P_{5}-free augmenting graphs and the maximum stable set problem

Michael U. Gerber ${ }^{\mathrm{a}}$, Alain Hertz ${ }^{\mathrm{b}, *, 1}$, David Schindl ${ }^{\mathrm{a}}$
${ }^{a}$ Department of Mathematics, Swiss Federal Institute of Technology, Lausanne, Switzerland
${ }^{\mathrm{b}}$ Département de Mathématiques et de Génie Industriel, GERAD and Ecole Polytechnique, 3000 Chemin de la Côte-Sainte-Catherine, Montreal, Canada H3C 3A7

Received 1 October 2001; received in revised form 23 May 2002; accepted 19 August 2002

Abstract

The complexity status of the maximum stable set problem in the class of P_{5}-free graphs is unknown. In this paper, we first propose a characterization of all connected P_{5}-free augmenting graphs. We then use this characterization to detect families of subclasses of P_{5}-free graphs where the maximum stable set problem has a polynomial time solution. These families extend several previously studied classes.

© 2003 Elsevier B.V. All rights reserved.
Keywords: Stable set; Augmenting graphs; Polynomial algorithm

1. Introduction

A stable set S in a graph G is a set of pairwise non-adjacent vertices. A stable set S is maximum if its cardinality $|S|$ is maximum, while it is maximal if it is not strictly contained in another stable set of G. The maximum cardinality of a stable set in G is denoted $\alpha(G)$ and is called the stability number of G. The problem of finding a maximum stable set in a graph is called the maximum stable set problem (MSP). It is well known that the MSP is NP-hard, even when restricted, for example, to triangle-free graphs [19] or cubic planar graphs [8]. The class of P_{5}-free

[^0]graphs (where a P_{5} is a chordless chain on five vertices) is of special interest since it is the only minimal class defined by a single connected forbidden-induced subgraph where the complexity status of the MSP is unknown. Polynomial algorithms have been developed for several subclasses of P_{5}-free graphs [5,6,11,13,16]. We use in this paper the so-called augmenting graph technique which has proven to be a useful approach to solve the MSP in various classes of graphs [2,9,10,13,15-17,20]. Our developments are based on a characterization of all connected bipartite P_{5}-free graphs. This characterization allows us to detect new families of subclasses of P_{5}-free graphs where the MSP has a polynomial time solution. These new families extend several previously studied classes.

As usual, $K_{r, s}$ denotes a complete bipartite graph whose parts have, respectively, r and s vertices, and P_{k} denotes a chordless chain on k vertices. All graphs considered are undirected, without loops and multiple edges. The vertex set and the edge set of a graph G are, respectively, denoted $V(G)$ and $E(G)$. For a vertex $x \in V(G)$, we denote by $N(x)$ the neighbourhood of x, i.e., the set of vertices adjacent to x. For $A \subseteq V(G)$, we denote $G[A]$ the subgraph of G induced by the vertex set A, and $N_{A}(x)=N(x) \cap A$ the neighbourhood of x in $G[A]$. For two subsets A and B of vertices, we use the notation $N_{A}(B)=\bigcup_{b \in B} N_{A}(b)$ for the set of vertices in B which have a neighbour in A, and we denote $A-B$ the set of vertices which are in A but not in B. If a graph G contains a graph H as an induced subgraph, we simply say that G contains H. Many classes of graphs, studied in the literature, are defined by a set $\left\{H_{1}, \ldots, H_{k}\right\}$ of forbidden induced subgraphs. A graph in such a class is said $\left(H_{1}, \ldots, H_{k}\right)$-free (or simply H_{1}-free when $k=1$).

In the next section, we describe the augmenting graph technique and give a characterization of all connected P_{5}-free augmenting graphs. We then use this characterization in Sections 3 and 4 to determine subclasses of P_{5}-free graphs where the MSP can be solved in polynomial time.

2. P_{5}-free augmenting graphs

A bipartite graph $H=\left(V_{1}, V_{2}, E\right)$ with parts V_{1} and V_{2} is called augmenting for a stable set S in a graph G if $\left|V_{2}\right|>\left|V_{1}\right|, V_{1} \subseteq S, V_{2} \subseteq V(G)-S$ and $(N(v) \cap S) \subseteq$ V_{1} for all v in V_{2}. We call V_{1} the S-part and V_{2} the \bar{S}-part of H. The increment of H is defined as $\Delta(H)=\left|V_{2}\right|-\left|V_{1}\right|$. An augmenting graph is said minimal if it does not contain an induced subgraph which is also augmenting with the same increment.

Clearly, if $H=\left(V_{1}, V_{2}, E\right)$ is an augmenting graph for a stable set S in G, then S is not of maximum cardinality since $S^{\prime}=\left(S-V_{1}\right) \cup V_{2}$ is a stable set of size $\left|S^{\prime}\right|>|S|$ in G. Now, assume S is not a maximum stable set, and let S^{\prime} be a stable set such that $\left|S^{\prime}\right|>|S|$. Then, the subgraph of G induced by set $\left(S-S^{\prime}\right) \cup\left(S^{\prime}-S\right)$ is augmenting for S. Hence, we have the following theorem.

Theorem of augmenting graphs. A stable set S in a graph G is maximum if and only if there are no augmenting graphs for S.

Fig. 1. The three non-isomorphic connected P_{5}-free augmenting graphs with 2 vertices in the S-part and 3 in the other part.

Notice that every connected $K_{1,3}$-free bipartite graph is either a chain or an even cycle. Since the increment of a even cycle is zero, it follows that every connected $K_{1,3}$-free augmenting graph is a chain. Minty [15] has designed a polynomial algorithm for detecting such augmenting chains. This has lead to his famous polynomial algorithm for the MSP in the class of $K_{1,3}$-free graphs. This technique has recently been extended to other classes of graphs [$2,10,13,16,17]$. We use it for the class of P_{5}-free graphs.

A bipartite graph H is said to be chain bipartite [23] if either $N(x) \subseteq N(y)$ or $N(y) \subset N(x)$ for any choice of two vertices x and y in the same part of H. It follows from this definition that chain bipartite graphs are P_{5}-free. It is easy to prove (see, for example, [16]) that every connected bipartite P_{5}-free graph is chain bipartite. We can therefore state the following property.

Property 1. A connected augmenting graph is P_{5}-free if and only if it is chain bipartite

The following notation will be used in Sections 3 and 4. To every integer vector $\left(d_{1}, \ldots, d_{n}\right)$ such that $d_{1} \geqslant d_{2} \geqslant \cdots \geqslant d_{n}$, we associate the chain bipartite graph denoted $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ with parts $V_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $V_{2}=\left\{b_{1}, \ldots, b_{d_{1}}\right\}$, and in which there is an edge linking a vertex $a_{i} \in V_{1}$ to a vertex $b_{j} \in V_{2}$ if and only if $j \leqslant d_{i}$. Notice that a_{1} is adjacent to all $b_{j}\left(j=1, \ldots, d_{1}\right)$, and b_{1} is adjacent to all $a_{i}(i=1, \ldots, n)$. We say that the pair $\left(a_{1}, b_{1}\right)$ is a dominating pair in $B_{n}\left(d_{1}, \ldots, d_{n}\right)$. As a particular case, $B_{n}(d, \ldots, d)$ is a complete bipartite $K_{n, d}$. Property 1 can now be reformulated as follows.

Property 1'. A connected augmenting graph is P_{5}-free if and only if it is isomorphic to a $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ with $n<d_{1}$ and $d_{n}>0$.

As an illustration, the above property states that there are only three non-isomorphic connected P_{5}-free augmenting graphs $H=\left(V_{1}, V_{2}, E\right)$ with $\left|V_{1}\right|=2$ and $\left|V_{2}\right|=3: B_{2}(3,1)$ (also called a chair), $B_{2}(3,2)$ (also called a banner) and $B_{2}(3,3)$ (the complete bipartite graph $K_{2,3}$) (see Fig. 1).

The following two lemmas provide additional useful information on connected augmenting graphs (see also [3] for Lemma 1).

Lemma 1. Let H be a minimal connected augmenting graph for a stable set S, with S-part V_{1} and \bar{S}-part V_{2}. Then each vertex in V_{1} has at least two neighbours in V_{2}.

Proof. Notice first that each vertex in V_{1} has at least one neighbour, else H is not connected. Assume now that V_{1} contains a vertex x with a unique neighbour y in V_{2}. Then the graph H^{\prime} obtained from H by removing vertices x and y is also augmenting with $\Delta\left(H^{\prime}\right)=\Delta(H)$, which contradicts the minimality of H.

Lemma 2. Let S be a stable set in a P_{5}-free graph G, and let $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ be an augmenting graph for S. If G does not contain any augmenting $K_{1,2}$, then $n>1$ and $d_{2} \geqslant d_{1}-1$.

Proof. Let $V_{1}=\left\{a_{1}, \ldots, a_{n}\right\}$ and $V_{2}=\left\{b_{1}, \ldots, b_{d_{1}}\right\}$ be the two parts of $B_{n}\left(d_{1}, \ldots, d_{n}\right)$. If $n=1$, then vertices a_{1}, b_{1} and b_{2} induce an augmenting $K_{1,2}$ for S in G, a contradiction. Similarly, if $d_{2}<d_{1}-1$, then $a_{1}, b_{d_{1}}$ and $b_{d_{1}-1}$ induce an augmenting $K_{1,2}$ for S in G, a contradiction.

3. Stable sets in $\left(P_{5}, K_{3,3}-e\right)$-free graphs

Let $K_{3,3}-e$ denote the graph obtained by deleting an edge in the complete bipartite graph $K_{3,3}$. The next theorem characterizes connected ($P_{5}, K_{3,3}-e$)-free augmenting graphs.

Theorem 1. Let S be a maximal stable set in a $\left(P_{5}, K_{3,3}-e\right)$-free graph G, and assume that G does not contain any augmenting $K_{1,2}$ for S. Then each connected minimal augmenting graph H for S is either a $B_{n}(d, \ldots, d)$ or a $B_{n}(d, d-1, \ldots, d-1)$ with $1<n<d$.

Proof. Consider any connected minimal augmenting graph H for S in G. By Property 1^{\prime} and Lemma 1 , we know that H is isomorphic to a $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ with $d_{n}>1$. If there exists an index $i>2$ such that $2 \leqslant d_{i}<d_{2}$, then vertices $a_{1}, a_{2}, a_{i}, b_{1}, b_{2}$ and $b_{d_{i}+1}$ induce a $K_{3,3}-e$ in G, a contradiction. Hence, $d_{i}=d_{2}$ for each index $i>2$ such that $d_{i}>1$. It follows from Lemma 2 that $n>1$ and $d_{1}-1 \leqslant d_{2}=\cdots=d_{n}$. Hence, H is either a $B_{n}(d, \ldots, d)$ or a $B_{n}(d, d-1, \ldots, d-1)$ with $1<n<d$.

Notice that $B_{n}(d, \ldots, d)$ is a $K_{n, d}$ while $B_{n}(d, d-1, \ldots, d-1)$ is the graph obtained by adding a pending edge to one vertex of degree $d-1$ in a $K_{n, d-1}$. The latter graph is denoted $K_{n, d-1}^{+}$. The following result is a direct corollary of Theorem 1.

Corollary 1. Let S be a maximal but non-maximum stable set in a $\left(P_{5}, K_{3,3}-e\right)$-free graph G, and assume that G does not contain any augmenting $K_{1,2}$ for S. Then there exists an augmenting graph H for S such that:

- $\Delta(H)=\alpha(G)-|S|$, and
- each connected component of H is either a $K_{n, d}$ or a $K_{n, d-1}^{+}$with $1<n<d$.

In order to solve the MSP in polynomial time in ($P_{5}, K_{3,3}-e$)-free graphs, it is sufficient to design a polynomial algorithm that finds augmenting $K_{n, d}$ and $K_{n, d-1}^{+}$in
($P_{5}, K_{3,3}-e$)-free graphs. Such an algorithm is not yet available. Brandstädt and Lozin [6] have proposed a polynomial algorithm that solves the MSP in $\left(P_{5}, K_{3,3}-e, T H\right)$-free graphs, where $T H$ (also called twin-house) is a particular graph with 6 vertices. We show in this section that the MSP has a polynomial time solution in the class of ($P_{5}, K_{3,3}-e, K_{m, m}^{+}$) -free graphs, with fixed m. Such a result is already known for $m=1$ and 2. Indeed, $K_{1,1}^{+}$is a $K_{1,2}$ and $K_{2,2}^{+}$is a banner, and the stability number of a $K_{1,2}$-free graph G is its number of connected components, while Lozin [13] has designed a polynomial algorithm that solves the MSP in (P_{5}, banner) -free graphs.

Let S be a maximal stable set in a $\left(P_{5}, K_{3,3}-e, K_{m, m}^{+}\right)$-free graph G, with fixed m. Assume there is no augmenting $K_{r, r}^{+}$for S with $r<m$. Then there is no augmenting $K_{r, s-1}^{+}$for S with $1<r<s$ and $r<m$ since by removing $s-r-1$ vertices in the \bar{S}-part one would get an augmenting $K_{r, r}^{+}$with $r<m$. Moreover, there is no augmenting $K_{r, s-1}^{+}$for S with $1<r<s$ and $r \geqslant m$ since G is $K_{m, m}^{+}$-free. Hence, it follows from Corollary 1 that if S is not maximum, then there exists an augmenting graph H for S such that $\Delta(H)=\alpha(G)-|S|$, and each connected component of H is an augmenting complete bipartite graph.

