
Variable Space Search for Graph Coloring

Alain Hertz1 Matthieu Plumettaz2 Nicolas Zufferey3

December 2006

Abstract

Let G = (V,E) be a graph with vertex set V and edge set E. The
k-coloring problem is to assign a color (a number chosen in {1, . . . , k})
to each vertex of G so that no edge has both endpoints with the same
color. We propose a new local search methodology, called Variable
Space Search, which we apply to the k-coloring problem. The main
idea is to consider several search spaces, with various neighborhoods
and objective functions, and to move from one to another when the
search is blocked at a local optimum in a given search space. The
k-coloring problem is thus solved by combining different formulations
of the problem which are not equivalent, in the sense that some con-
straints are possibly relaxed in one search space and always satisfied
in another. We show that the proposed algorithm improves on ev-
ery local search used independently (i.e., with a unique search space),
and is competitive with the currently best coloring methods, which are
complex hybrid evolutionary algorithms.

1 Introduction

The Graph Coloring Problem (GCP for short) is a well known NP-hard
problem [11]. Given a graph G = (V, E), with vertex set V and edge set E,
the GCP is to assign a color to every vertex, such that no edge has both
endpoints with the same color, while minimizing the number of used colors.
The smallest number of colors needed to color G is called the chromatic num-
ber of G and is denoted χ(G). Applications include scheduling, frequency

1École Polytechnique de Montréal, Département de mathématiques et de génie indus-
triel, Montréal (QC) H3C 3A7, Canada

2École Polytechnique Fédérale de Lausanne (EPFL), Chaire de Recherche Opéra-
tionnelle Sud-Est (ROSE), CH-1015 Lausanne, Switzerland

3Corresponding author, Université Laval, Département d’opérations et systèmes de
décision, Québec (QC) G1K 7P4, Canada

1

assignment, register allocation and stock management [25]. Although many
exact algorithms have been devised for this problem [3, 4, 5, 14, 17, 19, 23],
such algorithms can only be used to solve small instances (up to 100 ver-
tices). Heuristics coloring algorithms, on the other hand, can be used on
much larger instances, but only to get an upper bound on χ(G). The most
efficient heuristic algorithms are local search methods (e.g., [1, 2, 15]) and
population based methods (e.g. [7, 8, 16, 18, 22]). For more information
about such algorithms, the reader may refer to [9].

We propose in this paper a new local search methodology, called Variable
Space Search (VSS for short). It is an extension of the well known Variable
Neighborhood Search (VNS for short) [20]. While VNS uses several neigh-
borhoods to escape from local optimum in a search space, we propose to use
different formulations of the same problem, each one being associated with
its proper search space, neighborhoods and objective function. VSS moves
from a search space to another when it is trapped in a local optimum.

In the next section, we describe VSS with more details, while Section 3
contains three formulations of the graph coloring problem, each one being
associated with a search space, neighborhoods and an objective function.
We also describe how to translate a solution from a search space to another.
Section 4 demonstrates how the search spaces complement each other. More
precisely, we give examples where a solution in a search space is a local
optimum, while translating this solution into another search space makes
it possible to improve the solution. In Section 5, we describe the proposed
adaptation of VSS to the graph coloring problem. Section 6 is devoted to
computational experiments and we conclude with final remarks.

2 Variable Space Search

Three ingredients must be defined when designing a local search for a par-
ticular problem: a search space S, an objective function f(s) that measures
the quality of each solution in S, and a neighborhood structure N(s). A
local search generates a sequence s0, s1, . . . , sr of solutions in S, where s0

is an initial solution and each si (i > 0) belongs to N(si−1). The transfor-
mation from si to si+1 is called a move. Tabu Search (TS for short) is one
of the most famous local search algorithms. In order to avoid cycling, TS
uses a tabu list that contains forbidden moves. Hence, a move m from si−1

to si can only be performed if m does not belong to the tabu list, unless
f(si) < f(s∗), where s∗ is the best solution encountered so far. For more
details on Tabu Search, the reader may refer to [13].

2

In 1997, Mladenović and Hansen [20] proposed the VNS algorithms that
uses several neighborhoods to better diversify the search and better escape
from local optima. We propose to use not only several neighborhoods, but
also several objective functions and several search spaces.

Consider a set of search spaces {S1, S2, . . . , Sr} with their respective ob-
jective functions {f1, f2, . . . , fr}. For each search space Si, consider a set Ni

of neighborhoods which can be used in Si for minimizing fi. Consider fi-
nally a set of translators Tij that transform any solution in Si into a solution
in Sj . The following algorithm, called Variable Space Search (or VSS for
short), performs a local search in the different search spaces, always using
the associated neighborhoods and objective function.

Algorithm 1 Variable Space Search

Set i := 1
Generate an initial solution s ∈ S1

while no stopping criterion is met do

Perform a local search in Si, with objective function fi, using the neigh-
borhoods in Ni, and starting from s; let s′ be the resulting solution;
Translate s′ into a solution s ∈ Sj using Tij , where j = (i mod r) + 1;
Set i← (i mod r) + 1;

end while

The above algorithm can be modified in various ways, for example by
choosing the next search space according to the quality of the solutions
it provided in the past. The idea of using more than one search spaces
was already proposed and used in [21], where a circle packing problem is
solved using two formulations, one with Cartesian and the other one with
polar coordinates. Their algorithm, called Reformulation Descent, is how-
ever different from VSS. First of all, the search spaces considered in [21]
both contain the same set of solutions since they only differ in the way of
coding a solution. For comparison, VSS does not require a one to one corre-
spondence between the solutions in Si and those in Sj (i 6= j). For example,
a constraint can be relaxed in one search space Si (and violations are then
penalized in the objective function fi), while it can be always satisfied in an-
other. As a consequence, a neighborhood which is appropriate for a solution
space Si possibly generates non feasible solutions for another search space.
This is not the case in the Reformulation Descent of [21] since the same kind
of moves to neighbor solutions are considered in all search spaces. Notice
also that the Reformulation Descent algorithm uses a descent algorithm in

3

each search space, while VSS can use any local search technique (e.g., tabu
search, simulated annealing).

3 Three search spaces for graph coloring

Given a graph G = (V, E) with vertex set V and edge set E, and given
an integer k, a k-coloring of G is a function c : V −→ {1, . . . , k}. The
value c(x) of a vertex x is called the color of x. The vertices with color i

(1 ≤ i ≤ k) define a color class, denoted Vi. If two adjacent vertices x and
y have the same color i, vertices x and y, the edge [x, y] and color i are said
conflicting. A k-coloring without conflicting edges is said legal and its color
classes are called stable sets. The Graph Coloring Problem (GCP for short)
is to determine the smallest integer k, called chromatic number of G and
denoted χ(G), such that there exists a legal k-coloring of G.

Given a fixed integer k, the optimization problem k −GCP is to deter-
mine a k-coloring of G that minimizes the number of conflicting edges. If
the optimal value of the k − GCP is zero, this means that G has a legal
k-coloring. A local search algorithm for the GCP can be used to solve the
k−GCP by simply stopping the search as soon as a legal k-coloring is met.
Also, an algorithm that solves the k −GCP can be used to solve the GCP,
by starting with an upper bound k on χ(G), and then decreasing k as long
as a legal k-coloring can be found .

We now describe three search spaces that we use within a VSS to solve
the GCP and the k − GCP . A solution to the k − GCP must satisfy two
constraints: no edge can have both endpoints with the same color, and all
vertices must be colored. The first two considered search spaces relax one of
the two constraints, while the third one satisfy all of them. More precisely,
let S1 denote the set of all (non necessarily legal) k-colorings of G, and let
f1(s) be the number of conflicting edges in a solution s ∈ S1. For every k-
coloring s ∈ S1, define N1(s) as the set of k-colorings obtained by changing
the color of exactly one vertex in s. The famous TabuCol algorithm [15],
developed by Hertz and de Werra in 1987, is a tabu search algorithm for the
k −GCP , the aim being to minimize f1 over S1 using neighborhood N1. It
is a simple, quick and efficient algorithm that is often used as a subroutine
in various methods, such as the hybrid evolutionary algorithms in [7], the
genetic algorithm in [8], the adaptive memory algorithm in [16], and the
VNS in [1].

Instead of relaxing the constraint that the endpoints of an edge should
have different colors, one may relax the constraint imposing that all vertices

4

should be colored. In 1996, Morgenstern [22] proposed the following strategy
for the solution of the k −GCP . He considers the set, which we denote S2,
of partial legal k-colorings which are defined as legal k-coloring of a subset of
vertices of G. Such colorings can be represented by a partition of the vertex
set into k + 1 subsets V1, . . . , Vk+1, where V1, . . . , Vk are k disjoint stable
sets (i.e. legal color classes) and Vk+1 is the set of non colored vertices. The
objective can be to minimize the number of vertices in Vk+1 or, as suggested
by Morgenstern [22], to minimize f(s) =

∑
v∈Vk+1

d(v), where d(v) denotes
the number of edges incident to v. A neighbor solution can be obtained by
moving a vertex v from Vk+1 to a color class Vi, and by moving to Vk+1 each
vertex in Vi that is adjacent to v. Such a move is called an i-swap. Recently,
Bloechliger and Zufferey [2] have obtained very good results using a reactive
tabu search based on this strategy, with f2(s) being equal to the number
of non colored vertices in s ∈ S2. We denote N2(s) the set containing all
solutions in S2 that can be obtained from s with an i-swap.

For the third search space, there is no fixed number of colors, and we do
not relax any constraints. The following definitions are helpful to describe
this search space. A digraph is a graph with an orientation on each edge.
An edge (u, v) oriented from u to v is called an arc, is denoted u → v, and
u is its tail while v is its head. An orientation of a graph G is a directed
graph, denoted ~G, obtained from G by choosing an orientation u → v or
v → u for each edge (u, v) in G. Gallai, Roy and Vitaver [10, 24, 26] have
independently proved in the sixties that the length of a longest path in an
orientation of a graph G is at least equal to the chromatic number of G.
As a corollary, the problem of orienting the edges of a graph so that the
resulting digraph ~G is circuit-free and the length λ(~G) of a longest path in
~G is minimum, is equivalent to the problem of finding the chromatic number
of G. Indeed, given a χ(G)-coloring c of a graph G, one can easily construct
a circuit-free orientation ~G with λ(~G) ≤ χ(G) by simply orienting each edge
(u, v) from u to v if and only if c(u) < c(v). Conversely, given a circuit-free
orientation ~G of G, one can build a λ(~G)-coloring of G by assigning to each
vertex v a color c(v) equal to the length of a longest path ending at v in ~G.
Such an equivalence has recently been analyzed in [12] in the context of a
local search. More precisely Gendron, Hertz and St-Louis propose to define
the search space S3 as the set containing all circuit-free graph orientations ~G

of G, the objective being to minimize f3(~G) = λ(~G). They propose several
neighborhoods including the following one. Given a solution ~G ∈ S3, let ~Gλ

denote the digraph obtained by removing all arcs that do not belong to a
longest path in ~G. A neighbor of ~G can be obtained by choosing a vertex
x and changing the orientation of all arcs with head x in ~Gλ, or of all arcs

