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Abstract

The complexity status of the maximum stable set problem in the class of Ps-free graphs is
unknown. In this paper, we first propose a characterization of all connected Ps-free augmenting
graphs. We then use this characterization to detect families of subclasses of Ps-free graphs where
the maximum stable set problem has a polynomial time solution. These families extend several
previously studied classes.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A stable set S in a graph G is a set of pairwise non-adjacent vertices. A stable
set S is maximum if its cardinality |S| is maximum, while it is maximal if it is not
strictly contained in another stable set of G. The maximum cardinality of a stable
set in G is denoted «(G) and is called the stability number of G. The problem of
finding a maximum stable set in a graph is called the maximum stable set problem
(MSP). It is well known that the MSP is NP-hard, even when restricted, for ex-
ample, to triangle-free graphs [19] or cubic planar graphs [8]. The class of Ps-free
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graphs (where a Ps is a chordless chain on five vertices) is of special interest since
it is the only minimal class defined by a single connected forbidden-induced subgraph
where the complexity status of the MSP is unknown. Polynomial algorithms have been
developed for several subclasses of Ps-free graphs [5,6,11,13,16]. We use in this paper
the so-called augmenting graph technique which has proven to be a useful approach to
solve the MSP in various classes of graphs [2,9,10,13,15-17,20]. Our developments are
based on a characterization of all connected bipartite Ps-free graphs. This characteriza-
tion allows us to detect new families of subclasses of Ps-free graphs where the MSP
has a polynomial time solution. These new families extend several previously studied
classes.

As usual, K, ; denotes a complete bipartite graph whose parts have, respectively, r
and s vertices, and P; denotes a chordless chain on k£ vertices. All graphs considered
are undirected, without loops and multiple edges. The vertex set and the edge set of a
graph G are, respectively, denoted V' (G) and E(G). For a vertex x € V(G), we denote
by N(x) the neighbourhood of x, i.e., the set of vertices adjacent to x. For 4 C V' (G),
we denote G[A] the subgraph of G induced by the vertex set 4, and Ny(x)=N(x)N4A4
the neighbourhood of x in G[A4]. For two subsets 4 and B of vertices, we use the
notation Ny(B) = (J,cz Na(b) for the set of vertices in B which have a neighbour in
A, and we denote 4 — B the set of vertices which are in 4 but not in B. If a graph
G contains a graph H as an induced subgraph, we simply say that G contains H.
Many classes of graphs, studied in the literature, are defined by a set {H,,...,H;}
of forbidden induced subgraphs. A graph in such a class is said (Hj,...,H;)-free (or
simply H;-free when k£ =1).

In the next section, we describe the augmenting graph technique and give a charac-
terization of all connected Ps-free augmenting graphs. We then use this characterization
in Sections 3 and 4 to determine subclasses of Ps-free graphs where the MSP can be
solved in polynomial time.

2. Ps-free augmenting graphs

A bipartite graph H = (V1,V,,E) with parts V', and V, is called augmenting for a
stable set S in a graph G if |V > |Vi|, V1 C S, V2 C V(G)—S and (N(v) N S) C
Vi for all v in V,. We call V| the S-part and 7V, the 5‘—part of H. The increment
of H is defined as A(H) = |V2| — |V1]. An augmenting graph is said minimal if
it does not contain an induced subgraph which is also augmenting with the same
increment.

Clearly, if H=(V1,V>,E) is an augmenting graph for a stable set S in G, then S is
not of maximum cardinality since S’ = (S — V) U V; is a stable set of size |S'| > ||
in G. Now, assume S is not a maximum stable set, and let S’ be a stable set such that
|S’| > |S|. Then, the subgraph of G induced by set (S — S") U (S’ — S) is augmenting
for S. Hence, we have the following theorem.

Theorem of augmenting graphs. A stable set S in a graph G is maximum if and only
if there are no augmenting graphs for S.



M. U. Gerber et al. | Discrete Applied Mathematics 132 (2004) 109-119 111

B,(3,1) = achair B,(3,2) = a banner By(3,3) = aKys3

Fig. 1. The three non-isomorphic connected Ps-free augmenting graphs with 2 vertices in the S-part and 3
in the other part.

