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Abstract 

Automotive Engine Manufacturers are under pressure to provide engines that meet tougher emissions regulations and increased customer expectations for durability, noise, performance and low fuel consumption. To meet these demands, the number of parameters for the Engine Control Unit is constantly increasing.

Control-unit calibration for modern internal combustion engines is currently facing a conflict caused by the additional effort needed to calibrate increasingly complex engine data with a growing number of parameters, together with extremely ambitious objectives regarding the period of time and the resources needed for calibration. 

The first step to master these requirements is to develop Automatic test procedures at Engine Test Benches. 
A further step is to integrate optimization technology into the Automatic Test Environment in order to save more testing time . That is the so-called "Online Optimization" at engine test bench. 
The Optimization methods used have to cope with the strong economical limitations. The testing time i.e.  the number of measurements performed should be minimized. Robustness to measurement noise or failure as well as to the test procedure is also essential. Moreover these methods have to be flexible enough to integrate Expert Knowledge. 
The method investigated at Siemens VDO Automotive is based on the Generalized Pattern Search (GPS) with the use of Surrogates in the Search Step. 

We present here the characteristics of the optimization problem with its practical environment and the implementation of the GPS to solve it. 

We will illustrate our topic with the example of the Diesel Full Load Optimization.

Keywords :  Optimal Automatic Engine Calibration at Engine Test Bench. Online Optimization. Surrogate-based optimization. Generalized Pattern Search.
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Introduction

1.1 Context. History

Automotive Engine Manufacturers are under pressure to provide engines that meet tougher emissions regulations and increased customer expectations for durability, noise, performance and low fuel consumption. To meet these demands, the system architecture of the engine management system (EMS) has become more and more complex. (See Figure 1 - example of EMS for a Gasoline Engine) Current engines are using variable valve timing, EGR (internal or external), multiple injections, turbocharger controls as well as advanced control strategies to achieve these demands. 

[image: image2.jpg]



Figure 1. System Architecture of an EMS, GDI

Ongoing development of electronic engine management systems goes together with upgoing numbers of parameters applied to optimize combustion engines. 

This parameters are saved in the Engine Control Unit (ECU) and called "engine calibrations".

See Figure 2, for a picture of the evolution of engine calibrations.
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Figure 2. Evolution  of ECU calibration quantity

Consequently there is an exponential rise in the expenditure of resources for engine tuning due to the increase in the number of variables ("calibrations"), the complexity of the system and the stringency of the objectives.
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Figure 3. Example of Engine Calibration Optimization : 
Variables (in) and Objectives/Constraints (out)

See Figure 3 to have a picture of possible Optimization Problem for Engine Calibration in terms of variables and objectives.

Moreover these best calibrations have to be found in a minimal time and with the lowest possible cost due to economical reasons.

Accordingly the methods applied to engine tuning have evolved with the calibration task complexity. At the beginning the calibration engineer could find out the best parameters manually. Now it has become almost impossible without mathematics-based tools.
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Figure 4. Main Steps in Engine Calibration Methods

A big improvement in the calibration process came with the use of engine test bench facilities to collect engine data. Now the test procedure can be run automatically also over night thanks to the Automation System (AuSy). 

An upper level system may pilot the AuSy for more complicated test procedure ; it is the Automatic Calibration System (ACS).

The goal of the test engineers is then to improve the test procedure in order to reduce the engine calibration time. It consists mainly in integrating expert-knowledge and optimization technology.  (See Figure 5).
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Figure 5. Automation Levels at ETB 

1.2 Offline Optimization vs. Online Optimization

We can distinguish two approaches to handle the calibration task at engine test bench (see Figure 6):

· The first one is called offline optimization. Principally it decouples the data collection at the engine test bench from the optimization itself. The data collected at ETB are used to build some models which are then optimized with an optimization algorithm. The calculated optimum is then validated at the ETB. The simplest Approach is to run Full Factorial Designs. Maybe the most commonly applied offline optimization is based on Response Surface Methodology using Design of Experiments (DOE) techniques. 

