
 - 1 -

FINDING THE CHROMATIC NUMBER
BY MEANS OF CRITICAL GRAPHS

Francine HERRMANN
LITA, Université de Metz

Ile de Saulcy
57045 Metz Cedex France

Email : herrmann@lrim.sciences.univ-metz.fr
and

Alain HERTZ
Département de Mathématiques et de Génie Industriel

Ecole Polytechnique
CP 6079, succ. Centre-ville,

Montréal (QC) H3C 3A7, Canada
Email : