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Abstract

This note deals with the job insertion problem in job-shop scheduling: Given a feasible sched-
ule of n jobs and a new job which is not scheduled, the problem is to 3nd a feasible insertion
of the new job into the schedule which minimises the makespan. Since the problem is NP-hard,
a relaxation method is proposed to compute a strong lower bound. Conditions under which the
relaxation provides us with the makespan of the optimal insertion are derived. After the analysis
of the polytope of feasible insertions, a polynomial time procedure is proposed to solve the re-
laxed problem. Our results are based on the theory of perfect graphs and elements of polyhedral
theory.
? 2003 Elsevier Science B.V. All rights reserved.
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1. The job insertion problem

The job-shop scheduling problem is one of the most basic models in schedul-
ing theory [8]. An instance of the problem is speci3ed by a set of m machines
{M1; M2; : : : ; Mm} and a set of n jobs {J1; J2; : : : ; Jn}. Each job Jj is a sequence of
nj operations, Jj = (oj;1; oj;2; : : : ; oj;nj). Each operation oj;k has to be processed on a
pre-speci3ed machine 
j;k uninterruptedly for dj;k time units. We assume that distinct
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Table 1
An example for a speci3cation of 3+1 jobs

Jobs Operation sequence

J1 (M1; 2) → (M2; 1) → (M3; 1)
J2 (M3; 2) → (M2; 1) → (M1; 1)
J3 (M3; 2) → (M2; 1) → (M1; 2)
J4 (M1; 1) → (M2; 2) → (M3; 1)

operations of the same job require diJerent machines. A feasible schedule � speci3es
the starting time of each operation while respecting the following constraints:

• �(oj;k) + dj;k6 �(oj;k+1) for all Jj and 16 k6 nj − 1.
• for any two operations oj;k and oj′ ; k′ with 
j;k=
j′ ; k′ either �(oj;k)+dj;k6 �(oj′ ; k′)

or �(oj′ ; k′) + dj′ ; k′ 6 �(oj;k).

The makespan C(�) of some feasible schedule � is the completion time of the job
last 3nished, i.e., C(�) = max{�(oj;nj) + dj;nj | 16 j6 n}. The job-shop scheduling
problem aims at 3nding a feasible schedule that minimises the makespan.
In this paper we will study the job insertion problem of job-shop scheduling: We

are given n + 1 jobs, J1; : : : ; Jn; Jn+1; m machines, and a feasible schedule � of the
3rst n jobs. A feasible insertion of Jn+1 into � inserts simultaneously all operations of
Jn+1 into the sequences of operations on the machines required, such that the result
is a feasible schedule. The makespan of a feasible insertion is the makespan of the
resulting schedule. The insertion problem consists in 3nding a feasible insertion of Jn+1

into � with minimum makespan.

Example. We use the following problem to illustrate concepts and algorithms through-
out the paper. Table 1 speci3es 3 + 1 jobs. A job is a sequence of operations, where
each operation is a pair consisting of a machine identi3er and a processing time. A
schedule of the 3rst three jobs is depicted in Fig. 1(a), whereas Fig. 1(b) shows a
possible insertion of J4 into the schedule.

It can be shown that the job insertion problem is binary NP-hard even if the new
job is to be inserted into the schedule of only two other jobs. This fact has implicitly
been proven by Sotskov in [19]. A diJerent proof is provided by Kis [14].

1.1. Motivations and related work

The job insertion problem is a special case of the following general insertion prob-
lem. Given a set of n jobs, a feasible partial schedule � that determines the processing
order of some operations of these jobs, and a subset S of operations that are not sched-
uled yet. By inserting S we mean that all operations in S are inserted simultaneously
into the sequences of operations on the machines required. The general insertion prob-
lem consists of inserting S into � such that the resulting partial schedule is feasible and
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Fig. 1. (a) A schedule of three jobs J1; J2, and J3. (b) A possible insertion of J4 into the schedule.

some objective function is minimised. In the job insertion problem S is the operation
set of a job. Another special case arises when S contains one operation only. A third
special case is when S consists of all operations requiring the same machine.
A lot of research has been focused on constructing and improving a schedule by

inserting and reinserting, respectively, a single operation at a time. For a review and
comparison, we refer the reader to Jain and Meeran [13] and to Vaessens et al. [22].
Most of the work on single operation insertion aim at providing easily veri3able suf-
3cient conditions for feasible insertion and to restrict the search space in which an
optimal insertion is sought. We mention that the problem of inserting a single operation
into a sequence of operations is extensively discussed by e.g., Dell’Amico and Trubian
[11], Werner and Winkler [23], Nowicki and Smutnicki [17], DauzMere-P&eres and Paulli
[9] and Mastrolilli and Gambardella [16]. Moreover, when the operation needs several
resources simultaneously for processing, the operation insertion problem becomes more
diNcult and the approaches become more complicated, see e.g., DauzMere-P&eres et al.
[10], Brucker and Neyer [6], Kis [14], or, in a more general context than job shop
scheduling, Artigues and Roubellat [4].
The job insertion problem plays an important role in the local search algorithm of

Werner and Winkler [23] for solving the job shop scheduling problem. In that paper
the neighbours of a schedule are obtained by removing all operations of a job having
at least one operation on a critical (i.e., longest) path � and inserting them back such
that � is eliminated. The authors propose a simple heuristic algorithm to solve the job
insertion problem in the context of their local search algorithm.



398 T. Kis, A. Hertz /Discrete Applied Mathematics 128 (2003) 395–419

Various insertion heuristics are discussed by Sotskov et al. [20] to be used in con-
structive algorithms for the job shop problem with setup times. One of the approaches
proposed consists of inserting the jobs one-by-one into a growing schedule. The op-
erations of a job are inserted either sequentially (proceeding e.g., from the 3rst oper-
ation of the job to the last one) or in parallel. In the parallel case, only k consecu-
tive operations are inserted at a time, and their best insertion is found by exhaustive
search.
The famous Shifting Bottleneck Procedure of Adams et al. [1] repeatedly resched-

ules (or in other words (re)-inserts) all operations on some machine with the aim
of improving the schedule. A detailed analysis of the problem can be found in Balas
et al. [5].
As a summary, the exact or heuristic solution of the job insertion problem can be

used to build schedules from scratch, to insert new jobs over time into a schedule, for
rescheduling, or it can be a subroutine in new algorithms for the job shop scheduling
problem.

