function h : Rn → R ∪ {∞}

h(x) :=


∑
j∈J

(max(cj(x), 0))2 if x ∈ X,

∞, otherwise.

At iteration k, points with h(x) > hmax
k are rejected by the

algorithm, and hmax
k → 0 as k →∞.
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Progressive barrier (PB)
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Three strategies to deal with constraints

Extreme barrier (EB)

Progressive barrier (PB)
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Three strategies to deal with constraints

Extreme barrier (EB)

Progressive barrier (PB)
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Three strategies to deal with constraints

Extreme barrier (EB)

Progressive barrier (PB)

Progressive-to-Extreme Barrier (PEB)

Initially treats a relaxable constraint by the progressive barrier.
Then, if polling around the infeasible poll center generates a new
infeasible incumbent that satisfies a constraint violated by the
poll center, then that constraint moves from being treated by the
progressive barrier to the extreme barrier.
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Infeasible starting point

The progressive and progressive-to-extreme barrier approaches
allow initial points that violate the relaxable constraints
cj(x) ≤ 0.

A two-phase method can be ran on the relaxable constraints
that we want to treat by the extreme barrier approach.

The first phase minimizes the constraint violation function
subject to x ∈ X, the unrelaxable constraints.
Avoids expensive computations of f .
The first phase terminates as soon as a h = 0, providing an initial
point for the second phase.
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Three instantiations of mesh adaptive direct searches

Gps with coordinate search.

t
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Three instantiations of mesh adaptive direct searches

Gps with coordinate search.
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Three instantiations of mesh adaptive direct searches

Gps with coordinate search.

LTMads a non-deterministic implementation of Mads.
Union of normalized polling directions grows dense in the unit
sphere with probability one.
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Three instantiations of mesh adaptive direct searches

Gps with coordinate search.

LTMads a non-deterministic implementation of Mads.
Union of normalized polling directions grows dense in the unit
sphere with probability one.

OrthoMads a deterministic implementation of Mads with
orthogonal polling directions. Union of normalized polling
directions grows dense in the unit sphere.

t
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Convergence analysis of Mads

Assumptions

At least one initial point in X is provided
– but not required to be in Ω.

All iterates belong to some compact set
– it is sufficient to assume that level sets of f in X are bounded.

Key to the analysis

These assumptions ensure that there is a convergent
subsequence of poll centers on meshes that get infinitely fine.

The analysis is divided in two: the limit of feasible poll centers,
and the limit of infeasible poll centers.
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Hierarchical convergence analysis - feasible iterates

f(•) ≤ f(×)
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If nothing is known about f .

⇒ Then x̂ is the limit of mesh local optimizers on meshes
that get infinitely fine,
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and if f is Lipschitz near x̂,

and if the hypertangent cone THΩ (x̂) is non-empty,

and if f is regular near x̂,
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Hierarchical convergence analysis - feasible iterates
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If nothing is known about f .

If f is lower semi-continuous near x̂,

and if f is Lipschitz near x̂,

and if the hypertangent cone THΩ (x̂) is non-empty,

and if f is regular near x̂,

and if f is strictly differentiable near x̂,

and if Ω is regular at x̂.

⇒ Then x̂ is the limit of mesh local optimizers on meshes
that get infinitely fine, and f(x̂) ≤ limk f(xk).

⇒ Then f◦(x̂; v) ≥ 0 for all v ∈ THΩ (x̂).

⇒ Then f◦(x̂; v) ≥ 0 for all v ∈ TClΩ (x̂).

⇒ Then f ′(x̂; v) ≥ 0 for all v ∈ TClΩ (x̂).

⇒ Then ∇f(x̂)T v ≥ 0 for all v ∈ TClΩ (x̂).

⇒ Then ∇f(x̂)T v ≥ 0 for all v ∈ TCoΩ (x̂): i.e., x̂ is a KKT point.
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Hierarchical convergence analysis - infeasible iterates

A similar hierarchical analysis holds for

min
x∈X

h(x)

for the infeasible iterates.