For a detailed description of such an approach you can refer to [Mitterer and al., 2000].

· The second one called online optimization is an iterative method that exploits at each iteration current gained information to define the next measuring point. The ETB works like a system and each measurement cycle corresponds to a system evaluation. There is no special validation step as the algorithm used will stop according to a convergence criterion.
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Figure 6. Offline vs. Online Optimization

The advantage of online optimization is that all measurements are done considering the optimization purpose. Whereas offline optimization approach generally performs measurements with no optimization sake and hence may lands in uninteresting areas which makes unnecessary expenses.

As stated in [Booker and al., 1999] :

"The standard practice [(=offline optimization)] is a one-shot approach: except for the final validation of [the surrogate optimum], all of the function optimization are performed at sites selected by experimental design criteria with no concern for optimization per se."

2 The Engine Calibration Optimization Problem (COP)

2.1 Characteristics of the Calibration Optimization Problem (COP)

We can sum up some general characteristics of the Engine Calibration Optimization Problem at Test Bench. These are:

· black-box : - no (exact) derivative information, - non-linear 

· multi-parameter

· global 

· "nasty": 

· expensive (1 ETB hour costs 110€)

· unavailable function evaluation (devices may be defective; engine may stop for safety reasons) 

· noisy : measurement noise 

· constrained : limits : e.g. knock, emissions, driveability... 

· multi-objective: e.g. trade-off between performance, consumption and emissions. 

Function evaluation is problematic for two reasons : on one hand because it is expensive and on the other hand because it might not be available, for instance in case when an engine limit is violated.
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Figure 7. The Engine Test Bench: a Black-box

Information on the system can only be gained by performing a measurement (system evaluation) and is therefore "input/output"-like. There is no analytic formula or generic physical model that describes the individual behavior of a particular engine.

The Engine Test Bench is the Real System we want to optimize and so it is the objective and constraints functions itself.

2.2 Example : Diesel Full Load Optimization

We introduce here the COP we will take as example in the rest of the paper.

It is for a Diesel Engine working at Full Load.

Variables, Objective and Constraints are summarized in Table 1.

The goal here is to maximize the performance (Torque) under some constraints (Temperature, Smoke, Cylinder Pressure) by varying a few parameters (Injection quantity, injection timing, rail pressure).

Variables
Rail Pressure, Injection Fuel Mass (main and pre), Injection Phase (main and pre), Manifold Pressure
from 3 to 6 variables

Objective
Torque


Constraints
Exhaust Temperature, Smoke. Maximal Cylinder Pressure
3

Table 1. The Full Load Optimization Problem for Diesel Engine

All the plots in the following comes from this COP with the 3 main variables (FUP, MF_MAIN, SOI_MAIN). See Appendix A for the Nomenclature.

2.3 Which algorithm ?

The characteristics of the engine calibration optimization problem limit the method that can be applied to solve it. Because of the black-box aspect and the measurement noise gradient-based methods can hardly be used. We use therefore a direct-search method. 

Because of the economical cost and the required robustness surrogate-based methods are well adapted. Moreover we need a flexible algorithm that allows the engineer to integrate special search strategy.

At Siemens VDO we chose the Generalized Pattern Search (GPS) by Dennis-Audet-Abramson. In the next we refer to this algorithm shortly by GPS. For a short literature overview of this algorithm you can refer to M. Abramson's Thesis ([Abramson 2002]), Section 2.3.

The main features of the algorithm we use are:

· filter for constrained optimization (this avoid any penalty parameter tuning - see [Audet-Dennis, 2000])

· flexible User Search Step, Heuristic, use of Surrogates

· POLL with derivative to integrate qualitative knowledge

· closed constraints (() vs. open constraints

In Engine Calibration Optimization we often have two kinds of constraints: closed ones which are hard limits that can not be exceeded, for example because it will damage the engine and open ones mainly for the optimization purpose, that can be exceeded, for example smoke emissions. 