1.2. The principal results obtained

The main goal of this paper is to gain more insight into the job insertion problem,
or, more generally, to analyse the problem of inserting a set of operations into a
schedule in parallel. We provide equivalent characterisations of the set of feasible
insertions. It turns out that the set of feasible insertions are the integral solutions
of an inequality system whose size is polynomial in the input, or equivalently, the
maximum stable sets of a comparability graph associated with the job insertion problem.
We use our characterisation in a MILP formulation that models a relaxation of the
insertion problem. The formulation is based on the analysis of longest paths in the
schedule obtained by inserting Jn+1 into �. Necessary and suNcient conditions when
the lower bound delivered by the MILP matches the makespan of the optimal insertion
are derived, too.
We devise a polynomial time algorithm to solve the MILP. To this end, we de3ne

a new transformation of comparability graphs and analyse its properties. This transfor-
mation allows us to solve the MILP to optimality in polynomial time.
We have conducted a computational study to evaluate the power of our lower bound.

Our results show that the bound is rather strong and can be computed in a short
computation time.

1.3. The structure of the paper

Section 2 de3nes the notation used throughout the paper. In Section 3 we introduce
a MILP formulation of the relaxed insertion problem. Section 4 is devoted to the
analysis of the polytope of feasible insertions. In Section 5 we devise a polynomial
time algorithm to solve the MILP. In Section 6 we discuss our computational results.
We conclude the paper in Section 7.
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Fig. 2. The directed graph associated with the schedule in Fig. 1(a).

2. Notation

Let � be a feasible schedule of jobs J1; J2; : : : ; Jn. We will index the operations in the
schedule according to their position. Namely, ui; l is the lth operation in the sequence
of operations on machine Mi. The processing time of ui; l will be denoted by pi;l.
The entire sequence is (ui;1; ui;2; : : : ; ui;mi), where mi is the number of operations on
Mi.
We associate a directed graph G� with �. The set of nodes comprises all operations

and two extra nodes: 0 and ∗. There is a directed edge from ui; l to ui′ ; l′ if and only
if

• i = i′ and l′ = l+ 1, or
• i �= i′; ui; l and ui′ ; l′ are operations of the same job, and ui; l is the immediate prede-

cessor of ui′ ; l′ in the sequence of operations of the job.

Furthermore, there is a directed edge from 0 to the 3rst operation on each machine
and there is a directed edge from the last operation on each machine to ∗. The directed
graph associated with our example schedule is depicted in Fig. 2.
A directed path � = (�1; : : : ; �l) is a sequence of distinct nodes such that there is

a directed edge from �f to �f+1; (16f¡l). The length of a directed edge (a; b)
is the processing time of a if a is an operation or 0 if a = 0. The length of some
path � is the sum of edge lengths along the path. The head hi; l of operation ui; l is
the length of the longest path from 0 to ui; l (such a path clearly exists). The tail ti; l
of ui; l is the length of the longest path from ui; l to ∗ minus pi;l. A directed cycle
C = (c1; : : : ; cl; cl+1) is a sequence of nodes such that (c1; : : : ; cl) is a directed path,
c1 = cl+1 and there is a directed edge from cl to c1. Note that G� contains no directed
cycles, or shortly it is acyclic, for � is feasible.
Let Jn+1 be the job to be inserted into �. For the sake of simpler notation, assume

that Jn+1 is a sequence of m operations: (v1; v2; : : : ; vm), where vi requires Mi for pi
time units. On machine Mi; vi can be inserted in one of the mi+1 positions, i.e., before
the 3rst operation, or after any of the operations on Mi. These positions are called the
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insertion points on Mi, and will be identi3ed with binary variables xi; l (06 l6mi). An
insertion is a 0=1 valuation of these variables, such that for each i, precisely one of the
variables xi; l is set to 1, the others are set to 0. Let G�;x denote the graph after inserting
Jn+1 in the positions given by x. An insertion x is feasible, if G�;x is acyclic. Let If
denote the set of feasible insertions and let C(�; x) denote the length of the longest
path in G�;x. The optimal insertion problem can be restated as min{C(�; x) | x∈ If}. An
optimal insertion x′ is a feasible insertion minimising C(�; x). The optimal makespan
is denoted by OPT (�; Jn+1).
The head of vi when inserted in the lth position on Mi is at least h̃i; l := hi; l + pi;l,

whereas the tail is at least t̃i; l := ti; l+1 + pi;l+1, noting that for each 16 i6m: h̃i;0 =
t̃i;mi = 0.

For each pair of machines Mi and Mi′ with 16 i¡ i′6m, we de3ne the set Pi; i′ as
follows. An ordered pair of operations (ui; l; ui′ ; l′) pertains to Pi; i′ , if and only if there
exists a directed path from ui′ ; l′ to ui; l in G�.
RD denotes the D-dimensional real space, and RD+ ⊂ RD consists of all non-negative

vectors of RD. The convex hull of a 3nite set V ⊂ RD is denoted by Conv(V ) (cf.
[18]).

3. Lower bound by integer programming

In this section we describe a mixed integer-linear program (ILP) that is a relaxation
of the insertion problem. We will derive conditions under which the optimum value of
ILP matches OPT (�; Jn+1). The relaxation is based on the structure of longest paths
in the schedule obtained by inserting Jn+1 into �. We start with a brief discussion of
this latter topic.

3.1. The structure of longest paths after insertion

Let �′ be a feasible schedule obtained by inserting Jn+1 into �. Since �′ is feasible,
G�′ is acyclic. Let � be a longest path in G�′ . Then precisely one of the following
conditions holds:

(a) � does not contain any operation of Jn+1,
(b) �= �b · �Jn+1 · �a, where �b and �a do not contain any operation of Jn+1 (possibly

one or both of them are empty), whereas �Jn+1 is a non-empty subsequence of
Jn+1,

(c) � = �b · �1Jn+1
· �c · �2Jn+1

· �a, where �c is not empty and does not contain any
operation of Jn+1; �a and �b may contain operations of Jn+1, and �1Jn+1

and �2Jn+1

are non-empty subsequences of Jn+1.

We call an insertion of Jn+1 in � fragmented, if all longest paths in G�′ are of type
(c). Otherwise, the insertion is non-fragmented.
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3.2. The MILP formulation

We associate a 0/1 variable with each insertion point in the schedule. Thus we have
the binary decision variables xi; l, where 16 i6m and 06 l6mi (cf. Section 2). A
feasible insertion selects for each vi of Jn+1 one particular position on Mi. Hence, the
equalities

mi∑
l=0

xi; l = 1; 16 i6m (1)

are respected by all feasible insertions. Furthermore, feasible insertions do not create
cycles. Consequently, if ui;k and ui′ ; k′ is a pair of operations such that i¡ i′, and there
is a directed path from ui′ ; k′ to ui;k in G�, then no feasible insertion assigns a position
to vi after ui;k on Mi, and a position to vi′ before ui′ ; k′ on Mi′ , simultaneously. Hence,
the inequalities

k′−1∑
l=0

xi′ ; l +
mi∑
l=k

xi; l6 1; for all pairs (ui;k ; ui′ ; k′)∈Pi; i′ (2)

are valid for all feasible insertions. Note that some of these constraints may be im-
plied by others. That is, the constraint that corresponds to the pair (ui;k ; ui′ ; k′)∈Pi; i′
is implied, iJ there exists (ui; l; ui′ ; l′)∈Pi; i′ with l′¿ k ′ and l6 k, and one of these
inequalities is strict. Implied constraints can be safely omitted.