5

with tail x in ~Gλ. It is proved in [12] that such a move does not create any
circuit, and increases the length of a longest path by at most one unit. We
will use this neighborhood, denoted N3, to minimize f3 over S3.

We now describe how we translate a solution from Si to a solution in
Sj with i 6= j. Translator T12 builds a legal partial k-coloring in S2 from
a k-coloring in S1 by randomly choosing an endpoint of each conflicting
edge, and inserting these chosen vertices into Vk+1. Translator T21 builds
a k-coloring in S1 from a legal partial k-coloring in S2 by considering the
vertices in Vk+1 one by one, in a random order, and giving to each of them
the color in {1, . . . , k} that creates the smallest number of conflicting edges.

Translators T13 and T23 build an orientation ~G ∈ S3 from a solution in
S1 ∪ S2 by labeling the vertices of G = (V, E) from 1 to |V |, and by then
considering every pair of adjacent vertices x ∈ Vi and y ∈ Vj , and orienting
[x, y] from x to y if and only if i < j, or i = j and the label of x is smaller
than the label of y.

Finally, given any solution in S3, let Vi be the set of vertices x such that
the longest path ending at x contains i vertices. Translator T31 builds a
k-coloring in S1 by giving color i to every vertex in Vi, with 1 ≤ i ≤ k,
and then coloring the remaining vertices sequentially, in a random order,
each one receiving a color in {1, . . . , k} that creates the smallest number of
conflicting edges. Translator T32 first relabels the indices of the sets Vi so
that |Vi| ≥ |Vj | whenever i < j. Then all sets Vk+1, . . . , Vλ(~G) are merged
into one set Vk+1.

4 Complementariness of the search spaces

In this section we demonstrate the usefulness of each search space by show-
ing that a strict local but not global optimum s according to Ni and fi in
Si (i.e., a solution s ∈ Si that is not optimal while fi(s) < fi(s

′) for all
s′ ∈ Ni(s)) can be translated into a solution s′ ∈ Sj with i 6= j such that
s′ can be transformed into an optimal solution in Sj using Nj , and without
increasing fj . The numbers inside the vertices in the following figures refer
to colors (hence vertices in Vk+1 have no number), and bold edges represent
conflicting edges.

The top graph of Figure 1 is a 2-coloring s ∈ S1 with f1(s) = 4 conflicting
edges. All neighbors s′ ∈ N1(s) have f1(s

′) = 5 conflicting edges, which

6

proves that s is a strict local optimum in S1. The four possible translations
(up to symmetry) obtained using T12 are represented at the bottom of Figure
1. They all have 4 non colored vertices.

• In case (1), the graph can be transformed into a legal 2-coloring by
successively coloring a, b, c and d, decreasing f2 from 4 to 0.

• In case (2), vertex c is not adjacent to any vertex of color 2, and
a neighbor s1 with f2(s1) = 3 can therefore be obtained by giving
color 2 to c. Then all 3 non colored vertices b, d and e have only
one neighbor (vertex a) with color 1 and two with color 2. Color 1 is
therefore assigned to one of them, while the color on a is removed. The
resulting graph is a neighbor s2 ∈ N2(s1) with f2(s2) = 3. Finally, s2

can be transformed into a legal 2-coloring of G by successively coloring
the three non colored vertices, decreasing f2 from 3 to 0.

• In case (3), all non colored vertices are adjacent to one vertex with
one of the colors in {1, 2} and to two vertices with the other color.
Without loss of generality, one may assume that color 1 is assigned to
vertex g while the color on c is removed. The resulting solution s′ has
f2(s

′) = 4, and it corresponds to case (2) for which we have already
shown how to get a legal 2-coloring without increasing f2.

• In case (4), all non colored vertices are adjacent to one vertex with
color 1 and to one vertex with color 2. Without loss of generality,
one may assume that color 2 is assigned to vertex f , while color 2 is
removed from b, and we are again in case (2).

1 2 1 2

1 2 1 2

a b c d

e f g h

1

2 1 2

a b c d

e f g h

1 1

2 2

a b c d

e f g h

1 2

1 2

a b c d

e f g h
1 2 1 2

a b c d

e f g h

(1) (2) (3) (4)

Figure 1: S1 → S2

7

The left graph of Figure 2 is a 3-coloring s with f1(s) = 1 conflicting
edge. Since all solutions s′ ∈ N1(s) are obtained by changing the color of
one of the vertices with color 1, they all have f1(s

′) = 2 conflicting edges.
Solution s is therefore a local optimum in S1. The right graph of Figure 2 is
the translation of s obtained using T13 and corresponds to a legal 3-coloring.