Let S be a stable set in G and let x and y be two vertices outside S. Vertices x and y are said similar if $N_{S}(x)=N_{S}(y)$. Clearly, the similarity is an equivalence relation, and we denote Q_{1}, \ldots, Q_{k} the similarity classes. It follows from the definitions that if $K_{r, s}(1<r<s)$ is an augmenting graph for a stable set S, then its S-part is a $N_{S}\left(Q_{i}\right)$ for some similarity class Q_{i} with $\left|N_{S}\left(Q_{i}\right)\right|>1$, while its \bar{S}-part is a stable set in $G\left[Q_{i}\right]$. A similarity class Q_{i} is said interesting if $\left|N_{S}\left(Q_{i}\right)\right|>1$ and $\alpha\left(G\left[Q_{i}\right]\right)>\left|N_{S}\left(Q_{i}\right)\right|$. A vertex $q_{i} \in Q_{i}$ is said to be non-dominating in Q_{i} if there exists a vertex $q_{j} \neq q_{i}$ in Q_{i} which is no adjacent to q_{i} in G. Notice that every interesting similarity class contains at least $\alpha\left(G\left[Q_{i}\right]\right)>1$ non-dominating vertices.

Lemma 3. Let S be a stable set in a $\left(P_{5}, K_{3,3}-e\right)$-free graph G, and let Q_{i} and Q_{j} be two interesting similarity classes such that G contains at least one edge linking a non-dominating vertex in Q_{i} to a non-dominating vertex in Q_{j}. Then either $N_{S}\left(Q_{i}\right) \subseteq$ $N_{S}\left(Q_{j}\right)$ or $N_{S}\left(Q_{j}\right) \subset N_{S}\left(Q_{i}\right)$.

Proof. Assume G contains an edge between a non-dominating vertex $q_{i} \in Q_{i}$ and a non-dominating vertex $q_{j} \in Q_{j}$. If neither $N_{S}\left(Q_{i}\right) \subseteq N_{S}\left(Q_{j}\right)$ nor $N_{S}\left(Q_{j}\right) \subset N_{S}\left(Q_{i}\right)$, then there exists a vertex $x_{i} \in N_{S}\left(Q_{i}\right)$ and a vertex $x_{j} \in N_{S}\left(Q_{j}\right)$ such that x_{i} is not linked to q_{j} and x_{j} is not linked to q_{i} is G. Consider any vertex $y_{i} \in Q_{i}$ which is not adjacent to q_{i}, and any vertex $y_{j} \in Q_{j}$ which is not adjacent to q_{j}. Vertex q_{i} is adjacent to y_{j} else vertices $x_{i}, q_{i}, q_{j}, x_{j}$ and y_{j} induce a P_{5} in G, a contradiction. Similarly, q_{j} is adjacent to y_{i}. Hence, y_{i} is adjacent to y_{j} else vertices $x_{i}, y_{i}, q_{j}, x_{j}$ and y_{j} induce a P_{5} in G, a contradiction. But now, vertices $x_{i}, y_{i}, q_{i}, x_{j}, y_{j}$ and q_{j} induce a $K_{3,3}-e$ in G, a contradiction.

Corollary 2. Let S be a stable set in a $\left(P_{5}, K_{3,3}-e\right)$-free graph G. Let Q_{i} and Q_{j} be two interesting similarity classes such that $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right)=\emptyset$, and let S_{i} and S_{j} be two maximum stable sets in $G\left[Q_{i}\right]$ and $G\left[Q_{j}\right]$, respectively. Then $S_{i} \cup S_{j}$ is a stable set in G.

Proof. Notice first that $\left|S_{i}\right|>1$ and $\left|S_{j}\right|>1$ since Q_{i} and Q_{j} are interesting similarity classes. Hence, all vertices in S_{i} are non-dominating in Q_{i} and all vertices in S_{j} are non-dominating in Q_{j}. Since $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right)=\emptyset$, we know by Lemma 3, that there is no edge linking a vertex in S_{i} to a vertex in S_{j}.

Lemma 4. Let S be a stable set in a $\left(P_{5}, K_{3,3}-e\right)$-free graph G, and let Q_{i} and Q_{j} be two interesting similarity classes such that $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right) \neq \emptyset$. Then either $N_{S}\left(Q_{i}\right) \subseteq N_{S}\left(Q_{j}\right)$ or $N_{S}\left(Q_{j}\right) \subset N_{S}\left(Q_{i}\right)$.

Proof. Consider any non-dominating vertices $q_{i} \in Q_{i}$ and $q_{j} \in Q_{j}$, and let x be any vertex in $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right)$. If neither $N_{S}\left(Q_{i}\right) \subseteq N_{S}\left(Q_{j}\right)$ nor $N_{S}\left(Q_{j}\right) \subset N_{S}\left(Q_{i}\right)$, then S contains two vertices y_{i} and y_{j} such that y_{i} is adjacent to q_{i} but not to q_{j}, and y_{j} is adjacent to q_{j} but not to q_{i} in G. Moreover, it follows from Lemma 3 that q_{i} is not adjacent to q_{j}. Hence, vertices y_{i}, q_{i}, x, q_{j} and y_{j} induce a P_{5} in G, a contradiction.