For the case where x̂ ∈ Ω, to analyse

min
x∈Ω

f(x),

we need the constraint qualification:

Suppose that for every v ∈ THΩ (x̂) 6= ∅, there exists an ε > 0
for which h◦(x; v) < 0 for all x ∈ X ∩Bε(x̂) such that
h(x) > 0.
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Three engineering test problems

Styrene production simulation JOGO 2008

Maximize the net present value while satisfying industrial and
environmental regulations.
Written by a chemical engineer.
Uses some common methods such as Runge-Kutta, Newton, fixed
points, secant, bisection, and many other chemical engineering
related solvers.
8 bound constrained variables,
4 boolean unrelaxable constraints,
7 relaxable constraints.
14% of trial points violate a hidden constraint.
A surrogate is obtained by using greater tolerances and smaller
maximum number of iterations in the numerical methods.
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Three engineering test problems

Styrene production simulation JOGO 2008

Multidisciplinary design optimization AIAA/ISSMO 2004

Mechanical engineering literature.
Three coupled disciplines to maximize the aircraft range
– structure – aerodynamics – propulsion.
Simplified aircraft model, with 10 bound constrained variables
under 10 relaxable constraints.
Fixed point iterations through the different disciplines.
Surrogate consists in stopping the simulation at a larger relative
error and a smaller limit on the number of fixed point iterations.
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Three engineering test problems

Styrene production simulation JOGO 2008

Multidisciplinary design optimization AIAA/ISSMO 2004

Well positioning community problem Adv. Water Resources 2008

Fowler, Kelley and 13 others.
Minimize the cost to prevent an initial contaminant plume from
spreading by using wells to control the direction and extent of
advective fluid flow.
Requires running a Fortran solver to simulate groundwater flow.
Six wells and nonlinear head constraints.
Replace a linear constraint by an equality to eliminate the
pumping rate of the sixth well as an explicit variable.
17 bound constrained variables: locations and pumping rates
12 relaxable non-linear constraints on the allowable head.
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Styrene problem from a feasible starting point

Gps and OrthoMads perform better than LTMads.

Treatment of constraints has no significant effect
because initial point is feasible.
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MDO problem from a feasible starting point

Remark: The horizontal axis is the number of fixed points iterations
of the truth and surrogate. 10000 corresponds to about 650
evaluations of f .
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MDO problem from a feasible starting point

OrthoMads performs well in all 3 cases.

Gps gets stuck at a local solution.

PB allows all three algorithms to escape the local solution at
f ≈ −1500.
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An infeasible starting point

This is where things get interesting...
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Styrene problem from an infeasible starting point

Feasibility is reached rapidly.

Only OrthoMads PB escapes from a local solution.

Charles Audet (ISMP 2009) Numerical results on engineering problems 17 / 22



Styrene problem from an infeasible starting point

Plots of the objective function value versus the constraint violation.

Feasible solutions are where h = 0.

PB finds a way to move across the infeasible region to a better
solution.

PEB moves across the infeasible region, but switches to EB.
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MDO problem from an infeasible starting point

Gps gets stuck at a local solution with the three approaches.

PB allows the Mads instances to approach the best known
solution.
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WELL problem from an infeasible starting point

It took a long time for LTMads-PEB to reach feasibility, but it
did at a very good solution.

All approaches reach the same solution.
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Multiple runs

Problem EB PB PEB
• Method worst best worst best worst best

(out of 60 runs) (out of 90 runs) (out of 90 runs)

Styrene ×107

• Lt -2.89 -3.31 -2.60 -3.36 -2.60 -3.35
• Ortho -2.88 -3.31 -2.64 -3.32 -2.64 -3.32

MDO
• Lt ∅ -3964.1 ∅ -3963.6 ∅ -3962.9
• Ortho ∅ -3964.0 ∅ -3963.6 ∅ -3964.1

Well ×105

• Lt 1.402 1.399 1.403 1.399 1.403 1.399
• Ortho 1.602 1.399 1.602 1.399 1.602 1.399

∅ indicates that no feasible solution was found.

Little difference in the best solutions (though there is some).

OrthoMads found a better solution than LTMads only once.
LTMads found a better solution than OrthoMads 3 times.

Strategies are comparable in a worst case scenario.
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Discussion

We have tested

three algorithms Gps, LTMads and OrthoMads,
using three strategies to handle the constraints EB, PB and PEB,
on three real test problems Styrene, MDO and Well.

The main differences show up with an infeasible initial point.

The progressive barrier gives the best results, as it moves across
the infeasible region, while trying to retain good values of f .

For a single run, OrthoMads gave the best results.
It is less sensitive to randomness than LTMads.

In a multi-start framework, this sensitivity turns into an
advantage for LTMads (however, for these types of problems,
we cannot usually afford multi-starts).

www.gerad.ca/nomad
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