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Abstract 

We study a graph transformation (defined by Seidel) called switching which, given a graph 
G = ( V,E) and a subset W C Jf of its vertices, builds a new graph by exchanging the cocycle 
linking W to V\ W with its complement. Switching is an equivalence relation and the associated 
equivalence classes are called switching classes. A switching class is perfect if it contains only 
perfect graphs. We show that a switching class is perfect if and only if some graph in the class 
is &-f&e, and that whether a graph belongs to such a class can be determined in polynomial 
time. We also show that a graph belongs to a perfect switching class if and only if it contains 
no CS, bull, gem or anti-gem as an induced subgraph. 0 1998 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

A graph is perfect if for every induced subgraph G, the chromatic number x(G) 

of G equals the clique number co(G) of G. This definition was introduced by Claude 

Berge [I], who conjectured that a graph is perfect if and only if it contains no induced 

subgraph isomorphic to a chordless odd cycle with at least five vertices, or the com- 

plement of such a cycle. Graphs of such form are called Berge while the conjecture 

is known as the Strong Perfect Graph Conjecture and remains open, 

Given a graph G = (V, E) and a subset W s V of its vertices, the set of edges in 

G linking a vertex of W to a vertex outside W is called a cocycle. The purpose 

of this paper is to study a graph transformation called switching that exchanges the 

edges of a cocyle in G for its complement. More precisely, given any subset W i V 

of vertices in G = (V,E), all edges having exactly one endpoint in W are removed 
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Fig. 1 

from G while an edge is added between a vertex x E W and a vertex y # W if x is not 

adjacent to y in G. The new graph obtained through this transformation will be denoted 

o(G, W). Switching has been defined by Seidel [7] and is also referred to as Seidel 

switching. 

Switching is an equivalence relation and the associated equivalence classes are called 

switching classes. Two graphs are called switching equivalent if they belong to the 

same switching class. Colbourn and Comeil [3] have shown that determining whether 

two graphs are switching equivalent is polynomial time equivalent to deciding graph 

isomorphism. Various studies on switching can be found in [5-71. 

We call a switching class perfect if it contains only perfect graphs and a graph 

switching-perfect if it belongs to a perfect switching class. The aim of this paper is to 

characterise perfect switching classes. 

A chordless cycle, respectively chain, on k vertices is denoted by Ck, respectively 

Pk. A bull is the (self complementary) graph with five vertices a, b, c, d, e and five 

edges ab, bc, cd, be, and ce. A gem is the graph obtained from a P4 by adding a vertex 

adjacent to all four vertices of the Pd. The complement of a gem is called anti-gem. 
All these particular graphs are represented in Fig. 1. If a graph G does not contain 

another graph H as an induced subgraph, we say that G is H-free. 

2. The main result 

Complementarity is preserved under switching. Indeed, it directly follows from the 

definitions that given a graph G = (V, E) and a subset W of V, the complement a(G, W) 
of a(G, W) is equal to a((?‘, W) (where G denotes the complement of G). 

It is known that perfect graphs are Berge; in particular, perfect graphs are Cs-free. 

Thus, switching-perfect graphs contain no Cs, nor any graph switching equivalent to 

C’s, as an induced subgraph. 
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Lemma. C-j, bull, gem and anti-gem are all switching equivalent, and no other graph 

is switching equivalent to any of these. 

Proof. Since switching is an equivalence relation, it suffices to verify that C, is switch- 

ing equivalent to C,, bull, gem and anti-gem, and no other graph. Let G = (V,E) be 

isomorphic to CS, and let W be any subset of V. Since o(G, W) = o(G, V\ W), we 
may assume that 1 WI is smaller than 1 V\ W 1. N ow, there are up to isomorphism only 

four cases to consider, namely W is empty, a single vertex, two adjacent vertices, or 

two non-adjacent vertices. In these cases a(G, W) is respectively C,, bull, gem and 

anti-gem. 0 

Let @ be the class of graphs which are Cs-free, bull-free, gem-free and anti-gem- 

free. It follows from the lemma that a graph belongs to C if and only if it is switching 

equivalent to a graph in @. 

Theorem 1. For a switching class S, the following statements are equivalent: 

(1) S is perfect. 
(2) Every graph in S is Cs-free, bull-free, gem-free and anti-gem-free. 

(3) Some graph in S is Ph-free. 

Proof. (I)=+ (2), as argued at the beginning of the section. To show (2)+ (3), let 

x be any vertex in a graph G in O=, and let W be the union of x with all vertices 

adjacent to X. It is sufficient to prove that H = a(G, W) is Pd-free. 

To see this, argue by contradiction: suppose H contains P4(a, b, c, d) as an induced 

subgraph. Since x is universal in H, x does not belong to {a, 6, c, d}. Let U = W fl {a, b, 
c,d}. By reversing the labelling of P4 if necessary, there are only ten cases to con- 

sider, namely u =0, {a}, {b}, {a,b}, {a,c>, {a,d}, {kc}, {a,b,c}, {a,b,d}, {a,b,c,d}, 
in which case {a, b, c, d,x} induces, respectively, an anti-gem, a bull, an anti-gem, a 

gem, an anti-gem, a C,, a bull, a gem, a bull and a gem in G. 

To show (3) + (1 ), let G be any Pd-free graph, let W be any vertex subset of G, 

and let H = a(G, W). G is in C since C5, the bull, the gem, and the anti-gem each 

contain P4 as an induced subgraph. Thus H is in @, by the Lemma. Also, H is Berge, 

since every graph in @ is C,-free, CI~+,-free (k 33) (such graphs contain anti-gems), 

and &+,-free (k 33) (such graphs contain gems). Chvatal and Sbihi [2] proved that 

Berge bull-free graphs are perfect, so H is perfect. 0 

Corollary. A graph is switching-perfect if and only if it is Cs-free, bull-free, gem-free, 
and anti-gem-free. 
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The proof of Theorem 1 yields an algorithm for determining whether a graph 

G = ( V, E) is switching-perfect. 

RECOGNITION ALGORITHM 

Input. A graph G=(V,E). 
output Either a P4-free graph which is switching equivalent to G 

or the message ‘non switching-perfect’. 

1. Let x be any vertex in V. Consider the subset W of V containing x as well as all vertices 
adjacent to x in G. 
Determine the graph H=o(G,W). 

2. Determine whether H is P4-free. 
If H is P4-free then return H. 
Else return ‘non switching-perfect’. 

Constructing H at Step 1 takes 0(]V12) time. Let E’ be the edge set of H. Deter- 

mining whether H is P4-free takes 0( IE’I) time using the algorithm of Corneil et al. 

[4]. Since JE’] < I V12, the recognition algorithm runs in 0( I V12) time. 

3. An open problem 

The corollary characterises switching-perfect graphs. Different results can be ob- 

tained if restricted versions of switching are considered, for example, if the size of the 

switching set W must be one. 

Theorem 2. Let x be any vertex in a Berge bull-free graph G. Then o(G, {x}) is 

Berge. 

Proof. Assume H = o(G, {x}) 1s not Berge; we wish to show that G is not Berge or 

not bull-free. If H contains C&+1(2)1, ~2,. . , @k+l ) (k >/ 2) as an induced subgraph, then 

x must be a vertex on this cycle, else G is not Berge. Assume without loss of generality 

that x is equal to vi, Then, either {vi, u2,213,v4, us} (if k =2) or {vi,v~,u3,v~,~~} (if 

k > 2) induces a bull in G. 

Since the complement fi of H is equal to o(G, {x}), and since G is also Berge 

and bull-free, it follows that # does not contain any C2k+i (k 22) as an induced 

subgraph. 0 

However, if x is a vertex in a Berge bull-free graph G, then a(G, {x}) is not nec- 

essarily bull-free. Indeed, if G is a gem (a, b,c,d,e), then a(G, {b}) is a bull. Notice 

also that if G is a bull (a, b,c, d, e), then o(G, {e}) is Cg. This means that if x is a 

vertex in a Berge graph G, then a(G, {x}) is not necessarily Berge. Thus, the Strong 

Perfect Graph Conjecture yields the following question. 

Open question. Let G be any perfect graph. Is it true that a(G, {x}) is perfect for 

every vertex x in G if and only if G is Berge and bull-free? 
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