Example. The inequality system that de3nes the set of feasible insertions to our prob-
lem is the following:

x1;0 + x1;1 + x1;2 + x1;3 = 1;

x2;0 + x2;1 + x2;2 + x2;3 = 1;

x3;0 + x3;1 + x3;2 + x3;3 = 1; (3)

x2;0 + x1;2 + x1;36 1;

x2;0 + x2;1 + x2;2 + x1;36 1;

x3;0 + x2;1 + x2;2 + x2;36 1; (4)

x3;0 + x3;1 + x2;36 1;

x3;0 + x1;2 + x1;36 1;

x3;0 + x3;1 + x1;36 1: (5)

The next lemma shows that inequalities (1) and (2) are suNcient to characterise all
feasible insertions.

Lemma 1. A binary vector x satis>es (1) and (2), if and only if it de>nes a feasible
insertion.
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Proof. We know than any feasible insertion satis3es (1) and (2), by construction.
We have to demonstrate the other direction. Suppose that a binary vector x satis3es

all equalities (1) and inequalities (2). Due to (1), on each machine precisely one
position is selected. We claim that no cycle is created after inserting Jn+1 in the
positions given by x. Assume the contrary and suppose there is a cycle in G�;x. Clearly,
any cycle C contains at least two operations of Jn+1. Let vmin(C) denote the operation
of Jn+1 on C, that has the smallest index. Similarly, let vmax(C) denote the operation
of Jn+1 on C, that has the largest index. If there are several cycles, then we select one
that maximises the index of vmin(C). Let C′ be such a cycle. Note that C′ is of the
form (vi; : : : ; vi′ ; : : : ; vi), where vi = vmin(C′) and vi′ = vmax(C′).
We claim that there is no operation of Jn+1 on C′ between vi′ and vi. If there were,

then let vj be such an operation. By the choice of i and i′; i ¡ j¡ i′ holds. Then
we know that C′ = (vi; : : : ; vi′ ; : : : ; vj; : : : ; vi) and hence QC = (vj; : : : ; vi′−1; vi′ ; : : : ; vj) is a
cycle in G�;x, with vmin( QC) = vj. Since j¿ i, this contradicts the choice of C′.
As a consequence, we can state that there exists a path in G�;x emanating from the

operation that follows vi′ on Mi′ , to the operation that precedes vi on Mi, that contains
no operation of Jn+1. Hence, one of the constraints (2) is violated, a contradiction.

Now we develop inequalities to estimate C(�; x) from below. On the one hand, if vi
is inserted in the kth position on Mi, then there is a path (ui;1; : : : ; ui; k ; vi; ui; k+1; : : : ; ui;mi)
in G�;x. Let Cmax denote the estimated makespan. Then we have the inequalities:

mi∑
l=1

h̃i; lxi; l + pi +
mi−1∑
l=0

t̃i; lxi; l6Cmax; 16 i6m: (6′)

On the other hand, there are new paths between machines as well. Namely, if vi is
inserted in the kth position on Mi, and vi′ is inserted in the kth position on Mi′ ; i ¡ i′,
then (ui;1; : : : ; ui; k ; vi; vi+1; : : : ; vi′−1; vi′ ; ui′ ; k′+1; : : : ; ui′ ;mi′ ) is a path in G�;x. Hence, we
have

mi∑
l=1

h̃i; lxi; l +
i′∑
l=i

pl +
mi′−1∑
l=0

t̃i′ ; lxi′ ; l6Cmax; 16 i¡ i′6m: (6′′)

Furthermore, max{∑m
i=1 pi; C(�)}6Cmax clearly holds.

The system of inequalities consisting of (6′), (6′′) and this very last inequality will
be denoted by

A

(
x

Cmax

)
¿ b: (6)

The goal is to minimise Cmax, hence the entire problem is

minCmax

K1 · x = 1;

K2 · x6 1;
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A

(
x

Cmax

)
¿ b;

x∈{0; 1}D;
Cmax ∈R;

where K1 is the matrix of equalities (1), K2 is the matrix of inequalities (2), and D
is the total number of insertion points on all machines. We will call this integer-linear
program ILP.
Some properties of the estimation are summarised next:

Lemma 2. Let (x∗; C∗
max) be an optimal solution to ILP. Then

(i) C∗
max6OPT (�; Jn+1).

(ii) C∗
max = OPT (�; Jn+1) implies that all optimal insertions are non-fragmented.

(iii) If C(�; x∗) = C∗
max then C

∗
max = OPT (�; Jn+1).

Proof.

(i) Let x′ be any optimal insertion. We claim that (x′; OPT (�; Jn+1)) is a feasible
solution to ILP. Since x′ does not create a cycle, it satis3es (1) and (2). By the
construction of inequalities (6′′), (x′; OPT (�; Jn+1)) has to satisfy all of them.

(ii) Suppose C∗
max = OPT (�; Jn+1), and let x′ be any optimal insertion. Then ) · x′ +

OPT (�; Jn+1)=* holds for an inequality in (6). We claim that this equality induces
a non-fragmented longest path in G�;x′ . We distinguish between three cases:
• OPT (�; Jn+1)=max{∑m

i=1 pi; C(�)} holds. Then either the operations of Jn+1

constitute a non-fragmented longest path in G�;x′ , or there is a longest path
of length C(�) in G�;x′ , which is free of Jn+1.

• −∑mi
l=1 h̃i; lx

′
i; l −

∑mi
l=0 t̃i; lx

′
i; l + OPT (�; Jn+1) = pi holds for some 16 i6m

(cf. (6′)). Since x′ is an insertion, there exists a unique k with x′i; k =1. Then
the equality can be rewritten as

OPT (�; Jn+1) =
mi∑
l=1

h̃i; lx′i; l + pi +
mi∑
l=0

t̃i; lx′i; l = h̃i; k + pi + t̃i; k :

Due to the equality, no operation of Jn+1 occurs either on the longest path
from 0 to ui;k , or on the longest path from ui;k+1 to ∗ in G�;x′ . Hence, there
is a longest path in G�;x′ containing only one operation of Jn+1.