Notice that every connected K s;-free bipartite graph is either a chain or an even
cycle. Since the increment of a even cycle is zero, it follows that every connected
K 3-free augmenting graph is a chain. Minty [15] has designed a polynomial algorithm
for detecting such augmenting chains. This has lead to his famous polynomial algorithm
for the MSP in the class of K 3;-free graphs. This technique has recently been extended
to other classes of graphs [2,10,13,16,17]. We use it for the class of Ps-free graphs.

A Dbipartite graph H is said to be chain bipartite [23] if either N(x) C N(y) or
N(y) C N(x) for any choice of two vertices x and y in the same part of H. It follows
from this definition that chain bipartite graphs are Ps-free. It is easy to prove (see, for
example, [16]) that every connected bipartite Ps-free graph is chain bipartite. We can
therefore state the following property.

Property 1. A connected augmenting graph is Ps-free if and only if it is chain
bipartite

The following notation will be used in Sections 3 and 4. To every integer vec-
tor (di,...,d,) such that d; > d, = --- > d,, we associate the chain bipartite graph
denoted B,(d;,...,d,) with parts V1 ={ay,...,a,} and V,={by,...,bs, }, and in which
there is an edge linking a vertex a; € V'; to a vertex b; € V> if and only if j < d;. Notice
that a; is adjacent to all b; (j=1,...,d1), and b, is adjacent to all a; (i =1,...,n).
We say that the pair (a;,b;) is a dominating pair in B,(d,,...,d,). As a particular
case, B,(d,...,d) is a complete bipartite K, ;. Property 1 can now be reformulated as
follows.

Property 1'. A connected augmenting graph is Ps-free if and only if it is isomorphic
to a B,(dy,...,d,) with n <d, and d, > 0.

As an illustration, the above property states that there are only three non-isomorphic
connected Ps-free augmenting graphs H =(V1, V5, E) with |[V1|=2 and |V3|=3: B»(3,1)
(also called a chair), B>(3,2) (also called a banner) and B,(3,3) (the complete bipartite
graph K3 3) (see Fig. 1).

The following two lemmas provide additional useful information on connected aug-
menting graphs (see also [3] for Lemma 1).

Lemma 1. Let H be a minimal connected augmenting graph for a stable set S, with
S-part Vi and S-part V,. Then each vertex in Vi has at least two neighbours in V.
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Proof. Notice first that each vertex in V] has at least one neighbour, else H is not
connected. Assume now that V; contains a vertex x with a unique neighbour y in V5.
Then the graph H’ obtained from H by removing vertices x and y is also augmenting
with A(H') = A(H), which contradicts the minimality of H. [J

Lemma 2. Let S be a stable set in a Ps-free graph G, and let B,(d,...,d,) be an
augmenting graph for S. If G does not contain any augmenting K, », then n > 1 and
dr)>d; — 1.

Proof. Let V1={ay,...,a,} and Vo={by,..., b4, } be the two parts of B,(d1,...,d,). If
n=1, then vertices a;,b; and b, induce an augmenting K , for S in G, a contradiction.
Similarly, if d» < d; — 1, then a;,b,, and bg,_; induce an augmenting K, for § in
G, a contradiction. [J

3. Stable sets in (Ps, K3 3 — e)-free graphs

Let K33 — e denote the graph obtained by deleting an edge in the complete bipartite
graph K3 3. The next theorem characterizes connected (Ps,K3 3 — e)-free augmenting
graphs.

Theorem 1. Let S be a maximal stable set in a (Ps,Ks3 — e)-free graph G, and
assume that G does not contain any augmenting K, for S. Then each connected
minimal augmenting graph H for S is either a B,(d,...,d) or a B,(d,d—1,...,d —1)
with 1 <n <d.

Proof. Consider any connected minimal augmenting graph H for S in G. By Property
1" and Lemma 1, we know that H is isomorphic to a B,(di,...,d,) with d, > 1. If
there exists an index i > 2 such that 2 < d; < d,, then vertices ay,ay,a;, by, by and
b4, +1 induce a K33 —e in G, a contradiction. Hence, d; =d for each index i > 2 such
that d; > 1. It follows from Lemma 2 that n > 1 and d; — 1 <d, =---=d,. Hence,
H is either a B,(d,...,d) or a B,(d,d —1,...,d — 1) with l <n<d. [

Notice that B,(d,...,d) is a K, 4 while B,(d d —1,...,d — 1) is the graph obtained
by adding a pending edge to one vertex of degree d — 1 in a K, 4—;. The latter graph
is denoted K;’ 41+ The following result is a direct corollary of Theorem 1.