See Figure 8, for a short description of the algorithm.

As stated in [Abramson 2002],  Section 2.3. p.26: "A key point to the Audet-Dennis GPS algorithms is that they explicitly separate out a search step from the main poll step within the iteration, in which any finite search strategy (including none) on the mesh may be employed, without adversely affecting the convergence theory. This flexibility lends itself quite easily to hybrid algorithms and enables the user to apply specialized knowledge of the problem." 

You will see in section 3.5 and 3.6 how we use this flexibility.

The use of qualitative knowledge as rough derivative information is illustrated in section  3.6.2.
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Figure 8. The GPS Algorithm (source [Audet-Dennis, Slides])

In the next section we present the implementation of this algorithm for our application to the Automatic Engine Calibration at Test Bench.

3 The Online Optimizer (OO)

3.1 Optimization kernel: NOMADm

For interfacing reasons (with the AuSy or ACS) and also for coding convenience we code the Online Optimizer under Matlab(. There is a public code of the GPS under Matlab( called NOMADm (see Figure 9). Its author, Mark Abramson, coded it during his recent Ph. D. Thesis on the GPS (achieved in August 2002). Special focus of the thesis deals with Mixed Variable Problems and the use of Derivative Information.  For our application we don't use the Mixed Variable Feature but we use expert knowledge as rough derivative information to speed up the convergence (See section 3.6.2).

See the link in Appendix C at the end of the document for precise information on the software. You will see in the next that this Toolbox has a great potential. The source code is very-well structured and it allows specific user implementation, specially for the User defined Search Step.



Figure 9. The NOMADm Toolbox

3.2 Implementation

The OO Toolbox makes the interface between the Optimization Kernel (NOMADm) and the Test Procedure. It allows the parameterization of the test as well as the analysis of the results. See Figure 10. 
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Figure 10. The Online Optimizer - Snapshot

Interface with the Test Bench has also to be coded into the Automation System. See Figure 11, for an overview of the component architecture.
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Figure 11. Component Architecture

3.3 Design Tree
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Figure 12. Design Tree of the Online Optimizer 

Acronyms are defined in the Appendix A.

In the next we go into more details for each sleeve.

3.4 Calibration Optimization Problem

The parameterization of the Optimization Problem can be done via an User Interface. (See Figure 13) It defines the exchange variables with the Test Bench as well as the Optimization Parameters like the Limit Values and so on.
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Figure 13. COP. Edit Constraints

3.5 Surrogates 

3.5.1 Model Framework

 The Model Framework (MF) is a framework for implementing models under Matlab in a generic way. It is coded using object-oriented programming and therefore offers modularity and re-usability.

Methods implemented for each model object are for example : evaluate, calibrate, plot, edit etc.

We currently implemented in the Model Framework Response Surfaces Models (Quadratic Models with possibly partial terms), DACE Models and Fast Neural Network Models like LOLIMOT.

For the DACE Models we use the DACE Toolbox from the DTU (See Link in Appendix C.). DACE Models are useful when we do not have much information on the system like its order. They are well appropriated for black-box modeling. See for example the Toolbox documentation for a detailed description.
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Figure 14. Plot of DACE Surrogate

3.5.2 Surrogate Optimization Problem

The surrogate optimization problem (SOP) is a kind of mirror of the COP.

The SOP is based on the Model Framework. Each responses are modeled by a special type of model object. (See Figure 15)

A Solver is implemented (whose cost is not important) to predict the current SOP optimum as next possible measuring point. The functions called by the Solver (objective and constraints) at each iteration are also defined generally based on the definition of the SOP.
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Figure 15. SOP Parametrization

3.5.3 Surrogate Management Framework

We currently use a simple Surrogate Management. The surrogate is built as soon as enough points have been measured. It is then re-calibrated at each iteration in the SEARCH step then the SOP is optimized and the surrogate optimum is evaluated if it is not too close from a previous point.

A mesher has been implemented as well but its practical efficiency has not been proved.

We have not implemented yet some global strategy that would consider the distribution of the measured points. (See for example [Booker and al., 1999] ). It is planned in future development. Also to implement some adaptive DOE features.

3.6 Expert Knowledge

The flexible parts where expert knowledge can be integrated into the procedure are:

· Initialization (when engine limits are known)

· Surrogates (when response behavior is known: e.g. physical model or quadratic, etc.)

· User-defined Search Strategy (the main open part, see below 3.6.1)

· Poll with Rough Derivative Information for Qualitative Knowledge (see example below 3.6.2)

3.6.1 Heuristic User SEARCH Step

In the SEARCH Step we can implement some Intelligent Measurement Strategies. These Strategies can of course be combined with a Surrogate Search. For example if the surrogate predicted point hits at the Bench a limit (which was not violated with the SOP), we can use a Line Search Strategy to approach the physical limit.

An other example is when for instance we know a limit has a monotonous behavior. Here we can implement a strategy to adapt the closed constraints (() iteratively each time this limit is violated in order to avoid other measurements over the limit. 

3.6.2 Use of rough derivative information to speed up the algorithm.

In practice, we partly know the main trend of the effects of the variables on the responses. We can write the effect Matrix as in Table 2, with +,- and 0 when the trend is not known or not mainly monotonous. 
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Table 2 Example: Effect Matrix for the DS Full Load COP with 4 variables

The algorithm can exploit any available derivative information (or rough approximation thereof) to speed convergence. If the gradient pruned POLL failed then a standard POLL is performed. By integrating qualitative knowledge as derivative information we prioritize the directions in which the algorithm will do a POLL and if your information is not accurate it doesn't matter as the algorithm will then go back to the standard POLL. It is illustrated in the section below.

4 Example

In this section we present some results realized with the Diesel Full Load COP with 3 variables: main injection timing and quantity and rail pressure. (See Table 1.)

The Legend for Variable Space Plots is:

In black there are the points proposed by the surrogate. In orange it is the initial points. In red it is the final optimum.

We made different tests from 2 different points. From the first one (A) the algorithm relatively easily converge to the solution even without any SEARCH Strategy or use of derivative information, whereas from the second one (B) it has much more troubles to find the optimum without a special strategy.

4.1 Start from a "Good" Initial Point.

We start here from point A = [23;13.1;135]. The optimum is located nearly at [33;12;150].

4.1.1 General Results

POLL
SEARCH
# of Measurements

(FunEval)

std
(
25

grad
(
20

std
RS
19

grad
RS
15

Table 3. Results starting from A (extract)

The use of the rough derivative information speed up the convergence. The activation of Surrogates in the SEARCH step as well. 

4.1.2 Plots
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Left run without special strategy.
Right Run with Der. Information and RS Surrogate.
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Figure 16. Variable Space Plot: RS + derivative information from Point A
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Figure 17. Performance Plot. From Point A with RS Surrogates and Derivative Info   

The surrogate used is a quadratic model. It is active at the beginning. It is no more evaluated when the surrogate optimum at the current iteration is to close from a previous iterate. Along the process the surrogate get more points and has a better prediction. The initial point A is not too far from the optimum and starting strategy from a DOE is in this case not useful. 

We see on the Variable Space Plots how the Surrogates and the Derivative Information help the algorithm to converge faster.

4.2 Start from a Less Favorable Initial Point

4.2.1 General Results

From Initial Point B=[26;-10;100] convergence is achieved with much more measurements than from the initial point of previous section. (A=[23;13.1;135]). Without any SEARCH Step it needs to converge to the optimum 41 measurements without derivative information and 26 with derivative information.