• One of the inequalities (6′′) holds with equality. An argument similar to the
previous one shows that there is a longest path in G�;x′ which contains some
operations of Jn+1 consecutively.

(iii) The assumptions imply that G�;x∗ contains a non-fragmented longest path whose
length is C∗

max. Since x
∗ is a feasible insertion, OPT (�; Jn+1)6C∗

max holds. Com-
bining this with part (i) the statement follows.
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In the rest of the paper we show how to compute C∗
max in polynomial time. Fur-

thermore, we will obtain an implicit description of all optimal solutions to ILP in the
form of the vertices of a polytope.

4. The polytope of feasible insertions

We de3ne the polytope of feasible insertions as follows:

P(If) := Conv(If);

where If is the set of feasible insertions (cf. Section 2). Let P := {x∈RD+ |K1 · x =
1 & K2 · x6 1}. Let INT (P) ⊂ P denote the set of integral, i.e. 0=1, vectors of P. We
clearly have INT (P)=If, by Lemma 1. Consequently, P(If) ⊆ P must hold. Moreover,
the following statement implies that the two polytopes coincide:

Theorem 3. P is integral, that is, P = Conv(INT (P)).

Proof sketch. The idea of the proof is to show that P is a face of a larger polytope
Pc, which is integral. Then clearly, P is integral. It will turn out that Pc can be chosen
to be the fractional node packing polytope of a comparability graph, which is known
to be integral. We defer the detailed proof until we obtain some more results on the
system of inequalities (1) and (2).

4.1. The insertion graph

We de3ne the insertion graph Ĝ� with respect to Jn+1 as follows: Let the nodes
be identi3ed with the variables xi; l. For the edges, each equality or inequality in (1)
and (2) induces a clique in the graph. Namely, on each machine, the insertion points
are mutually connected (cf. equalities (1)). Furthermore, for each inequality in (2), the
insertion points identi3ed with the variables of the inequality are mutually connected.

Example. The insertion graph with respect to J4 is depicted in Fig. 3(b).

Some useful properties of the insertion graph are summarised next.

Lemma 4. Let � be a schedule of n jobs, let Jn+1 be the job to be inserted, and let
Ĝ� be the insertion graph with respect to Jn+1. Then

(i) There are at most m independent nodes in Ĝ�.
(ii) There is no edge adjacent to any two nodes xi;0 and xi′ ;0.
(iii) The stability number )(Ĝ�) of Ĝ� is m, the number of machines.

Proof. Part (i) follows from the fact that the equalities in (1) determine m disjoint
cliques covering all nodes.
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Fig. 3. The insertion graph associated with the example problem.

Part (ii) is due to the structure of inequalities in (2). Namely, there is no inequality
containing both xi;0 and xi′ ;0. Hence, there is no edge adjacent to any two nodes
identi3ed with xi;0 and xi′ ;0.
Part (iii) is an immediate consequence of parts (i) and (ii).

Our next statement puts the problem into the context of perfect graphs. Recall that
an undirected graph is a comparability graph if its edges can be transitively oriented.
Namely, whenever (a; b) and (b; c) are directed edges after the orientation, then (a; c)
is also a directed edge of the oriented graph. For relevant de3nitions and statements
on comparability graphs see [12].
We will orient the edges of Ĝ� according to the following orientation rules. Let

{xi;k ; xi′ ; k′} be any edge of Ĝ�. Without loss of generality we may assume that i6 i′.
Then there are two rules:

• If i = i′ orient the edge from xi;k to xi;k′ , when k ¡k ′.
• if i¡ i′, orient the edge from xi′ ; k′ to xi;k .

Lemma 5. Ĝ� is a comparability graph.

Proof. Orient the edges of Ĝ� according to the orientation rules. We claim that when-
ever (a; b) and (b; c) are directed edges of the oriented Ĝ�, then there also exists a
directed edge (a; c) in the oriented graph. Let a= xi′′ ; k′′ ; b= xi′ ; k′ and c= xi;k . By the
choice of a; b and c and the orientation rules it follows that i′′¿ i′¿ i. We distinguish
between four cases:

• a; b; c are all insertion points on the same machine, i.e. i= i′= i′′. By the orientation
rules k ′′¡k ′¡k holds. Since i = i′′, there is an edge in Ĝ� adjacent to xi;k′′ and
xi;k , which is oriented from the former one to the latter one by the orientation rules.

• i′′¿i′ = i. Then there is an inequality in (2) involving xi;k ; xi′ ; k′ and xi′′ ; k′′ . Con-
sequently, there is an edge adjacent to xi;k and xi′′ ; k′′ in Ĝ�. This edge is oriented
from xi′′ ; k′′ to xi;k by the orientation rule.
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• i′′ = i′¿i. This case is similar to the previous one.
• i′′¿i′¿i. We have to show that there is an edge adjacent to xi′′ ; k′′ and xi;k in Ĝ�,

the rest follows from the orientation rules. Since {xi′′ ; k′′ ; xi′ ; k′} is an edge of Ĝ�, there
exists a directed path �i′′ ; i′ in G� from ui′′ ; k′′+1 to ui′ ; k′ . A similar argument shows
that there exists a directed path �i′ ; i in G� from ui′ ; k′+1 to ui;k . Hence, (�i′′ ; i′ ; �i′ ; i)
is a directed path in G� from ui′′ ; k′′+1 to ui;k . The construction of Ĝ� implies that
there is an edge adjacent to xi′′ ; k′′ and xi;k , as claimed.

4.2. Cliques on 3 or more machines

Observe that insertion graphs may have cliques which contain insertion points on 3
or more machines. For instance, in the insertion graph in Fig. 3, nodes x3;0; x2;1; x2;2; x1;3
induce a clique, but the inequality

x3;0 + x2;1 + x2;2 + x1;36 1 (7)

is not included in the system de3ning all feasible insertions. In fact, this inequality can
be derived from constraints (3), (4), and (5) as follows: Since x2;0+x2;1+x2;2=1−x2;3
and x2;1 + x2;2 + x2;3 = 1− x2;0 we can substitute these into (4) and (5), respectively,
and taking the sum we obtain

x3;0 + (1− x2;3) + (1− x2;0) + x1;36 2:

Using (3), we deduce (7). Note that including (7) into the system, some inequalities
may become redundant.

Lemma 6. Let C be a maximal clique of Ĝ�.

(a) If C has at least two insertion points xi; l and xi; r ; l¡ r, on some machine Mi,
then all insertion points xi;k with l¡k ¡r pertain to C.