Corollary 1. Let S be a maximal but non-maximum stable set in a (Ps, K33 —e)-free
graph G, and assume that G does not contain any augmenting K, » for S. Then there
exists an augmenting graph H for S such that:

o A(H)=a(G)—|S|, and
e cach connected component of H is either a K, 4 or a Ky | with 1 <n <d.

In order to solve the MSP in polynomial time in (Ps,K33 — e)-free graphs, it is

sufficient to design a polynomial algorithm that finds augmenting X, ; and K}: 41 in
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(Ps, K3 3 —e)-free graphs. Such an algorithm is not yet available. Brandstiddt and Lozin
[6] have proposed a polynomial algorithm that solves the MSP in (Ps, K3 3 —e, TH )-free
graphs, where TH (also called twin-house) is a particular graph with 6 vertices. We
show in this section that the MSP has a polynomial time solution in the class of
(Ps,K33—e, an, n)-free graphs, with fixed m. Such a result is already known for m=1
and 2. Indeed, Kﬂ'l isa K, and KZZ is a banner, and the stability number of a K ,-free
graph G is its number of connected components, while Lozin [13] has designed a
polynomial algorithm that solves the MSP in (Ps, banner)-free graphs.

Let S be a maximal stable set in a (Ps5,K33 —e, K;z n)-free graph G, with fixed m.
Assume there is no augmenting K,f, for S with » < m. Then there is no augmenting
Krfrsfl for § with 1 <r» <s and » < m since by removing s —» — | vertices in the
S-part one would get an augmenting K.t with r < m. Moreover, there is no augmenting
K;“S_l for S with 1 <r» <s and » > m since G is K,;:m—free. Hence, it follows from
Corollary 1 that if S is not maximum, then there exists an augmenting graph H for S
such that A(H)=a(G) — |S|, and each connected component of H is an augmenting
complete bipartite graph.

Let S be a stable set in G and let x and y be two vertices outside S. Vertices x and
y are said similar if Ng(x) = Ngs(y). Clearly, the similarity is an equivalence relation,
and we denote Q4,..., QO the similarity classes. It follows from the definitions that if
K, s (1 <r <s) is an augmenting graph for a stable set S, then its S-part is a Ns(Q;)
for some similarity class Q; with |[Ng(Q;)| > 1, while its S-part is a stable set in G[Q;].
A similarity class Q; is said interesting if |Ns(QO;)| > 1 and a(G[O;]) > [Ns(Q))|- A
vertex ¢; € Q; is said to be non-dominating in Q; if there exists a vertex q; # ¢; in Q;
which is no adjacent to ¢g; in G. Notice that every interesting similarity class contains
at least a(G[Q;]) > 1 non-dominating vertices.

Lemma 3. Let S be a stable set in a (Ps,K33 — e)-free graph G, and let Q; and Q;
be two interesting similarity classes such that G contains at least one edge linking a
non-dominating vertex in Q; to a non-dominating vertex in Q;. Then either Ns(0;) C

Ns(Q;) or Ns(Q)) C Ns(Qy).

Proof. Assume G contains an edge between a non-dominating vertex ¢; € O; and a
non-dominating vertex ¢; € Q;. If neither Ng(Q;) C Ns(Q;) nor Ns(Q;) C Ns(Q;), then
there exists a vertex x; € Ng(Q;) and a vertex x; € Ng(Q;) such that x; is not linked to
g; and x; is not linked to ¢; is G. Consider any vertex y; € O; which is not adjacent
to g;, and any vertex y; € Q; which is not adjacent to g;. Vertex ¢; is adjacent to
y; else vertices x;,¢;,q;,x; and y; induce a Ps in G, a contradiction. Similarly, g; is
adjacent to y;. Hence, y; is adjacent to y; else vertices x;, y;,q;,x; and y; induce a Ps
in G, a contradiction. But now, vertices x;, yi,¢;,X;, ¥; and g; induce a K33 —e in G,
a contradiction. [

Corollary 2. Let S be a stable set in a (Ps,K3 3 — e)-free graph G. Let Q; and Q; be
two interesting similarity classes such that Ns(Q;) N\ Ns(Q;) =0, and let S; and S; be
two maximum stable sets in G[Q;] and G[Q;], respectively. Then S; US; is a stable
set in G.
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Proof. Notice first that |S;| > 1 and |S;| > 1 since O; and Q; are interesting similarity
classes. Hence, all vertices in S; are non-dominating in Q; and all vertices in §; are
non-dominating in Q;. Since Ns(Q;) N Ns(Q;) =0, we know by Lemma 3, that there
is no edge linking a vertex in §; to a vertex in S;. [J

Lemma 4. Let S be a stable set in a (Ps,Ks3 — e)-free graph G, and let Q; and
O; be two interesting similarity classes such that Ns(Q;) N Ns(Q;) # 0. Then either
Ns(Qi) € Ns(Q)) or Ns(Q;) C Ns(O»).