In summary, we have proved that if S is a stable set in a $\left(P_{5}, K_{3,3}-e, K_{m, m}^{+}\right)$-free graph G with fixed m, and if there is no augmenting $K_{r, r}^{+}$for S with $r<m$, then determining an augmenting graph H for S in G with maximum increment $\Delta(H)=\alpha(G)-|S|$ reduces to determining a subset 2 of interesting similarity classes such that $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right)=\emptyset$ for each pair $\left(Q_{i}, Q_{j}\right)$ of elements in 2 and with $\sum_{Q_{i} \in \mathscr{2}} \alpha\left(G\left[Q_{i}\right]\right)-\left|N_{S}\left(Q_{i}\right)\right|=\alpha(G)-|S|$. This is done as in [13]. More precisely, let \mathscr{I} denote the set of interesting similarity classes. We define a graph, denoted $F(S)$, with vertex set \mathscr{I} and in which two vertices Q_{i} and Q_{j} are linked by an edge if and only if $N_{S}\left(Q_{i}\right) \cap N_{S}\left(Q_{j}\right) \neq \emptyset$. With each vertex Q_{i} in $F(S)$ we associate a weight equal to $\alpha\left(G\left[Q_{i}\right]\right)-\left|N_{S}\left(Q_{i}\right)\right|$. The weight of a subset of vertices is the sum of weights of its elements. It is now sufficient to determine a stable set \mathscr{S} with maximum weight in $F(S)$. We then associate a connected augmenting graph H_{i} for S with each vertex $Q_{i} \in \mathscr{S}$, the S-part of H_{i} being equal to $N_{S}\left(Q_{i}\right)$ while its \bar{S}-part is any stable set of maximum size in $G\left[Q_{i}\right]$. The disjoint union of all these augmenting graphs H_{i} is an augmenting graph H for S with maximum increment. The proposed algorithm for the solution of the MSP in the class of ($P_{5}, K_{3,3}-e, K_{m, m}^{+}$) free graphs, with fixed m, is summarized below.

Procedure ALPHA(G)

Input: a $\left(P_{5}, K_{3,3}-e, K_{m, m}^{+}\right)$-free graph G with fixed m.
Output: a maximum stable set S in G.

1. Find an arbitrary maximal stable set S in G.
2. If G contains an augmenting $H=K_{r, r}^{+}$for S with $r<m$, then replace the S-part of H in S by its \bar{S}-part, and repeat Step 2.
3. Partition the vertices of $V(G)-S$ into similarity classes Q_{1}, \ldots, Q_{k}, and remove the classes Q_{i} with $\left|N_{S}\left(Q_{i}\right)\right|<2$.
4. For each remaining class Q_{i}, determine a maximum stable set S_{i} in $G\left[Q_{i}\right]$ by calling $\operatorname{ALPHA}\left(G\left[Q_{i}\right]\right)$.
5. Remove all similarity classes Q_{i} with $\left|S_{i}\right| \leqslant\left|N_{S}\left(Q_{i}\right)\right|$.
6. Construct graph $F(S)$ and find a stable set \mathscr{S} of maximum weight in it.
7. Exchange $N_{S}\left(Q_{i}\right)$ with S_{i} for each Q_{i} in \mathscr{S}.
8. Return S and stop.

In order to find a stable set of maximum weight in $F(S)$, it is sufficient to observe (as was done in [3]) that $F(S)$ is $\left(P_{4}, C_{4}\right)$-free (where a P_{4} is a chordless chain on 4 vertices and a C_{4} is a chordless cycle on 4 vertices).

Lemma 5 (Alekseev and Lozin [3]). Graph $F(S)$ is $\left(P_{4}, C_{4}\right)$-free.

Proof. Assume $F(S)$ is not $\left(P_{4}, C_{4}\right)$-free. Consider four vertices $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ in $F(S)$ such that Q_{2} is adjacent to Q_{1} and Q_{3} but not to Q_{4}, and Q_{3} is adjacent to Q_{2} and Q_{4} but not to Q_{1} in $F(S)$. Hence, vertices Q_{1}, Q_{2}, Q_{3} and Q_{4} induce a P_{4} (if Q_{1} is not adjacent to Q_{4}) or a C_{4} in $F(S)$. Since $N_{S}\left(Q_{2}\right) \cap N_{S}\left(Q_{3}\right) \neq \emptyset$, we may assume by Lemma 4 that $N_{S}\left(Q_{2}\right) \subseteq N_{S}\left(Q_{3}\right)$ in G. Hence, $N_{S}\left(Q_{1}\right) \cap N_{S}\left(Q_{3}\right)=\emptyset$ implies $N_{S}\left(Q_{1}\right) \cap N_{S}\left(Q_{2}\right)=\emptyset$ which contradicts the fact that there exists an edge between Q_{1} and Q_{2} in $F(S)$.