(b) Suppose C has insertion points on two or more machines. Let Mi and Mi′ be
the machines with smallest, respectively highest indices, such that C has some
insertion points on them. Then there exists l∈{0; : : : ; mi}, such that C contains
xi; l; : : : ; xi;mi , and there exists r

′ ∈{0; : : : ; mi′}, such that C contains xi′ ;0; : : : ; xi′ ; r′ .

Proof.

(a) If C is induced by equalities (1) or inequalities (2), then the statement trivially
holds. Let C be any other maximal clique. Suppose C has two insertion points l
and r; l¡ r, on Mi. We show that all insertion points xi;k with l¡k ¡r pertain
to C. Let xi′ ; k′ be any other insertion point in C. Since all insertion points on the
same machine are mutually connected, we may assume that i �= i′. We distinguish
between two cases:
• i¡ i′. Since C is a clique, there is an edge in Ĝ� adjacent to xi′ ; k′ and xi; l.
Then there also exists an inequality in (2) which contains xi′ ; k′ and xi; l and
hence xi;k as well, for l¡k. Hence, xi;k and xi′ ; k′ are adjacent.

• i¿ i′. Similar to the previous case.
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(b) We prove the statement for Mi only, the other case being similar. In fact, it is
enough to show that xi;mi pertains to C, the rest follows from part (a). Since C
contains some insertion points on Mi, let xi; l be the one with smallest (second)
index. If l=mi then there is nothing to prove. Otherwise, let xi′ ; l′ be any insertion
point in C. We may assume that i¡ i′, for all insertion points on the same
machine are mutually connected. Since both xi; l and xi′ ; l′ belong to C, there is an
inequality in (2) containing both of them. But this inequality has to contain xi;mi
as well, for mi ¿ l. Consequently, there is an edge adjacent to xi;mi and xi′ ; l′ .

Corollary 7. The maximal cliques on 1 or 2 machines are precisely those induced by
equalities (1) and inequalities (2).

Corollary 8. Let -C be the characteristic vector of a maximal clique C on three or
more machines. Then -C · x6 1 is a valid inequality for P.

Proof. Suppose C has insertion points on machines Mi1 ; Mi2 ; : : : ; Miq ; 16 i1¡
i2¡ · · ·¡iq6m. We construct a sequence of inequalities -j · x6 1; 16 j6 q − 1,
such that all of them are valid for P, and -q−1 = -C .
Let lh and rh; 16 h6 q, be the smallest and highest indices, respectively, such that

xih;lh and xih;rh pertain to C. Note that r1 = mi1 ; lq = 0, and -C · x =∑q
h=1

∑rh
k=lh xih;k ,

by Lemma 6.
Since C is a clique, the pairs (xij ;lj ; xij+1 ;rj+1) are adjacent in Ĝ�. Hence, there are

inequalities )j · x6 1; 16 j6 q − 1 in (2), of the form )j · x =
∑rj+1

k=0 xij+1 ;k +
∑mij

k=lj
xij ;k6 1.

We de3ne -j · x as follows: -j · x :=∑q
h=q−j+1

∑rh
k=lh xih;k +

∑miq−j

k=lq−j
xiq−j ;k . One can

verify that -1 · x = )q−1 · x and -q−1 · x = -C · x hold. If we manage to show that all
inequalities -j · x6 1; 16 j6 q− 1, are valid for P, then we are done.

Since -1 · x= )q−1 · x, the statement is true for j=1. We proceed with induction on
j. Suppose the statement is veri3ed until j¿ 1. We show that -j+1 · x6 1 is valid for
P, by combining -j · x6 1 with )q−j−1 · x6 1.
For the sake of simpler notation, let i′ = iq−j; l′ = lq−j, and r′ = rq−j. Since∑mi′
k=l′ xi′ ; k +

∑l′−1
k=0 xi′ ; k = 1, we know that

-j · x =
(
-j · x −

mi′∑
k=l′

xi′ ; k

)
+


1−

l′−1∑
k=0

xi′ ; k


 : (8)

On the other hand,
∑r′

k=0 xi′ ; k = 1−
mi′∑

k=r′+1
xi′ ; k , hence

)q−j−1 · x =
(
1−

mi′∑
k=r′+1

xi′ ; k

)
+

miq−j−1∑
k=lq−j−1

xiq−j−1 ;k : (9)



408 T. Kis, A. Hertz /Discrete Applied Mathematics 128 (2003) 395–419

By the induction hypothesis we know that -j · x6 1 is valid for P. Hence, if we
combine (8) and (9) we obtain a valid inequality for P:

2¿ -j · x + )q−j−1 · x=
(
-j · x −

mi′∑
k=l′

xi′ ; k

)
+


1−

l′−1∑
k=0

xi′ ; k




+

(
1−

mi′∑
k=r′+1

xi′ ; k

)
+

miq−j−1∑
k=lq−j−1

xiq−j−1 ;k :

Since 1−∑l′−1
k=0 xi′ ; k −

∑mi′
k=r′+1 xi′ ; k =

∑r′

k=l′ xi′ ; k , we obtain

2¿

(
-j · x −

mi′∑
k=l′

xi′ ; k

)
+

r′∑
k=l′

xi′ ; k + 1 +

miq−j−1∑
k=lq−j−1

xiq−j−1 ;k = 1 + -j+1 · x;

where the last equality follows from the de3nition of -j+1. Hence, -j+1 · x6 1 is valid
for P.

Let K3 be the matrix of cliques on 3 or more machines. Then we de3ne the polytope
Pc as follows.

Pc := {x∈RD+ |K1 · x6 1&K2 · x6 1&K3 · x6 1}:
Now we are ready to complete the proof of Theorem 3.

Proof of Theorem 3. First, we claim that Pc is integral. Since the matrices K1; K2,
and K3 contain all maximal cliques of Ĝ�; Pc is the fractional node packing polytope
of this graph. Since comparability graphs are perfect and the fractional node packing
polytope of a perfect graph is integral [7], we deduce that Pc is integral.
Second, we claim that P is a face of Pc. To see this, we de3ne the polytope P6: =

{x∈RD+ |K1 · x=1&K2 · x6 1&K3 · x6 1}. Notice that P6 is a face of Pc. Clearly,
P6 ⊆ P holds. On the other hand, we have just seen that K3 · x6 1 is valid on P,
hence P = P6. Thus, P is a face of Pc as well.
To 3nish the proof we note that any face of Pc is integral, since Pc is integral.

Hence, P is integral.

We conclude this section by an immediate consequence of Theorem 3.

Corollary 9. P(If)=P, and there is a one-to-one correspondence between the vertices
of P and the stable sets of size m in Ĝ�.

