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Abstract

Finding augmenting chains is in the heart of the maximum matching problem, which is equivalent to the maximum s
problem in the class of line graphs. Due to the celebrated result of Edmonds, augmenting chains can be found in line
polynomial time. Minty and Sbihi generalized this result to claw-free graphs. In this paper we extend it to larger class
particular consequence, a new polynomially solvable case for the maximum stable set problem has been detected.
 2003 Elsevier Science B.V. All rights reserved.
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We consider simple undirected graphs witho
loops and multiple edges. As usual,Pn is the chordless
chain (path) onn vertices. BySi,j,k we denote a tree
with exactly three vertices of degree one being
distancei, j, k from the only vertex of degree thre
In particular,S1,1,1 is a claw, and S1,1,2 is a fork.
A banner is the graph with verticesa, b, c, d, e and

* Corresponding author.
E-mail address:david.schindl@epfl.ch (D. Schindl).

1 Research of the first author has been subsidized by NS
Grant number 105384-02.

2 Research of the second one has been partially supporte
the Office of Naval Research (Grant N00014-92-J-1375) and
National Science Foundation (Grant DMS-9806389).

3 Author acknowledges a partial support of the Swiss Natio
Science Foundation, subsidy 2100-63409.00, holder D. de W
Swiss Federal Institute of Technology.

0020-0190/03/$ – see front matter 2003 Elsevier Science B.V. A
doi:10.1016/S0020-0190(03)00223-0
subset of vertices adjacent tov.
A matching in a graph is a subset of edges

two of which have a vertex in common, and astable
set is a subset of pairwise non-adjacent vertic
The problem of finding a matching of maximu
cardinality is a special case of the maximum sta
set problem, when restricted to the class of l
graphs. In general, the maximum stable set prob
is NP-hard, while the maximum matching proble
is polynomially solvable. The first polynomial tim
algorithm to find a maximum matching has be
proposed by Edmonds [5]. The algorithm explo
the idea of Berge that a matchingM in a graph is
maximum if and only if there are no augmenti
(alternating) chains forM [3]. Later, this idea has
been used independently by Minty [10] and Sbihi [1
in order to extend Edmonds’ result to a polynom
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time algorithm for the maximum stable set problem
in the class of claw-free graphs, an extension of
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then the maximum stable set problem can be solved
efficiently with this approach.
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the line graphs. In his paper, Minty also propos
a generalization of this result to the weighted ca
but more recently Nakamura and Tamura [15] show
that his proof fails some special cases and g
modifications to overcome it.

Finding augmenting chains is a special case
a general approach to solve the stable set prob
known as the augmenting graph technique. In the n
section we roughly describe the idea of this appro
and mention several particular classes of graphs w
it provides a polynomial time solution. For som
classes, finding augmenting chains is the only o
question to fix a polynomial algorithm for the stab
set problem. In the present paper we concent
on this question and answer it positively for certa
extensions of claw-free graphs. As a result, we rev
a new polynomially solvable case for the stable
problem, generalizing the result of Minty and Sbihi
well as some other particular cases. Notice that s
our result is only applied to the unweighted case
does not generalize the one of Nakamura and Tam

2. Preliminaries

Let G be a graph andS a stable set inG. We
call the vertices ofS whiteand the remaining vertice
of the graphblack. A bipartite graphH = (W,B,E)

with parts W and B is called augmenting forS if
|B| > |W |, W ⊆ S, B ⊆ V (G)−S, andN(b)∩S ⊆ W

for each vertexb ∈ B. Clearly, if H is augmenting
for S, then S is not of maximum cardinality, sinc
S′ = (S − W) ∪ B is a larger stable set. The conver
is also true: ifS is not a maximum stable set, andS′
is a stable set with|S′| > |S|, then the subgraph ofG
induced by the set(S − S′) ∪ (S′ − S) is augmenting
for S. Thus, the problem of finding a stable set
maximum cardinality is polynomially equivalent t
detecting augmenting graphs. In general, this is an
hard problem. However, if for a certain class of grap
we have