Proof. Consider any non-dominating vertices ¢; € O; and g; € Q;, and let x be any
vertex in Ns(Q;) N Ns(Q;). If neither Ns(Q;) C Ns(Q;) nor Ns(Q;) C Ns(0Q;), then S
contains two vertices y; and y; such that y; is adjacent to ¢; but not to g;, and y; is
adjacent to g; but not to g; in G. Moreover, it follows from Lemma 3 that ¢; is not
adjacent to ¢;. Hence, vertices y;,¢;,x,q; and y; induce a Ps in G, a contradiction. [

In summary, we have proved that if S is a stable set in a (Ps, K3 3—e, K, , )-free graph
G with fixed m, and if there is no augmenting K./, for § with » < m, then determining
an augmenting graph H for S in G with maximum increment A(H )=0(G)—|S| reduces
to determining a subset 2 of interesting similarity classes such that Ng(Q;)NNs(Q;)=0
for each pair (Q;, Q;) of elements in 2 and with ZQ’,GQ a(GLO:])—|Ns(Q)|=a(G)—]|S|.
This is done as in [13]. More precisely, let .# denote the set of interesting simil-
arity classes. We define a graph, denoted F(S), with vertex set .# and in which
two vertices Q; and Q; are linked by an edge if and only if Ns(Q;) N Ns(Q;) # 0.
With each vertex Q; in F(S) we associate a weight equal to a(G[Q;]) — |[Ns(O;)|-
The weight of a subset of vertices is the sum of weights of its elements. It is now
sufficient to determine a stable set . with maximum weight in F(S). We then
associate a connected augmenting graph H; for S with each vertex Q; € &, the S-part
of H; being equal to Ng(Q;) while its S-part is any stable set of maximum size in
G[Q;]. The disjoint union of all these augmenting graphs H; is an augmenting graph
H for § with maximum increment. The proposed algorithm for the solution of the
MSP in the class of (Ps5,K33 — e,K,j, n)-free graphs, with fixed m, is summarized
below.

Procedure ALPHA(G)
Input: a (Ps,K33 — e, K.}, )-free graph G with fixed m.
Output: a maximum stable set S in G.

1. Find an arbitrary maximal stable set S in G.

2. If G contains an augmenting // = K7, for S with » < m, then replace the S-part of
H in S by its S-part, and repeat Step 2.

3. Partition the vertices of V' (G)— S into similarity classes Q,..., O, and remove the
classes O; with [Ns(O;)| < 2.

4. For each remaining class Q;, determine a maximum stable set S; in G[Q;] by calling
ALPHA(G[O:]).
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5. Remove all similarity classes Q; with |S;| < [Ns(Q0;)|.

6. Construct graph F(S) and find a stable set % of maximum weight in it.
7. Exchange Ng(Q;) with S; for each Q; in .%.

8. Return S and stop.

In order to find a stable set of maximum weight in F(S), it is sufficient to observe
(as was done in [3]) that F(S) is (P4, C4)-free (where a P4 is a chordless chain on 4
vertices and a C; is a chordless cycle on 4 vertices).

Lemma 5 (Alekseev and Lozin [3]). Graph F(S) is (P4, Cy)-free.

Proof. Assume F(S) is not (P4, C4)-free. Consider four vertices Q1, 0z, O3, Q4 in F(S)
such that O, is adjacent to Q; and Qs but not to Q4, and Q3 is adjacent to Q,
and Q4 but not to Q; in F(S). Hence, vertices Q1, Q,, O3 and Q4 induce a P, (if
0, is not adjacent to Q) or a Cy in F(S). Since Ng(Q,) N Ns(Q3) # ), we may
assume by Lemma 4 that N5(0,) C Ng(Q3) in G. Hence, Ns(Q;)NNs(Q3)=0 implies
Ns(Q1) N Ns(Q,) = 0 which contradicts the fact that there exists an edge between Q;
and O, in F(S). O

The graphs containing no P4 and no Cy4 as induced subgraphs have been extensively
studied in the literature under different names, like trivially perfect graphs [12] and
quasi-threshold graphs [22]. The problem of finding a stable set of maximum weight
can be solved in that class in linear time using modular decomposition [14].