Due to this corollary, there exists a concise description of all feasible insertions in
the form of the system of equalities and inequalities de3ning P. On the other hand,
feasible insertions can equivalently be characterised as maximum size stable sets of the
graph Ĝ�.
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5. Solving ILP in polynomial time

In this section we show that ILP can be solved in polynomial time. First, we design
a polynomial time procedure to decide whether the optimal C∗

max to ILP is not greater
than a given upper bound. Then we apply bisection search to 3nd the optimum. But
remember, the optimal C∗

max is a lower bound on OPT (�; Jn+1), so we do not claim
that the insertion problem can be solved in polynomial time.
We start with deriving new clique constraints from a given upper bound UB¿ 0.

Recall that the head of vi would be at least h̃i; l, if it was inserted in the lth position
on Mi. Similarly, the tail of vi′ , would be at least t̃i′ ; l′ if it was inserted in the l′th
position on Mi′ (cf. Section 2). Now, if

i¡ i′ and h̃i; l +
i′∑
k=i

pk + t̃i′ ; l′ ¿UB; (10)

then in any feasible insertion in which C∗
max6UB; vi and vi′ cannot be inserted si-

multaneously in the insertion points l and l′ on Mi and Mi′ , respectively.
Since h̃i; l ¡ h̃i; l+1 and t̃ i′ ; l′−1¿t̃i′ ; l′ , we have the following new clique constraints:

l′∑
k=0

xi′ ; k +
mi∑
k=l

xi; k6 1; (11)

for each (i; l; i′; l′) which satis3es (10). Of course, it is enough to keep those that are
not implied.
A variable xi; l has to be set to 0, i.e.,

xi; l = 0; (12)

if h̃i; l + pi + t̃i; l ¿UB; or h̃i; l +
m∑
k=i

pk ¿UB; or

i∑
k=1

pk + t̃i; l ¿UB: (13)

Example. We compute the new constraints for our standard example with respect to
UB=7. To facilitate the computation, consider Fig. 4(a), which shows the h̃i; l and t̃ i; l
values for each insertion point xi; l. We obtain the following equalities and inequalities:

x1;1 + x1;2 + x1;3 + x2;0 + x2;1 + x2;26 1; for 3 + 3 + 2¿ 7;

x1;2 = 0; for 5 + 4¿ 7;

x1;3 = 0; for 6 + 4¿ 7;

x3;0 + x3;1 + x2;1 + x2;2 + x2;36 1; for 3 + 3 + 3¿ 7;

x2;1 = 0; for 3 + 2 + 3¿ 7;

x2;2 = 0; for 4 + 2 + 2¿ 7;

x2;3 = 0; for 5 + 3¿ 7;
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Fig. 4. (a) The h̃i; l; t̃i; l pairs for each insertion point xi; l. (b) The transformed insertion graph with respect
to UB = 7.

x3;0 + x3;1 + x3;2 + x2;2 + x2;36 1; for 4 + 3 + 1¿ 7;

x3;0 + x3;1 + x3;2 + x1;1 + x1;2 + x1;36 1; for 3 + 4 + 1¿ 7;

x3;0 = 0; for 4 + 6¿ 7:

Let If(UB) ⊆ If be the set of feasible insertions which satisfy (11) and (12).
Let

P(UB) := {x∈RD+ |K1 · x = 1; K2 · x6 1; K6(UB) · x6 1; K0(UB) · x = 0};
where K6(UB) is the matrix of new inequalities (11), and K0(UB) is the matrix of
(12).
Let INT (P(UB)) denote the set of integral, i.e., 0/1, vectors in P(UB). We claim

that If(UB) = INT (P(UB)). On the one hand, we already know that If = INT (P) (cf.
Section 4). On the other hand, the inequalities (11) and (12) cut oJ the same vectors
from If and INT (P), hence the claim follows. Our goal is to show:

Theorem 10. P(UB) is integral, and for any UB¿max{C(�); ∑m
i=1 pi} :P(UB) �= ∅

if and only if C∗
max6UB, where C∗

max is the optimum value of ILP.

We defer the proof until we obtain some more results on the insertion graph. The
next lemma provides us with more insight into the structure of Ĝ�:

Lemma 11. Suppose we orient the edges of Ĝ� according to the orientation rules (cf.
Section 4.1). Let (a; b)=(xi′ ; k′ ; xi; k) be any directed edge of the oriented graph. Then
h̃i′ ; k′ ¡h̃i;k and t̃i′ ; k′ ¿t̃i;k always hold.

Proof. First, note that the construction of Ĝ� implies that there exists a directed path
from ui′ ; k′ to ui;k in G�. Hence, we have h̃i′ ; k′ = hi′ ; k′ +pi′ ; k′ 6 hi;k ¡hi;k +pi;k = h̃i; k
and t̃i′ ; k′ = ti′ ; k′+1 + pi′ ; k′+1¿ti′ ; k′+1¿ ti; k+1 + pi;k+1 = t̃i; k :
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We construct a new graph Ĝ�(UB) out of Ĝ� as follows:

• Add new cliques equivalent to the inequalities (11) to Ĝ�.
• Delete each insertion point identi3ed with a variable xi; l which is set to 0.

The transformed insertion graph with respect to UB= 7 is depicted in Fig. 4(b).

Lemma 12. Ĝ�(UB) is a comparability graph.

Proof. We orient the edges of Ĝ�(UB) according to the orientation rules. Let (a; b)
and (b; c) be directed edges of the oriented graph. We claim that there exists a directed
edge (a; c) in the oriented Ĝ�(UB) as well.
If (a; b) and (b; c) are both directed edges of the oriented Ĝ�, then the claim is

proved by Lemma 5.
So, we have to verify only the cases when at least one of (a; b) and (b; c) is a new

edge. Let a= xi′′ ; k′′ ; b= xi′ ; k , and c= xi;k . By the choice of a; b; c, and the rules of
the orientation, we have i′′¿ i′¿ i. Furthermore, when i= i′ or i′ = i′′ then the three
points pertain to the same clique, hence the third edge clearly exists, and it is oriented
from a to c by the orientation rules. Thus, we may assume i′′¿i′¿i. We distinguish
between three cases:

• {a; b} is a new edge, but {b; c} is an edge in Ĝ�. First, h̃i′ ; k′ ¡h̃i;k holds, by Lemma
11. Since {a; b} is a new edge, h̃i′ ; k′ +

∑i′′

l=i′ pl + t̃i′′ ; k′′ ¿UB. Consequently,

UB¡ h̃i;k +
i′′∑
l=i′

pl + t̃i′′ ; k′′ ¡h̃i;k +
i′′∑
l=i

pl + t̃i′′ ; k′′

holds as well. Hence, {a; c} is an edge of Ĝ�(UB), too. By the orientation rules it
is oriented from a to c in the oriented Ĝ�(UB).