The graphs containing no P_{4} and no C_{4} as induced subgraphs have been extensively studied in the literature under different names, like trivially perfect graphs [12] and quasi-threshold graphs [22]. The problem of finding a stable set of maximum weight can be solved in that class in linear time using modular decomposition [14].

Theorem 2. The stability number of a $\left(P_{5}, K_{3,3},-e, K_{m, m}^{+}\right)$-free graph with n vertices and fixed $m>1$ can be determined in $\mathrm{O}\left(n^{m+2}\right)$.

Proof. Correctness of algorithm ALPHA follows from the theorems proved in this section. To estimate the time complexity, we note that steps $1,3,5,6,7$ and 8 take in the worst case $\mathrm{O}\left(n^{3}\right)$ time. An augmenting $K_{r, r}^{+}$for S with $r<m$ can be found in $\mathrm{O}\left(n^{m}\right)$ time. Since step 2 is repeated at most n times, the total time complexity of this step is $\mathrm{O}\left(n^{m+1}\right)$. The graph G^{\prime} obtained by making the disjoint union of all $G\left[Q_{i}\right]$ with $\left|N_{S}\left(Q_{i}\right)\right|>1$ has strictly less vertices than G since graphs $G\left[Q_{1}\right], \ldots, G\left[Q_{k}\right]$ are vertex disjoint while G^{\prime} does not contain any vertex from S. But Step 4 reduces to finding a maximum stable set in G^{\prime}. Hence, the recursion in step 4 results in the total time $\mathrm{O}\left(n^{m+2}\right)$.

Lozin [13] and Mosca [16] have proposed polynomial algorithms for the solution of the MSP in (P_{5}, banner $)$-free and $\left(P_{5}, K_{2,3}\right)$-free graphs, respectively. The above theorem extends both results since $K_{3,3}-e$ and $K_{3,3}^{+}$contain an induced banner and an induced $K_{2,3}$. Notice also that if p and q are two fixed integers, then the MSP has a polynomial solution in the class of $\left(P_{5}, K_{3,3}, e, K_{p, q}^{+}\right)$-free graphs since these graphs do not contain any induced $K_{m, m}^{+}$with $m \geqslant \max \{p, q\}$.

4. An infinite family of subclasses of \boldsymbol{P}_{5}-free graphs

In this section, we illustrate the use of the characterization of all connected P_{5}-free augmenting graphs by identifying an infinite family of subclasses of P_{5}-free graphs for which the MSP has a polynomial time solution. Given a graph H and an integer $t \geqslant 0$, we denote $A(t, H)$ the graph obtained by adding a clique $K=\left\{k_{1}, \ldots, k_{t}\right\}$ and a stable set $L=\left\{l_{1}, \ldots, l_{t}\right\}$ to H, by linking each vertex of K to each vertex of H, and by linking a vertex k_{i} to a vertex l_{j} if and only if $i \geqslant j$. As an illustration, graphs $A(t, H)$ are depicted in Fig. 2 for various graphs H and for various values of t. We prove in this section that if the MSP can be solved in polynomial time in the class of $\left(P_{5}, H\right)$-free graphs, then the MSP can also be solved in polynomial time in the class of ($P_{5}, A(t, H)$)-free graphs, for any fixed t.

Theorem 3. Let H be any graph. If one can solve the MSP in a $\left(P_{5}, H\right)$-free graph G in time $\mathrm{O}\left(|V(G)|^{p}\right)$, then one can solve the MSP in a $\left(P_{5}, A(1, H)\right)$-free graphs G in time $\mathrm{O}\left(|V(G)|^{p+1} \cdot|E(G)|\right)$.

Proof. Let G be a $\left(P_{5}, A(1, H)\right)$-free graph. Consider any stable set S in G as well as two adjacent vertices $x \in S$ and $y \notin S$. Let R denote the subset of vertices z in $V(G)-(S \cup\{y\})$ which are adjacent to x but not to y, and such that $N_{S}(z) \subseteq N_{S}(y)$. There exists an augmenting $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ for S with dominating pair (x, y) if and only if R contains a stable set with $d_{1}-1$ vertices. Hence, to determine whether (x, y) is a dominating pair in an augmenting graph for S, it is sufficient to determine a maximum stable set S^{\prime} in $G[R]:\left|S^{\prime}\right| \geqslant\left|N_{S}(y)\right|$ if and only if $N_{S}(y) \cup\left(S^{\prime} \cup\{y\}\right)$ induces an augmenting $B_{n}\left(d_{1}, \ldots, d_{n}\right)$ with $n=\left|N_{S}(y)\right|, d_{1}=\left|S^{\prime}\right|+1$, and with dominating pair (x, y). But $G[R]$ is H-free, else $G[R \cup\{x, y\}]$ contains an $A(1, H)$. Hence $\alpha(G[R])$ can be determined in polynomial time.