(a) a complete list of augmenting graphs,
(b) a polynomial time algorithm for detecting ea

augmenting graph in the list,
For instance, for the class of claw-free grap
question (a) has a simple answer. Indeed, by definit
augmenting graphs are bipartite, and each vertex
claw-free bipartite graph clearly has degree at m
two. Hence, every connected claw-free bipartite gr
is either an even cycle or a chain. Cycles of ev
length and chains of odd length cannot be augmen
since they have equal number of vertices in both pa
Thus, every connected claw-free augmenting grap
a chain of even length. However, finding augment
chains is not a trivial task. In 1980, Minty proposed
way to determine whether a claw-free graph conta
an augmenting chain by reducing the problem to
class of line graphs, i.e., to the maximum match
problem.

In 1999, Alekseev [1] extended the result of Min
to the class of fork-free graphs. He has shown
every connected fork-free augmenting graph is eit
a chain or an almost complete bipartite graph (i
a graph in which every vertex has at most one n
neighbor in the opposite part), and has proven
both types of augmenting graphs can be found
polynomial time in fork-free graphs.

Many other classes have been recently studied
possible application of the augmenting graph te
nique (see, e.g., [2,4,6–9,11–13]). For many of the
polynomial algorithms have been designed. For c
tain classes, only partial information has been
tained. For instance, for the class of(S1,2,4,banner)-
free graphs (an extension of claw-free graphs) qu
tion (a) has been solved completely [6], while for (
only partial solution is available: the only open pro
lem is how to find augmenting chains in polynom
time in that class of graphs. In the next section we
tle this problem even for more general graphs by
ducing it to the class of claw-free graphs. To this e
we can make the following assumptions that are h
ful for finding augmenting chains in arbitrary graph

In order to determine whetherS admits an aug
menting chain, we consider two black non-adjac
vertices, denotedx0 andxk , each of which has exactl
one white neighbor. IfG contains no such vertice
then obviously there is no augmenting chain forS.
Having found such a pair of vertices, we determ
whether there exists an augmenting chain withx0 and
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xk being the endpoints. Without loss of generality we
assume that
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be a candidate pair of alternating chains withL =
(x0, x1, x2) and R = (xk−m,xk−m+1, . . . , xk−1, xk),

or

or
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(1) each white vertex has at least two black neighb
(2) each black vertex different fromx0 and xk has

exactly two white neighbors,
(3) no black vertex is adjacent tox0 or xk.

The vertices not satisfying these assumptions ca
simply removed from the graph, since they can
occur in any augmenting chain connectingx0 to xk.

3. Augmenting chains in (S1,2,i,banner)-free
graphs

Let G = (V ,E) be a (S1,2,i,banner)-free graph,
and S a maximal stable set inG. We look for an
augmenting chain of the formP = (x0, x1, x2, . . . ,

xk−1, xk) (k is even) where the even-indexed vertic
of P are black, and the odd-indexed vertices are wh
To simplify the proof we start with a preprocessi
consisting in detecting augmenting chains with
most i + 3 vertices. In order to determine whetherS

admits an augmenting chain with at leasti +4 vertices
(i.e., k � i + 3), we first find two black non-adjace
verticesx0 to xk , as suggested above, and then t
disjoint chordless alternating chainsL = (x0, x1, x2)

and R = (xk−m,xk−m+1, . . . , xk−1, xk) such that no
vertex ofL is adjacent to any vertex ofR, and where
m = 2�i/2� and each vertexxj is black if and only ifj
is even. Such a pair(L,R) of alternating chains is sai
candidate. Our purpose is to find an augmenting cha
containingL andR as subchains. Evidently, if ther
are no such chains, then there is no augmenting c
with at leasti + 4 vertices betweenx0 andxk. Having
found a candidate pair(L,R) of alternating chains, we
may furthermore assume that

(4) no black vertex outsideL andR has a neighbor in
L or R.

Again, the vertices not satisfying the assumption
be removed from the graph, as the desired chain ca
contain them.

Lemma 1. Let G = (V ,E) be a(S1,2,i ,banner)-free
graph, andS a maximal stable set inG. Let (L,R)
t

and assume that the vertices ofG satisfy (1)–(4). If
S admits an augmenting chainP = (x0, . . . , xk), then
no vertex ofP is the center of an induced claw.

Proof. By contradiction, assume thatG contains a
claw C(a;b, c, d) whose centera is a vertexxj on
P . Notice that since each black vertex ofP has all
its white neighbors defined, each vertex ofC \ P

is black. We shall use the following convention: f
a black vertexv ∈ {b, c, d}, if only one of the two
white neighbors ofv is defined explicitly, then the
other is denoted̄v. Also, for a vertexv belonging to
C \P , we denote byr(v) the largest index in{3,4, . . . ,
k − m − 1} such thatv is adjacent toxr(v). We now
analyze three cases: exactly one (C1), two (C2)
three (C3) vertices in{b, c, d} do not belong toP .

Case (C1). We may assumeb = xj−1 and c =
xj+1. Then d is adjacent neither toxj−2 nor to
xj+2, else there is aBanner(c, a, b, xj−2, d) or a
Banner(b, a, c, xj+2, d), respectively. But then w
have either anS1,2,i(xj+i , . . . , xj−2, d) if r(d) = j , or
anS1,2,i(xr(d)+i−2, . . . , xr(d), d, a, b, xj−2, c) if r(d)>

j , a contradiction.
Case(C2). Assume thatb belongs toP while c and

d are outsideP . Then vertexb is either equal toxj−1
or toxj+1. If b = xj−1, thenxj+1 is adjacent both toc
andd to avoid (C1), andxj−2 is adjacent neither toc
nor tod , else there is aBanner(b, xj−2, c, xj+1, d), a
Banner(c, a, b, xj−2, d) or aBanner(d, a, b, xj−2, c).
By symmetry, ifb = xj+1, thenxj−1 is adjacent both
to c and d , while xj+2 is adjacent neither toc nor
to d . In both cases we havēc �= d̄, else there is
a Banner(b, a, c, c̄, d). Moreover,r(c) �= r(d), since
otherwise there is either aBanner(b, a, c, xr(c), d) (if
r(c) > j + 1) or anS1,2,i(xj+i+1, . . . , xj+1, c, c̄, d).
But we may then assumer(c) > r(d), and we there
fore have anS1,2,i(xr(c)+i−2, . . . , xr(c), c, a, d, d̄, b)

(if d̄ �= xr(c)−1) or anS1,2,i(xr(c)+i, . . . , xr(c), d̄, d, c),
a contradiction.

Case(C3). Without loss of generality suppose th
the clawC(a;b, c, d) with centera = xj minimizes
j . Notice first that r(b), r(c) and r(d) are three
different integers, else we may assumer(b) = r(c)

and the clawC(xr(c);xr(c)+1, b, c) contradicts (C2).
Moreover, by minimality ofj and by (C2), we know
that xj−1 has exactly two neighbors in{b, c, d}, say
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b and c. To avoid (C1) and (C2) we conclude that
xj+1 is adjacent tod and has at least one neighbor
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With an exhaustive search all candidate pairs(L,R)

of alternating chains can be found in time O(n(i+2)/2).
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in {b, c}, say c. Then xj+1 is not adjacent tob to
avoid a Banner(d, xj+1, b, xj−1, c). We prove now
that each white vertexw /∈ {xj−1, xj , xj+1} is adjacent
to at most one vertex in{b, c, d}. If this is not the
case, then such a white vertexw is adjacent tob, c

and d , otherwise a banner appears. Consequentla

is a white vertex, since otherwisec would have three
white neighborsxj−1, xj+1 andw; but we know by
minimality of j that w �= xj−2, and therefore ther
exists a clawC(xj−1;xj−2, b, c), which contradicts
(C2). Now let v1 and v2 be the vertices in{b, d}
renamed in such a way thatr(v1) > r(v2), and let
v2 denote the white neighbor ofv2 which is not in
{xj−1, xj , xj+1}. If r(c) > r(v1), then there is an
S1,2,i(xr(c)+i−2, . . . , xr(c), c, a, v2, v2, v1). Otherwise,
there is aS1,2,i(xr(v1)+i−2, . . . , xr(v1), v1, a, v2, v2, c)

(if v2 �= xr(v1)−1) or anS1,2,i(xr(v1)+i , . . . , xr(v1), v2,

v2, v1), a contradiction. ✷
Theorem 2. Given an(S1,2,i,banner)-free graphG,
and a stable setS in G, one can determine whetherS

admits an augmenting chain in timeO(n(i+14)/2).

Proof. Augmenting chains of small lengthk < i + 3
can be found in a trivial way in time O(n(i+4)/2) by
inspecting all subsets of black vertices of cardina
at most(i +4)/2. To detect a larger augmenting cha
we first find a pair of black verticesx0 and xk as
described above, and then remove fromG all the black
vertices not satisfying (2) and (3). For the given pairx0

andxk, we do the following:

Find all candidate pairs(L,R) of alternating chains
and for each such pair, do steps (a) through (d):

(a) remove all black vertices that have a neighbo
L or in R,

(b) remove the vertices ofL andR except forx2 and
xk−m,

(c) remove all the vertices that are the center of a c
in the remaining graph,

(d) in the resulting claw-free graph, determine whe
er there exists an augmenting chain betweenx2

andxk−m.
For each such pair, steps (a) through (d) can
implemented in time O(n4). So, the total time for
finding an augmenting chain betweenx0 and xk is
O(n(i+10)/2). In the worst case, we have to che
O(n2) pairs of black vertices for being the endpoin
of augmenting chain. Hence the conclusion.✷

4. Application to (S1,2,4,banner)-free graphs

The complete description of minimal (inclusio
wise) augmenting graphs in the class of(S1,2,4,

banner)-free graphs has been found in [6].

Theorem 3. A minimal augmenting(S1,2,4,banner)-
free graph is one of the following graphs(see Fig.1)

• a complete bipartite graph,
• a chain,
• a simple augmenting tree,
• a plant,
• one of the graphsF1, . . . ,F9.

Every graph in the listF1, . . . ,F9 has at most 7
black vertices. So, these graphs can be detecte
time O(n7). An O(n6) algorithm is described in [2
for finding simple augmenting trees and plants
(S1,2,4,banner)-free graphs. By Theorem 2, an au
menting chain in that class can be determined in t
O(n9). Thus, in at most O(n10) steps we can find
stable set in an(S1,2,4,banner)-free graph that admit
no augmenting graph except possibly complete bip
tite graphs. LetC be a subclass ofbanner-free graphs
It is proved in [2] that if for every graph inC one
can determine in time O(nk) a stable set that admi
no augmenting graph except possibly complete bip
tite graphs, then one can solve the maximum stable
problem inC in time O(nmax{4,k+1}). Summarizing the
above arguments, we conclude that

Theorem 4. Given an(S1,2,4,banner)-free graphG

with n vertices, one can find a stable set of maxim
cardinality in timeO(n11).
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in
Fig. 1. Augmenting treeTr , plantDr and graphsF1, . . . ,F9.

5. Conclusion Res. 6 (4) (1999) 3–19 (in Russian); transl. to appear
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The paper proves that augmenting chains can
found in polynomial time in the class of(S1,2,i,

banner)-free graphs, for any particular value ofi.
Together with the results in [2] and [6] this leads
the conclusion that the maximum stable set problem
polynomially solvable in the class of(S1,2,4,banner)-
free graphs. Our result generalizes polynomial ti
algorithms for claw-free graphs [10,16],(P6,C4)-free
graphs [12], and(P7,banner)-free graphs [2]. Notice
that the maximum stable set problem is NP-hard
C4-free (and hence for banner-free) graphs [14].
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