• {b; c} is a new edge, but {a; b} is an edge of Ĝ�. Similar to the previous case.
• Both {a; b} and {b; c} are new edges. Since the two edges are new in Ĝ�(UB) and
b is not deleted from Ĝ�(UB), the following inequalities hold:

h̃i; k +
i′∑
l=i

pl + t̃i′ ; k′ ¿UB;

h̃i′ ; k′ +
i′′∑
l=i′

pl + t̃i′′ ; k′′ ¿UB;

h̃i′ ; k′ + pi′ + t̃i′ ; k′ 6UB:

Consequently,

h̃i; k +
i′′∑
l=i

pl + t̃i′′ ; k′′ =


h̃i; k + i′∑

l=i

pl + t̃i′ ; k′


+


h̃i′ ; k′ + i′′∑

l=i′
pl + t̃i′′ ; k′′




− (h̃i′ ; k′ + pi′ + t̃i′ ; k′)¿UB:
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Hence, {a; c} is an edge of Ĝ�(UB). By the orientation rules, it is oriented from a to
c in the oriented Ĝ�(UB).

All cases are veri3ed, the statement is proved.

Proof of Theorem 10. To show that Conv(INT (P(UB))) = P(UB) we can apply the
proof technique of Theorem 3. We must use the fractional node packing polytope of
Ĝ�(UB), of course. The details are omitted.

We turn to the second part of the theorem. Suppose P(UB) �= ∅. Let x∈P(UB) be
any vertex of the polytope. We claim that (x; UB) is a feasible solution to ILP. Clearly,
x is integral and satis3es (1) and (2). It remains to be shown that (x; UB) satis3es (6)
as well. Assume the contrary, and suppose a ) · x+ UB¡* holds for some inequality
in (6). Clearly, UB¿max{C(�); ∑m

i=1 pi} holds by assumption. There are two cases
to verify:

• Some inequality in (6′) is violated, i.e., −∑mi
l=0(h̃i; l + t̃i; l)xi; l + UB¡pi holds for

some 16 i6m. Since x is an insertion, there exists a unique k ∈{0; : : : ; mi}, such
that xi;k = 1. Consequently,

pi ¿−
mi∑
l=0

(h̃i; l + t̃i; l)xi; l + UB=−(h̃i; k + t̃i; k) + UB:

But x∈P(UB) implies xi;k = 0, a contradiction.
• Some inequality in (6′′) is hurt, i.e., −∑mi

l=1 h̃i; lxi; l−
∑mi′−1

l=0 t̃i′ ; lxi′ ; l+UB¡
∑i′

l=i pl
for some 16 i¡ i′6m. Since x is an insertion, there exists a unique k ∈{0; : : : ; mi}
such that xi;k = 1, and there exists a unique k ′ ∈{0; : : : ; mi′} such that xi′ ; k′ = 1.
Consequently,

i′∑
l=i

pl ¿−
mi∑
l=1

h̃i; lxi; l −
mi′−1∑
l=0

t̃i′ ; lxi′ ; l + UB=−(h̃i; k + t̃i′ ; k′) + UB:

Since x∈P(UB), either xi;k = 0 or xi′ ; k′ = 0 has to hold, a contradiction.
The claim is veri3ed. Since (x; UB) is feasible to ILP, C∗

max6UB trivially holds.
Conversely, suppose C∗

max6UB. We have to show that P(UB) �= ∅. Let (x∗; C∗
max)

be an optimal solution to ILP. We claim that x∗ ∈P(UB). It is enough to verify that
K6(UB) · x∗6 1 and K0(UB) · x∗ = 0. This is true by construction.

Corollary 13. P(UB) = P(If(UB)) and there is a one-to-one correspondence between
the vertices of P(UB) and the stable sets of size m of Ĝ�(UB), for any UB¿ 0.

In particular, P(UB) = ∅ if and only if )(Ĝ�(UB))¡m.

Corollary 14. P(C∗
max) �= ∅ and there is a one-to-one correspondence between the

vertices of P(C∗
max) and the optimal solutions of ILP.

Since If(U1) ⊆ If(U2) whenever U16U2, the optimum value C∗
max of ILP is the

smallest UB such that P(UB) �= ∅. We can 3nd this value by means of binary search
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as follows:

(1) L= C(�); U = L+
∑m

k=1 pk .
(2) While L¡U repeat the following:

2.1. UB= (L+ U )=2
2.2. If P(UB) �= ∅, then U = UB, otherwise L= UB+ 1.

(3) Output U .

When the algorithm stops, L = U = C∗
max. In order to have polynomial running time,

P(UB) �= ∅ must be tested in polynomial time. In the sequel we describe a combi-
natorial approach to do this task. Namely, the remark after Corollary 13 implies that
P(UB) �= ∅ if and only if )(Ĝ�(UB)) = m. Moreover, recall that Ĝ�(UB) is a compa-
rability graph for all UB¿ 0, by Lemma 12. Consequently, its stability number can be
computed by minimum Uow computation (see e.g. [12, p. 134]). The minimum Uow
problem can be solved in polynomial time (in the size of the network) (see e.g. [2, p.
202]). On the other hand, the graph Ĝ�(UB) can be constructed in polynomial time by
simply testing the conditions (10) and (13), whose number is polynomially bounded in
the size of Ĝ�. Consequently, we can solve our decision problem in polynomial time.

By a simple trick we can avoid the minimum Uow computation. That is, by following
the construction in [12], we extend Ĝ�(UB) to a transportation network by adding two
new vertices s and t and edges (s; a) and (b; t) for each source a and sink b of Ĝ�(UB).
Assigning a lower capacity 1 to each vertex of Ĝ�(UB), we initialise a particular
compatible integer-valued Uow. Namely, the initial Uow is the sum of m unit Uows
covering the insertion points on each machine. Now, this Uow is clearly compatible and
is of minimum value if and only if there exists no Uow augmenting path. Such a path
can be found in linear time, if it exists. Since the value of the minimum Uow is exactly
the stability number of the comparability graph ([12, p. 134]), we can conclude that
)(Ĝ�(UB))=m if and only if there exists no Uow augmenting path in the transportation
network associated with Ĝ�(UB) with respect to the particular initial Uow described
above.
The second method is based on linear programming. Notice that the matrices K(UB)6

and K0(UB) can be constructed in polynomial time in the same way as Ĝ�(UB). Once
the matrices are known, a linear programming package can 3nd a vertex of P(UB) or it
states that the polytope is empty. The drawback of this method is that the practical run-
ning time of the implementation heavily relies on the linear programming package used.