Now, one can determine whether G contains an augmenting graph for S by considering all pairs (x, y) of adjacent vertices with $x \in S$ and $y \notin S$, and by checking whether (x, y) is a dominating pair in an augmenting graph for S. Since a maximum stable set in G is necessarily reached after at most $|V(G)|$ augmentations, one can solve the MSP in G by running $\mathrm{O}(|V(G)| \cdot|E(G)|)$ times the polynomial algorithm which solves the MSP in the class of $\left(P_{5}, H\right)$-free graphs.

Fig. 2. Special graphs and illustration of the construction of $A(t, H)$ graphs.

The following stronger result was proved independently by Mosca [18]. Let WMSP denote the problem of finding a stable set of maximum weight in a graph, and let H be any graph. If one can solve the WMSP in a $\left(P_{5}, H\right)$-free graph G in time $\mathrm{O}\left(|V(G)|^{p}\right)$, then one can solve the WMSP in a $\left(P_{5}, A(1, H)\right)$-free graph G in time $\mathrm{O}\left(|V(G)|^{p+2}\right)$.

Since $A(t, H)=A(1, A(t-1, H))$, we can state the following corollary.
Corollary 3. Let H be any graph. If the MSP has a polynomial time solution in the class of $\left(P_{5}, H\right)$-free graphs, then it also has a polynomial time solution in the class of $\left(P_{5}, A(t, H)\right.$)-free graphs G, for any positive integer t.

As a first illustration of the above result, consider the graph $H=K_{1,1}$ (i.e., H contains only two vertices linked by an edge). The MSP is particularly easy to solve in the class of $K_{1,1}$-free graphs since the stability number of such a graph $G=(V, E)$ is equal to $|V|$. As a consequence, for any fixed integer t, the MSP has an $\mathrm{O}\left(|E|^{t} \cdot|V|^{t+1}\right)$ time solution in the class of ($P_{5}, A\left(t, K_{1,1}\right)$)-free graphs. But $A\left(t, K_{1,1}\right)$ contains an induced clique with $t+2$ vertices. Hence, if the size of the largest clique in a P_{5}-free graph $G=(V, E)$ is bounded by some fixed number m, then the stability number of G can be determined in $\mathrm{O}\left(|E|^{m-1} \cdot|V|^{m}\right)$ time. Notice also that $A\left(2, K_{1,1}\right)$ contains a diamond and a cricket (see Fig. 2). It is proved in [4,16], respectively, that the MSP has a polynomial time solution in the classes of (P_{5}, diamond) -free and (P_{5}, cricket) -free graphs. Corollary 3 therefore generalizes these two results.

As a second illustration, consider $H=P_{4}$. Obviously, a graph is $\left(P_{5}, P_{4}\right)$-free if and only if it is P_{4}-free. Moreover, it is well known that the MSP has a linear time solution in the class of P_{4}-free graphs [7,14]. Hence, Theorem 3 and Corollary 3 show that the MSP can be solved in $\mathrm{O}\left(|E|^{t+1} \cdot|V|^{t}+|E|^{t} \cdot|V|^{t+1}\right)$ time in the class of $\left(P_{5}, A\left(t, P_{4}\right)\right)$-free graphs, for any fixed t. Notice that $A\left(1, P_{4}\right)$ contains a diamond and a cricket (see Fig. 2). We therefore get a second generalization of the results contained in $[4,16]$.

As a third illustration, consider the class of $\left(P_{5}, K_{1, m}\right)$-free graphs with fixed $m>1$. Mosca [16] has shown that the MSP has an $\mathrm{O}\left(|V(G)|^{m+1}\right)$ time solution in this class of graphs. This result is in fact a simple corollary of Theorem 3. Indeed, define H as the graph made of $m-1$ isolated vertices. The MSP can obviously be solved in H-free graphs in $\mathrm{O}\left(|V(G)|^{m-2}\right)$ time. Since $A(1, H)$ is a $K_{1, m}$, Theorem 3 shows that the MSP has an $\mathrm{O}\left(|E(G)| \cdot|V(G)|^{m-1}\right)$ time solution in $\left(P_{5}, K_{1, m}\right)$-free graphs.