1 1

3

3

2

2

1 2

3

3

3

3

Figure 2: S1 → S3

The left graph of Figure 3 is a legal partial 3-coloring s with f2(s)=1
non colored vertex. Since the non colored vertex is adjacent to two vertices
with color 2, and three vertices with colors 1 and 3, all neighbors s′ ∈ N2(s)
will have at least two non colored vertices, which means that s is a strict
local optimum in S2. The right graph of Figure 3 is the translation s′ of s

obtained using T21. It contains f1(s
′) = 2 conflicting edges which can be

removed by assigning color 3 to the non common endpoints of these two
edges.

3
1

3

1

2

2

1
3

3
1

3

1

2

2

1
3

2

Figure 3: S2 → S1

The left graph of Figure 4 is a legal partial 3-coloring s with f2(s)=1
non colored vertex. Since the non colored vertex is adjacent to two vertices
with color 1, 2 and 3, all neighbors s′ ∈ N2(s) will have f2(s

′) = 2, which
means that s is a strict local optimum in S2. The right graph of Figure 4 is
the translation of s obtained using T23 and corresponds to a legal 3-coloring.

8

3
1

2

2

1
3

2
1

2

2

1
2

3

Figure 4: S2 → S3

The left graph of Figure 5 is a local optimum s ∈ S3 with f3(s) = 4 since
it can easily be verified that all neighbors s′ ∈ N3(s) have a longest path
with f3(s

′) = 5 vertices. The right graph of Figure 5 is the translation of s

obtained using T31 and corresponds to a legal 3-coloring.

1

32

4

4 1

23

1

32

4

4 1

23

Figure 5: S3 → S1

Finally, it can be checked that the left graph of Figure 6 is a local op-
timum s ∈ S3 with f3(s) = 4 since all neighbors s′ ∈ N3(s) have a longest
path with f3(s

′) = 5 vertices. The right graph of Figure 6 is the translation
of s obtained using T32. It contains two non colored vertices to which color
1 can be assigned to get a legal 3-coloring, and thus decrease f2 from 2 to 0.

1

32

4

4 1

23

1

32

1

23

2

1 3

2

1 3

Figure 6: S3 → S2

9

5 VSS for graph coloring

We now show how we have adapted VSS to solve the k−GCP . After some
preliminary experiments, we have found that the sequence S1 → S3 → S2 →
S1 of search spaces, called a cycle, appears as a good choice, each translation
from an Si to its successor being easy to perform.

The first search space we use is S1 with neighborhood N1 and objective
function f1, the aim being to determine a legal k-coloring of a graph G

with a fixed k. We have implemented the tabu search algorithm TabuCol
described in [15]. The tabu list contains pairs (v, c) with the meaning that
it is forbidden for some iterations to assign color c to v. A move from a
solution s to a neighbor s′ ∈ N1(s) consists in changing the current color
c1 of a vertex v for a new color c2, where v is the endpoint of at least
one conflicting edge. When such a move is performed, the pair (v, c1) is
introduced in the tabu list. As proposed in [8], the pair (v, c1) is considered
as tabu for 0.6 ·nc +RANDOM(0, 9), where nc is the number of conflicting
vertices in the current solution, and RANDOM(0, 9) is a function providing
a random integer in {0, 1, . . . , 9}. TabuCol is applied until IT iterations
have been performed without improvement of the best encountered solution
(where IT is a parameter). Let sTC be the resulting solution.

We then remove the conflicting edges in sTC from G to get a legal k-
coloring of a partial subgraph G′ of G, and translate the legal k-coloring
of G′ into an orientation ~G′ of G′, using T13. Notice that λ(~G′) ≤ k, the
inequality being possibly strict. For example, the left graph of Figure 7 has
one conflicting edge, and by removing it and translating the legal 3-coloring
of the resulting partial subgraph G′ of G, using T13, one gets an orientation
~G′ with λ(~G′) = 2.

1 1

3

3

2

2

1 1

2

2

2

2

1 1

3

3

2

2

Figure 7: Illustration of a transformation used in VSS-Col

As shown in [12], a local search in S3 using neighborhood N3 and objec-
tive function f3 is rather slow, and not competitive with other local search
coloring algorithms. It can however be very useful in changing the color
of many vertices simultaneously, and constitutes therefore an interesting di-

10

versification strategy. For this purpose, we randomly choose an endpoint
v for each conflicting edge in sTC , and either inverse the orientation of all
arcs with head v in ~G′

λ, or of all arcs with tail v in ~G′
λ, the choice being

random. We then modify the resulting orientation by randomly generating
neighbors using N3, until at least MA arcs have been inversed (where MA

is a parameter). Finally, we sequentially reinsert the edges which have been
removed from G, giving to each of them the orientation that minimizes the
length of the longest path. Let sOR be the resulting solution.

We then translate sOR into a partial legal k-coloring using T32 and use the
tabu search algorithm PartialCol, proposed in [2], to improve the solution
using neighborhood N2 and objective function f2. As mentioned in Section
3, a neighbor s′ ∈ N2(s) of a solution in s ∈ S2 is obtained by moving
a vertex v from Vk+1 to a color class Vi (1 ≤ i ≤ k), and by moving to
Vk+1 each vertex in Vi that is adjacent to v. When performing such a move,
vertex v is introduced in the tabu list to prevent its reinsertion into Vk+1. As
proposed in [2], a vertex is considered as tabu for 0.6 ·nc +RANDOM(0, 9),
where nc is the number of vertices in Vk+1 in the current solution. Let sPC

be the resulting solution.
We finally translate sPC into a (non necessarily legal) k-coloring using

T21, and start a new cycle with TabuCol. We stop the algorithm when a time
limit TMAX is reached. Figure 8 shows the global scheme of the proposed
algorithm.

TabuCol

PartialCol

Arc

inversions

Search in S1 Search in S3

Search in S2

Figure 8: Cyclic scheme of the VSS algorithm for the k −GCP

Notice that the search search spaces do not play the same role. It has
been demonstrated that while TabuCol is an efficient algorithm, it can have
difficulties in exploring all regions of S1. The moves in S3 aim to diversify
the search by inversing the orientation of many arcs on longest paths, and
thus changing the color of many vertices without deteriorating too much
the quality of the solution. The aim of PartialCol is to quickly reduce the
number of uncolored vertices after having translated the resulting solution

11

in S3 into a partial legal k-coloring. TabuCol can then restart a new search
from a solution that belongs hopefully to a region of S1 that has not yet
been explored. The pseudo-code of VSS-Col is shown in Algorithm 2. It
uses the four parameters IT , IP , MA and TMAX .

Algorithm 2 VSS-Col

Require: A graph G and a number k of colors;

Generate an initial k-coloring s1
init ∈ S1;

while no legal k-coloring of G is found and TMAX is not reached do

(Search in S1)
Apply TabuCol starting from s1

init, until IT iterations have been per-
formed without improvement of the best encountered solution; let sTC

be the resulting solution;

(Translation T13)
Remove the conflicting edges in sTC from G to get a legal k-coloring
of a partial subgraph G′ of G, and translate the coloring of G′ into an
orientation s3

init ∈ S3, using T13;

(Search in S3)
Randomly choose an endpoint v for each conflicting edge in sTC and
either inverse the orientation of all arcs with head v in ~G′

λ, or of all
arcs with tail v in ~G′

λ, the choice being random;
Modify the resulting orientation by randomly generating neighbors us-
ing N3, until at least MA have been modified in s3

init;
Sequentially reinsert the edges which have been removed from G, giving
to each of them the orientation that minimizes f3, and let sOR be the
resulting solution;

(Translation T32)
Translate sOR into a legal partial k-coloring s2

init ∈ S2, using T32;

(Search in S2)
Apply PartialCol starting from s2

init, until IP iterations have been per-
formed without improvement of the best encountered solution; let sPC

be the resulting solution;

(Translation T21)
Translate sOR into a k-coloring s1

init ∈ S1, using T21;

end while

12

6 Results

Our algorithm was implemented in C++ and run on a 2GHz Pentium 4
with 512MB of RAM. After some preliminary experiments, we have decided
to fix the values of the parameters as follows. For graphs with at most 500
vertices, we use IT = 100, 000, IP = 20, 000 and MA = 10, while for larger
graphs, we use IT = 200, 000, IP = 20, 000 and MA = 20. Moreover if the
graph has a density smaller or equal to 0.1, we multiply IP by 50 and divide
MA by 2, because too many changes in S3 tend to create solutions in S2

with large values of |Vk+1|. It is probably possible to choose a better setting
of parameters for each graph, but our goal is to have generic parameters
which use only general characteristics of the graphs, and not to propose a
specific set of parameters for each instance.

We made two series of tests with two maximal computational times, the
first one with TMAX equal to 1 hour, and the second one with a 10 hours
limit. We ran our algorithm on 16 graphs from the DIMACS Challenge
[6]. After a preliminary set of experiments, and in adequation with the
literature (e.g. [2], [16]), we selected those graphs because they are the most
challenging ones. The considered graphs are described below.

• Six DSJCn.d graphs: the DSJC’s are random graphs with n vertices
and a density of d

10 . It means that each pair of vertices has a probability

of d
10 to be adjacent. We use the DSJC’s graphs with n ∈ {500, 1000}

and d ∈ {1, 5, 9}.

• Two DSJRn.r graphs: the DSJR’s are geometric random graph. They
are constructed by choosing n random points in the unit square and
two vertices are connected if they are distant by less than r. Graphs
with an added end letter ’c’ are the complementary graphs. We use
two graphs with n = 500 and, respectively, r = 1 and r = 5.

• Four flatn χ 0 graphs: the flat graphs are constructed graphs with n

vertices and a chromatic number χ. The end number ’0’ means that
all vertices are incident to the same number of vertices.

• Four len χx graphs: the Leighton graphs are graphs with n vertices
and a chromatic number χ equal to the size of the largest clique (i.e.,
the largest number of pairwise adjacent vertices). The end letter ’x’
stands for different graphs with similar settings.

We first report the results obtained by using VSS-Col on these 16 graphs, and
then compare our algorithm with TabuCol [15], PartialCol [2], as well as with
three graph coloring algorithms which are among the most effective today:

13

the GH algorithm in [8], the MOR algorithm in [22], and the MMT algorithm
in [18]. GH, MOR and MMT are all hybrid evolutionary algorithms. GH
uses TabuCol to improve offspring solutions, whereas MMT uses a procedure
close to PartialCol. MOR works in the same search space S2 as PartialCol,
but uses Simulated Annealing instead of Tabu Search, and more complicated
moves than i-swaps.

Graph χ, k⋆ k succ./run 103 iter cycles time
DSJC1000.1 ?,20 20 3/10 285624 211 2396

21 10/10 757 1 11
DSJC1000.5 ?,83 88 8/10 55971 229 2028

89 10/10 22852 91 820
DSJC1000.9 ?,224 224 1/10 48348 209 3326

225 5/10 21667 90 1484
226 10/10 27429 116 1751

DSJC500.1 ?,12 12 10/10 19799 17 97
DSJC500.5 ?,48 48 3/10 78667 622 1331

49 10/10 10524 82 162
DSJC500.9 ?,126 126 8/10 76927 623 1686

127 10/10 7754 62 169
DSJR500.1c ?,85 85 9/10 48530 397 736

86 10/10 20020 165 291
DSJR500.5 ?,122 126 9/10 61849 409 1409

127 10/10 9066 60 183
flat1000 50 0 50,50 50 10/10 625 1 318
flat1000 60 0 60,60 60 10/10 1242 2 694
flat1000 76 0 76,83 87 4/6 48609 199 1689

88 10/10 36924 150 1155
flat300 28 0 28,31 29 1/10 45611 296 867

30 2/10 217647 1724 2666
31 10/10 4173 32 39

le450 15c 15,15 15 10/10 497 4 6
le450 15d 15,15 15 10/10 4761 39 44
le450 25c 25,25 26 10/10 183 1 1
le450 25d 25,25 26 10/10 117 1 1

Table 1: Detailed results of VSS-Col with a time limit of 1 hour

Table 1 reports the results obtained with VSS-Col with a time limit of
one hour. The first column indicates the name of the graph, and the second
column contains two numbers, the first one being the chromatic number (we
put a ”?” when it is not known), and the second one the best known upper
bound. We ran VSS-Col 10 times on each graph with different values of
k. The third column reports various values of k ranging from the smallest
number for which we had at least one successful run, to the smallest number
for which we had 10 successful runs. The next columns respectively contain
the number of successful runs and the number of tries, the average number of
iterations in thousands (i.e., the total number of moves performed using the

14

3 neighborhoods, divided by 1000) on successful runs, the average number of
cycles made by the algorithm, and the average CPU-time used (in seconds).

We observe that on five graphs (namely DSJC500.1, flat1000 50 0,
flat1000 60 0 and the two le450 15 graphs), we find a k-coloring on ev-
ery run, with k equal to the chromatic number or the best known upper
bound. On four other graphs (namely DSJC1000.1, DSJC500.9, DSJC500.5
and DSJR500.1c), we reach the best known solutions in at least one run.

Tables 2 and 3 give the same information as for VSS-Col, but for TabuCol
and PartialCol. They are taken from [2] where all experiments have been
performed on the same computer, with the same compilation options and
the same time limit, and with 50 runs for every graph and value of k. We
only show results for the smallest k with which at least one of the 50 runs
was successful, and for all other larger values of k that also appear in Table
1.

Graph χ, k⋆ k succ./run 103 iter time
DSJC1000.1 ?,20 20 14/50 224021 1855

21 50/50 161 1
DSJC1000.5 ?,83 89 48/50 17482 1224
DSJC1000.9 ?,224 227 48/50 7198 1520
DSJC500.1 ?,12 12 50/50 8878 48
DSJC500.5 ?,48 49 11/50 69803 1550
DSJC500.9 ?,126 127 50/50 7198 328
DSJR500.1c ?,85 85 1/50 55458 685
DSJR500.5 ?,122 126 5/50 56818 746

127 12/50 10387 154
flat1000 50 0 50,50 50 50/50 732 421
flat1000 60 0 60,60 60 49/50 2099 1415
flat1000 76 0 76,83 88 46/50 16532 1173
flat300 28 0 28,31 31 50/50 32521 378
le450 15c 15,15 16 50/50 847 4
le450 15d 15,15 15 1/50 2246 12
le450 25c 25,25 26 49/50 954 9
le450 25d 25,25 26 50/50 1313 12

Table 2: Detailed results for TabuCol with a time limit of 1 hour

We observe that VSS-Col finds better colorings than TabuCol on seven
graphs (namely DSJC1000.5, DSJC1000.9, DSJC500.5, DSJC500.9,
flat1000 76 0, flat300 28 0 and le450 15c). On three other graphs (namely
DSJR500.1c, DSJR500.5 le450 15d), VSS-Col and TabuCol find solutions of
the same quality, but VSS-Col has a better success rate. Both algorithms
find the same number of colors, with the same success rate, on the six re-
maining graphs, but TabuCol is faster than VSS-Col on DSJC500.1 and
DSJC1000.1, while VSS-Col is faster than TabuCol on the four other graphs

15

Graph χ, k⋆ k succ./runs 103 iter time
DSJC1000.1 ?,20 20 3/50 292947 2301

21 50/50 277 2
DSJC1000.5 ?,83 89 6/50 45502 2786
DSJC1000.9 ?,224 228 30/50 14826 2275
DSJC500.1 ?,12 12 50/50 38819 193
DSJC500.5 ?,48 49 1/50 55679 811
DSJC500.9 ?,126 127 1/50 43409 1680
DSJR500.1c ?,85 85 3/50 56980 989
DSJR500.5 ?,122 126 28/50 79620 1544

127 44 /50 34271 631
flat1000 50 0 50,50 50 50/50 107 26
flat1000 60 0 60,60 60 50/50 390 91
flat1000 76 0 76,83 88 9/50 40543 2376
flat300 28 0 28,31 28 13/50 154261 1878

29 35/50 133092 1398
30 46/50 131767 1221
31 49/50 79871 652

le450 15c 15,15 15 50/50 615 3
le450 15d 15,15 15 50/50 4682 22
le450 25c 25,25 27 50/50 1583 10
le450 25d 25,25 27 50/50 1151 7

Table 3: Detailed results for PartialCol with a time limit of 1 hour

(namely flat1000 50 0, flat1000 60 0, le450 25c and le450 25d). VSS-Col
can therefore clearly be considered as more effective than TabuCol.
PartialCol finds a legal 28-coloring on flat300 28 0 whereas VSS-Col can
only find a legal 29-colorings. On seven other graphs (namely DSJC1000.5,
DSJC1000.9, DSJC500.5, DSJC500.9, flat1000 76 0, le450 25c and le450 25d)
VSS-Col finds better solutions than PartialCol. On DSJC1000.1, DSJR500.1c
and DSJR500.5, VSS-Col has better success rates than PartialCol, and on
DSJC500.1, VSS-Col is faster than PartialCol. The four remaining graphs
(namely flat1000 50 0, flat1000 60 0, le450 15c and le450 15d) are solved in
a very short time by both algorithms, while PartialCol is a little bit faster
than VSS-Col. Although PartialCol finds a better coloring on one graph,
we can say that VSS-Col outperforms PartialCol.

In Table 4, we compare VSS-Col with TabuCol, PartialCol, GH, MMT
and MOR. For every algorithm, we report the smallest k with which a legal k-
coloring could be found. The results for GH, MMT and MOR are taken from
[2]. Comparisons must therefore be done carefully because the conditions
of experimentation are not the same. For example, our algorithm has a 1
hour time limit, while MMT uses a limit of 100 minutes. In addition, the
performances of the computers could be different, and contrary to GH and

16

MMT, we do not adjust the parameters of VSS-Col on each instance. We
can observe that

• VSS-Col is better than GH on flat300 28 0 and worse on DSJC1000.5
and flat1000 76 0.

• VSS-Col is better than MMT on three graphs (namely DSJC1000.9,
DSJC500.9 and flat300 28 0) and worse on five (namely DSJC1000.5,
DSJR500.5, flat1000 76 0, le450 25c and le450 25d).

• VSS-Col is better than MOR on six graphs (namely DSJC1000.1,
DSJC1000.9, DSJC500.5, DSJC500.9, flat1000 76 0 and flat300 28 0),
and worse on three graphs (namely on DSJR500.5, le450 25c and
le450 25d).

While local search algorithm can usually hardly compete with hybrid evo-
lutionay algorithms in terms of solution quality, we observe from Table 4
that VSS-Col produces, in one hour, results which are competitive with the
currently most efficient graph coloring algorithms.

Graph χ, k⋆ VSS-Col TabuCol PartialCol GH MMT MOR
DSJC1000.1 ?,20 20 20 20 20 20 21
DSJC1000.5 ?,83 88 89 89 83 83 88
DSJC1000.9 ?,224 224 227 228 224 226 226
DSJC500.1 ?,12 12 12 12 12 12 12
DSJC500.5 ?,48 48 49 49 48 48 49
DSJC500.9 ?,126 126 127 127 126 127 128
DSJR500.1c ?,85 85 85 85 - 85 85
DSJR500.5 ?,122 126 126 126 - 122 123
flat1000 50 0 50,50 50 50 50 50 50 50
flat1000 60 0 60,60 60 60 60 60 60 60
flat1000 76 0 76,83 87 88 88 83 82 89
flat300 28 0 28,31 29 31 28 31 31 31
le450 15c 15,15 15 16 15 15 15 15
le450 15d 15,15 15 15 15 15 15 15
le450 25c 25,25 26 26 27 26 25 25
le450 25d 25,25 26 26 27 26 25 25

Table 4: Comparisons between VSS-Col and five other algorithms

We finally report some results with a time limit of 10 hours. We only
report results for graphs for which VSS-Col could find better colorings when
compared to Table 1. We observe that VSS-Col has determined a legal 28-
coloring of flat300 28 0, as PartialCol did within one hour. The results for
DSJC1000.5, DSJR500.5 and flat1000 76 0 have been improved but are still
worse than those obtained with GH or MMT. For the other 12 graphs, we
have improved the success rate but not reduced the number of colors.

17

Graph |V | χ, k⋆ succ./run k 103 iter cycles time
DSJC1000.5 1000 ?,83 5/10 87 350196 1453 13539
DSJR500.5 500 ?,122 1/10 125 3091635 21079 30539
flat1000 76 0 1000 76,83 6/10 86 409397 1697 14220
flat300 28 0 300 28,31 1/10 28 694239 4029 17404

Table 5: Results for VSS-Col with a time limit of 10 hours

7 Conclusion

We have proposed a new general optimization methodology called Variable
Space Search, that uses various search spaces, neighborhoods and objective
functions, and combines them in a single algorithm. We have also presented
an adaptation of the Variable Space Search to the k − GCP . The compu-
tational experiments, carried out on a set of challenging DIMACS graphs
[6], show that VSS-Col is more effective than TabuCol and PartialCol which
are local search algorithms used in VSS-Col, but working in a single search
space. VSS-Col appears to be also competitive with and a good alternative
to the current best hybrid evolutionary graph coloring algorithms.

Notice that the Variable Space Search can support more than one neigh-
borhood within each search space. For example, the search we made in S1

with TabuCol could be replaced by a VNS in S1, using for example the al-
gorithm proposed in [1]. Also, the search in S2 could combine the i-swaps
of PartialCol with more elaborated neighborhoods designed in [22], and the
search in S3 could use the four different neighborhoods defined in [12]. While
we keep this for future work, we think we have demonstrated that VSS is
a simple and effective strategy to improve on complementary local search
methods for a same problem.

It is important to notice that the search spaces do not need to contain
the same type of solutions. Relaxed constraints in a search space can be
imposed in another one. This is therefore a extension to the Reformulation
Descent proposed in [21]. In conclusion, we think that the VSS methodology
is a new interesting and challenging approach for the solution of complex
optimization problems.

References

[1] C. Avanthay, A. Hertz, and N. Zufferey. A Variable Neighborhood
Search for Graph Coloring. European Journal of Operational Research,
151:379–388, 2003.

18

[2] I. Bloechliger and N. Zufferey. A Graph Coloring Heuristic Using Par-
tial Solutions and a Reactive Tabu Scheme. Computers & Operations
Research, 2006. to appear.

[3] J.R. Brown. Chromatic scheduling and the chromatic number problem.
Management Science, 19/4:456–463, 1972.

[4] C. Desrosiers, P. Galinier, and A. Hertz. Efficient algorithms for finding
critical subgraphs. Discrete Applied mathematics, 2005. to appear.

[5] I.M. Diaz and P. Zabala. A Branch-and-Cut Algorithm for Graph Col-
oring. Proceedings of the Computational Symposium on Graph Coloring
and its Generalization, Ithaca, New York, 2002.

[6] DIMACS Website. ftp://dimacs.rutgers.edu/pub/challenge/graph/.

[7] C. Fleurent and J. A. Ferland. Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63(3):437–461, June 1996.

[8] P. Galinier and J.K. Hao. Hybrid Evolutionary Algorithms for Graph
Coloring. Journal of Combinatoral Optimization, 3(4):379–397, 1999.

[9] P. Galinier and A. Hertz. A Survey of Local Search Methods for Graph
Coloring. Computers & Operations Research, 33:2547–2562, 2006.

[10] T. Gallai. On directed paths and circuits. In P. Erdös and G. Katobna,
editors, Theory of Graphs, pages 115–118. Academic Press, New York,
1968.

[11] M. Garey and D.S. Johnson. Computer and Intractability. Freeman,
San Francisco, 1979.

[12] B. Gendron, A. Hertz, and P. St-Louis. On edge orienting methods
for graph coloring. Journal of Combinatorial Optimization, 2006. to
appear.

[13] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

[14] F. Herrmann and A. Hertz. Finding the chromatic number by means of
critical graphs. ACM Journal of Experimental Algorithmics, 7/10:1–9,
2002.

[15] A. Hertz and D. de Werra. Using Tabu Search Techniques for Graph
Coloring. computing, 39:345–351, 1987.

19

[16] A. Hertz, P. Galinier, and N. Zufferey. An Adaptive Memory Algorithm
for the Graph Coloring Problem. Discrete Applied Mathematics, 2005.
to appear.

[17] M. Kubale and B. Jackowski. A generalized implicit enumeration algo-
rithm for graph coloring. Communications of the ACM, 28/4:412–418,
1985.

[18] E. Malaguti, M. Monaci, and P. Thot. A Metaheuristic Approach for
the Vertex Coloring Problem. Technical Report OR/05/3, University
of Bologna, Italy, 2005.

[19] A. Mehrotra and M.A. Trick. A column generation approach for exact
graph coloring. INFORMS Journal on Computing, 8:344–354, 1996.

[20] N. Mladenović and P. Hansen. Variable neighborhood search. Comput-
ers & Operations Research, 24:1097–1100, 1997.

[21] N. Mladenović, F. Plastria, and D. Urošević. Reformulation descent
applied to circle packing problems. Computers & Operations Research,
32:2419–2434, 2005.

[22] C. Morgenstern. Distributed Coloration Neighborhood Search. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, 26:335–357, 1996.

[23] J. Peemöller. A correction to Brélaz’s modification of Brown’s coloring
algorithm. Communications of the ACM, 26/8:593–597, 1983.

[24] B. Roy. Nombre chromatique et plus longs chemins d’un graphe. Revue
AFIRO, 1:127–132, 1967.

[25] M.A. Trick. http://mat.gsia.cmu.edu/color/color.html.

[26] L.M. Vitaver. Determination of minimal coloring of vertices of a graph
by means of boolean powers of the incidence matrix. Dokl. Akad. Nauk.
SSSR147, pages 758–759, 1962. (in Russian).

20