INI
POLL
SEARCH
# of Measurements

(FunEval)

(
std
(
41

(
grad
(
26

DOE
std
RS
25

DOE
grad
RS
21

DOE
std
DACE2
25

DOE
grad
DACE2
21

(
std
RS
43

(
grad
RS
32

(
std
DACE2
35

(
grad
DACE2
29

Table 4. Results starting from B (extract)

Generally the use of Surrogates with DOE and of Derivative Information helps the algorithm to converge faster. Between the run without any special strategy and a run using Surrogates (with DOE) and Derivative Information we save 41-21=20 measurements which is around 50%.

Curiously if we use Surrogates without an initial DOE the algorithm takes longer. It is because the points with which the Surrogates are built are not well distributed and representative. That's why in this case the Surrogate prediction is poor.

4.2.2 Plots

4.2.2.1 Plot from point B, standard strategy, without Surrogate and Der. Info
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Figure 18. Variable Space Plot.  Start from Point B

The algorithm has more troubles to converge to the optimum than from point A. 

4.2.2.2 Surrogates with DOE, without Derivative Information

With the Surrogates we start from a DOE with central point B. (Box-Behnken: 13 points)
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Figure 19. Performance Plot. Starting from Point B with DOE and DACE2 Surrogates 

The performance curve is typical from a Search Strategy combining Surrogates and initial design. After the initial points the surrogate oracle improves strongly the objective function. It comes then a "plateau" phase to validate it.
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Figure 20. Variable Space Plot. DACE2  + DOE

4.2.2.3 Plots with Surrogate, DOE and Derivative Information
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Figure 21. Performance Plot. DOE+DACE2+Der. Info
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Figure 22. Variable Space Plot. DACE2+DOE+Der. Info

The use of Derivative Information brings a saving of 25-21=4 Function Evaluations or Measured Points. We see how it reduce the validation phase (POLL Step).

5 Conclusion

We presented here the method we use at Siemens VDO for engine automatic calibration at Test Bench. It is based on the Abramson-Audet-Dennis Generalized Pattern Search algorithm. It uses Surrogates in the SEARCH Step and rough derivative information in the POLL Step to accelerate the convergence.

The efficiency of the Tool should increase with the Problem complexity.

With the number of Variables the complexity grows exponentially and the gain brought by the online approach should be accordingly bigger.

The Online Optimizer will be now tested with more and more complicated problems. First on the Diesel Full Load Problem with the Turbo and then with the Pre-injection (6 variables). There are other problems with more than 10 variables waiting at the door.

Future development will deal with implementing a global SMF and Heuristics like a Line Search Limit Approach.

A Abbreviations

ACS
Automatic Calibration System

AuSy
Automation System

BB
Box-Behnken

COP
Calibration Optimization Problem

DACE2
DACE Model with 2nd order Regression Function

der.
derivative

DOE
Design of Experiment

DS
Diesel

DTU
Technical University of Denmark

ECU
Engine Control Unit

EGR
Exhaust Gas Recirculation

EMS
Engine Management System

ETB
Engine Test Bench

FL
Full Load

FNN
Fast Neural Network

GDI
Gasoline Direct-Injection (Engine)

GPS
Generalized Pattern Search

grad
gradient

MF
Model Framework

NOMAD
Nonlinear Optimization for Mixed variables And with Derivatives.

OO
Online Optimizer

resp.
response

RS
Response Surface

SMF
Surrogate Management Framework

SOP
Surrogate Optimization Problem

std
standard

var.
variable

Engine Nomenclature

FUP
Fuel Pressure (MPa)

M
Torque (Nm)

MF
Fuel Mass (mg/stk)

PMAX
Maximum Cylinder Pressure (bar)

SMO
Smoke (FSN)

SOI
Start of Injection (°CRK)

T_EXH
Exhaust Temperature (°C)
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The initial DOE is between the box values:
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