6. Computational results

In this section we investigate the computational aspects of our lower bound. We aim
at two objectives. On the one hand, we would like to demonstrate experimentally that
our lower bound is rather strong. To this end, we have computed the lower bounds
for more than 1100 insertion problem instances and compared them to the optimal
solutions. On the other hand, we would like to show that our combinatorial method for
computing the lower bound is very fast, i.e., it is suitable for practical computations.
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Table 2
The compositions of the datasets

Dataset

m5 m10 m15

Contents la01-la15 la16-la35 abz7-abz9
orb01-orb10 la36-la40
swv01-swv05 swv06-swv10

We have obtained the insertion problem instances from job shop problem instances
as follows. A job shop problem instance with n jobs gives rise to a series of n insertion
problem instances (�0; J1); : : : ; (�k ; Jk+1); : : : ; (�n−1; Jn), where �0 is the empty schedule
and �k+1 is obtained from �k by inserting Jk+1 into �k in an optimal way, k=0; : : : ; n−1.
We denote by OPT (�k ; Jk+1) and LB(�k ; Jk+1) the makespan of an optimal insertion
of Jk+1 into �k and the lower bound computed by our method for the same problem
instance, respectively.
To generate the series of insertion problem instances, we used the “abz7-abz9”

instances of Adams et al. [1], the “la01-la40” instances of Lawrence [15], the
“orb01-orb10” instances of Applegate and Cook [3], and the “swv01-swv10” instances
of Storer et al. [21].
When presenting our results, we will distinguish between problem instances with 5,

10 and 15 machines. In fact, in all problem instances the number of machines is equal
to the number of operations of the job to be inserted, since each job has exactly one
operation on each machine. Clearly, the number of operations to be inserted inUuences
the quality of the lower bound and the computation time as well. Hence, we have 3
datasets, “m5”, “m10” and “m15”, whose composition is depicted in Table 2.
In Section 6.1 we evaluate the quality of the lower bound obtained by the proposed

method while in Section 6.2 we report on the computation times.

6.1. The quality of the lower bound

We computed for each insertion problem instance a lower bound by the method
of Section 5 and the makespan of an optimal feasible insertion by an exact method.
Various exact methods are discussed in [14], but the description and evaluation of such
methods are out of the scope of this paper.
First note that when Jk+1 is inserted into �k , the relative error between LB(�k ; Jk+1)

and OPT (�k ; Jk+1) is

relative error = (OPT (�k ; Jk+1)− LB(�k ; Jk+1))=OPT (�k ; Jk+1):

Fig. 5 depicts the mean relative error against the job being inserted for each of the 3
datasets. Below we explain how the mean value is computed. Consider, say, the dataset
“m5”. The 15 job shop problems de3ne 15 series of insertion problem instances. We
computed the relative error when Jk+1 is inserted into �k in each of the 15 series and
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Fig. 5. The mean relative error between the optimal makespan and the ILP lower bound.

we took the mean of these numbers. We did the same with the other two datasets. The
result is 3 series of mean relative errors corresponding to the 3 datasets.
Observe that the mean relative error tends to 0 as the problem size, i.e., the number

of scheduled jobs, increases for each of the 3 datasets. This is what we expected, since
clearly, OPT (�k ; Jk+1)=OPT (�k−1; JK) decreases as k increases and OPT (�k−1; Jk)6
LB(�k ; Jk+1)6OPT (�k ; Jk+1) hold.
In “m10” after inserting 20 jobs the mean relative error increases. The reason is that

the sample reduces to 5 insertion problem instances obtained from la31-la35, the other
job shop problem instances in the dataset having at most 20 jobs.
Fig. 6 summarises the maximum relative error in the 3 datasets. The results depicted

were obtained the same way as those in the previous 3gure except that we took the
maximum instead of the mean of the sample. The development of the maximum relative
error is similar to that of the mean, i.e., it tends to 0.
Fig. 7 shows the relative error from a diJerent angle. We can state that in the great

majority of cases the relative error is below 1%.

6.2. Computation time

A very important issue is the computation time needed to calculate the lower bounds.
The running time of our procedure is primarily determined by the method for testing
whether P(UB) �= ∅ (cf. Section 5). We have described 2 methods, a combinatorial one
and another based on linear programming. It turned out that the combinatorial method
is much more eNcient than linear programming. Interestingly, when we used the linear
programming package CPLEX, most of the time was spent on creating the instance
in CPLEX, testing whether a feasible solution exists took much less time. Since the
results with linear programming are discouraging, we present the computation times
for the combinatorial method only.
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Fig. 6. The maximum relative error between the optimal makespan and the ILP lower bound.

Fig. 7. Cumulative results. The heights of the bars indicate the number of instances with relative error
between the cutoJ points.

The computing environment was a PC with a 400 MHz CPU under the Linux operat-
ing system. In this processing environment the smallest measurable time unit is 0:01 s.
Our algorithm was coded in C and was compiled by the “egcs-2.91.66” compiler.
For all instances in the “m5” dataset, the time needed to compute the lower bound

was never more than 0:015 s, so we do not provide a detailed diagram.
Figs. 8 and 9 depict the computation times on the “m10” and “m15” datasets, re-

spectively. The two ends of the errorbar over job k indicate the minimum and the
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Fig. 8. CPU times of inserting jobs on 10 machines.

Fig. 9. CPU times of inserting jobs on 15 machines.

maximum time needed to compute the lower bound upon solving the kth instance of
the insertion problem series de3ned by the dataset. Moreover, the “diamonds” on the
errorbars indicate the mean computation times.
We can observe that in both datasets the mean computation time follows a quadratic

curve. Moreover, in the “m15” dataset it increases more rapidly than in the “m10”
dataset, which is quite expected. However, even in this case the computing time is by
no means prohibitive for practical computations.
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7. Conclusions and future work

In this paper we have studied the job insertion problem. We have given various
characterisations of feasible insertions and developed a lower bounding method. To
our best knowledge, no lower bound was known to this problem. Our computational
results show that the bound is strong and can be computed eNciently in polynomial
time.
There are various directions to continue this work, some of them have partially been

explored in [14]. We have developed a branch-and-bound algorithm to solve the job
insertion problem to optimality in which the lower bound in each search tree node is
computed by the method proposed in this paper. The computational results are quite
promising and we plan to report on an extensive computational study in a forthcoming
paper.
The job insertion problem can be de3ned for more general scheduling problems as

well, e.g., when the operations of the jobs must be processed on sets of machines
instead of single machines. In this case the characterisation of the set of feasible
insertions of a sequence of operations into a schedule is a major open problem. Note
that a lot of work has been done on inserting a single operation that requires a set
of machines, see e.g., [10,6,4,14]. We believe that these results can be extended to a
theory of the simultaneous insertion of a sequence of operations where each operation
in the sequence may require several machines.
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