Finally, let $m K_{2}$ denote the graph made of m disjoint edges. Alekseev [1] has proved that the number of maximal stable sets in $m K_{2}$-free graphs is bounded by a polynomial for any fixed m. In combination with the algorithm of Tsukiyama et al. [21] that generates all maximal stable sets, this leads to a polynomial algorithm for the MSP in $m K_{2}$-free graphs with a fixed m. It follows from Theorem 3 that the MSP has a polynomial time solution in the class of ($P_{5}, A\left(1, m K_{2}\right)$)-free graphs. But $A\left(1, m K_{2}\right)$ contains a cricket for $m \geqslant 2$. Hence, Theorem 3 provides a third generalization of Mosca's result on (P_{5}, cricket)-free graphs. Now let D_{m} denote the graph obtained from $m K_{2}$ by adding a vertex linked to all vertices in $m K_{2}$ (see Fig. 2). Notice that D_{m+1} contains $A\left(1, m K_{2}\right)$ which contains D_{m}. Gerber and Lozin [10] have proved recently that the MSP has a polynomial solution in the class of $\left(P_{5}, D_{m}\right)$-free graphs, for any fixed m. Theorem 3 provides another simple proof of this result.

5. Conclusion

In this paper, we have first characterized all connected P_{5}-free augmenting graphs. Such a characterization is very helpful when using the augmenting graph technique for the solution of the MSP in P_{5}-free graphs. Unfortunately, we are not yet able to determine in polynomial time whether an augmenting graph exists in a general P_{5}-free graph. However, we have used the above characterization to develop polynomial algorithms for the MSP in families of subclasses of P_{5}-free graphs. All families of graphs studied in this paper extend previous results.

Acknowledgements

This work was supported by the Swiss National Scientific Research Council under grant 2100-63409.00. This support is gratefully acknowledged.

References

[1] V.E. Alekseev, On the number of maximal independent sets in graphs from hereditary classes, Combinatorial-algebraic Methods in Applied Mathematics, Gorkiy University Press, Gorkiy, 1991, pp. 5-8 (in Russian).
[2] V.E. Alekseev, A polynomial algorithm for finding largest independent sets in fork-free graphs, Diskretn. Anal. Issled. Oper. Ser. 1(6) (1999) 3-19 (in Russian).
[3] V.E. Alekseev, V.V. Lozin, Augmenting graphs for independent sets, Discrete Appl. Math., to appear.
[4] C. Arbib, R. Mosca, On (P_{5}, diamond)-free graphs, Research Report (1999), Department of Pure and Applied Mathematics, University of Aquila.
[5] A. Brandstädt, P.L. Hammer, On the stability number of claw-free P_{5}-free and more general graphs, Discrete Appl. Math. 95 (1999) 163-167.
[6] A. Brandstädt, V.V. Lozin, A note on α-redundant vertices in graphs, Discrete Appl. Math. 108 (2001) 301-308.
[7] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
[8] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) 237-267.
[9] M.U. Gerber, V.V. Lozin, On the stable set problem in special P_{5}-free graphs, Discrete Appl. Math. 125 (2003) 215-224.
[10] M.U. Gerber, A. Hertz, V.V. Lozin, Stable sets in two subclasses of banner-free graphs, Discrete Appl. Math., this issue.
[11] V. Giakoumakis, I. Rusu, Weighted parameters in ($P_{5}, \overline{P_{5}}$)-free graphs, Discrete Appl. Math. 80 (1997) 255-261.
[12] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105-107.
[13] V.V. Lozin, Stability in P_{5} and banner-free graphs, European J. Oper. Res. 125 (2000) 292-297.
[14] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241.
[15] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B 28 (1980) 284-304.
[16] R. Mosca, Polynomial algorithms for the maximum independent set problem on particular classes of P_{5}-free graphs, Inform. Proc. Lett. 61 (1997) 137-144.
[17] R. Mosca, Stable sets in certain P_{6}-free graphs, Discrete Appl. Math. 92 (1999) 177-191.
[18] R. Mosca, Some results on maximum stable sets in certain P_{5}-free graphs, unpublished manuscript, Universita degli Studi di L'Aqila, Italy (1999).
[19] S. Poljak, A note on stable sets and coloring of graphs, Comment. Math. Univ. Carolinae 15 (1974) 307-309.
[20] N. Sbihi, Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile, Discrete Math. 29 (1980) 53-76 (in French).
[21] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM J. Comput. 6 (1977) 505-517.
[22] J.-H. Yan, J.-J. Chen, G.J. Chang, Quasi-threshold graphs, Discrete Appl. Math. 69 (1996) 247-255.
[23] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebraic Discrete Methods 3 (1982) 351-358.

[^0]: * Corresponding author. Departement de Mathematiques et de Genie Industriel, GERAD and Ecole Polytechnique, 3000 Chemin de la Cote-Sainte-Catherine, Montreal, Canada H3C 3A7.

 E-mail address: alain.hertz@gerad.ca (A. Hertz).
 ${ }^{1}$ This work was supported by the Swiss National Science Foundation, subsidy 2100-63409.00, holder Dominique de Werra ${ }^{1}$.