Theorem 2. The stability number of a (Ps,K3 3 — e, K.} )-free graph with n vertices
and fixed m > 1 can be determined in O(n"+?).

Proof. Correctness of algorithm ALPHA follows from the theorems proved in this
section. To estimate the time complexity, we note that steps 1, 3, 5, 6, 7 and 8 take
in the worst case O(#®) time. An augmenting K, for S with » < m can be found in
O(n™) time. Since step 2 is repeated at most n times, the total time complexity of
this step is O(n™*!). The graph G’ obtained by making the disjoint union of all G[Q;]
with |[Ns(Q;)| > 1 has strictly less vertices than G since graphs G[Qi],...,G[Ox] are
vertex disjoint while G’ does not contain any vertex from S. But Step 4 reduces to
finding a maximum stable set in G’. Hence, the recursion in step 4 results in the total
time O(n"*?). O

Lozin [13] and Mosca [16] have proposed polynomial algorithms for the solution
of the MSP in (Ps,banner)-free and (Ps, K 3)-free graphs, respectively. The above
theorem extends both results since K3 3 —e and K;} ; contain an induced banner and an
induced K, 3. Notice also that if p and ¢ are two fixed integers, then the MSP has a
polynomial solution in the class of (Ps,K33 — e,K;q)—free graphs since these graphs
do not contain any induced K.}, with m > max{p,q}.
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4. An infinite family of subclasses of Ps-free graphs

In this section, we illustrate the use of the characterization of all connected Ps-free
augmenting graphs by identifying an infinite family of subclasses of Ps-free graphs
for which the MSP has a polynomial time solution. Given a graph A and an integer
t =0, we denote A(t,H) the graph obtained by adding a clique K = {ky,....k} and
a stable set L ={ly,...,/,} to H, by linking each vertex of K to each vertex of H,
and by linking a vertex k; to a vertex /; if and only if i > j. As an illustration, graphs
A(t,H) are depicted in Fig. 2 for various graphs H and for various values of 7. We
prove in this section that if the MSP can be solved in polynomial time in the class of
(Ps, H)-free graphs, then the MSP can also be solved in polynomial time in the class
of (Ps,A(t, H))-free graphs, for any fixed ¢.

Theorem 3. Let H be any graph. If one can solve the MSP in a (Ps,H)-free graph
G in time O(|V(G)|?), then one can solve the MSP in a (Ps,A(1,H))-free graphs G
in time O(|V(G)|P*! - |E(G))).

Proof. Let G be a (Ps,A(1,H))-free graph. Consider any stable set S in G as well
as two adjacent vertices x€S and y ¢ S. Let R denote the subset of vertices z in
V(G)— (SU{y}) which are adjacent to x but not to y, and such that Ng(z) C Ns(»).
There exists an augmenting B,(d1,...,d,) for S with dominating pair (x, y) if and only
if R contains a stable set with d; — 1 vertices. Hence, to determine whether (x, y) is a
dominating pair in an augmenting graph for S, it is sufficient to determine a maximum
stable set S” in G[R]: |S’| = [Ns(»)| if and only if Ns(y) U (S’ U {y}) induces an
augmenting B,(dy,...,d,) with n =|Ns(»)|, d; =|S’| + 1, and with dominating pair
(x,»). But G[R] is H-free, else G[RU {x, y}] contains an A(1,H). Hence a(G[R]) can
be determined in polynomial time.

Now, one can determine whether G contains an augmenting graph for S by consider-
ing all pairs (x, y) of adjacent vertices with x €S and y ¢ S, and by checking whether
(x,y) is a dominating pair in an augmenting graph for S. Since a maximum stable
set in G is necessarily reached after at most |V(G)| augmentations, one can solve the
MSP in G by running O(|V(G)|-|E(G)|) times the polynomial algorithm which solves
the MSP in the class of (Ps, H )-free graphs. [J

o000 m
aPy adiamond acricket amKy aDp,
S Iy
I
ky k
ko I 1 m
A(LPyg) ARK11) ALMKy)

Fig. 2. Special graphs and illustration of the construction of A(z, H) graphs.
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The following stronger result was proved independently by Mosca [18]. Let WMSP
denote the problem of finding a stable set of maximum weight in a graph, and let H be
any graph. If one can solve the WMSP in a (Ps, H)-free graph G in time O(|V(G)|?),
then one can solve the WMSP in a (Ps,A(1,H))-free graph G in time O(|V(G)|?*?).

Since A(¢t,H)=A(1,A(t — 1,H)), we can state the following corollary.

Corollary 3. Let H be any graph. If the MSP has a polynomial time solution in the
class of (Ps,H)-free graphs, then it also has a polynomial time solution in the class
of (Ps,A(t,H))-free graphs G, for any positive integer t.

As a first illustration of the above result, consider the graph H =K, ; (i.e., H contains
only two vertices linked by an edge). The MSP is particularly easy to solve in the
class of K -free graphs since the stability number of such a graph G=(V,E) is equal
to |V|. As a consequence, for any fixed integer ¢, the MSP has an O(|E|" - |V|"*!) time
solution in the class of (Ps,A(t,K 1))-free graphs. But A(#,K; 1) contains an induced
clique with ¢ + 2 vertices. Hence, if the size of the largest clique in a Ps-free graph
G = (V,E) is bounded by some fixed number m, then the stability number of G can
be determined in O(|E|™~!-|V|™) time. Notice also that 4(2,K 1) contains a diamond
and a cricket (see Fig. 2). It is proved in [4,16], respectively, that the MSP has a
polynomial time solution in the classes of (Ps,diamond)-free and (Ps,cricket)-free
graphs. Corollary 3 therefore generalizes these two results.

As a second illustration, consider H = P4. Obviously, a graph is (Ps, P4)-free if and
only if it is P4-free. Moreover, it is well known that the MSP has a linear time solution
in the class of P4-free graphs [7,14]. Hence, Theorem 3 and Corollary 3 show that the
MSP can be solved in O(|E|"™!-|V|'+|E|"-|V|'T) time in the class of (Ps, A(t, P4))-free
graphs, for any fixed ¢. Notice that A(1,Ps) contains a diamond and a cricket (see
Fig. 2). We therefore get a second generalization of the results contained in [4,16].

As a third illustration, consider the class of (Ps, K ,)-free graphs with fixed m > 1.
Mosca [16] has shown that the MSP has an O(|V(G)|"*!) time solution in this class
of graphs. This result is in fact a simple corollary of Theorem 3. Indeed, define H
as the graph made of m — 1 isolated vertices. The MSP can obviously be solved in
H-free graphs in O(|V(G)|"~2) time. Since 4(1,H) is a K ,, Theorem 3 shows that
the MSP has an O(|E(G)| - |V(G)|"~!) time solution in (Ps,K) ,)-free graphs.

Finally, let mK, denote the graph made of m disjoint edges. Alekseev [1] has proved
that the number of maximal stable sets in mK,-free graphs is bounded by a polynomial
for any fixed m. In combination with the algorithm of Tsukiyama et al. [21] that
generates all maximal stable sets, this leads to a polynomial algorithm for the MSP
in mK,-free graphs with a fixed m. It follows from Theorem 3 that the MSP has a
polynomial time solution in the class of (Ps,A(1,mK;))-free graphs. But A(1,mK>)
contains a cricket for m > 2. Hence, Theorem 3 provides a third generalization of
Mosca’s result on (Ps, cricket )-free graphs. Now let D,, denote the graph obtained from
mK, by adding a vertex linked to all vertices in mK, (see Fig. 2). Notice that D,
contains A(1,mK,) which contains D,,. Gerber and Lozin [10] have proved recently
that the MSP has a polynomial solution in the class of (Ps,D,,)-free graphs, for any
fixed m. Theorem 3 provides another simple proof of this result.



118 M.U. Gerber et al. | Discrete Applied Mathematics 132 (2004) 109119
5. Conclusion

In this paper, we have first characterized all connected Ps-free augmenting graphs.
Such a characterization is very helpful when using the augmenting graph technique
for the solution of the MSP in Ps-free graphs. Unfortunately, we are not yet able
to determine in polynomial time whether an augmenting graph exists in a general
Ps-free graph. However, we have used the above characterization to develop polynomial
algorithms for the MSP in families of subclasses of Ps-free graphs. All families of
graphs studied in this paper extend previous results.
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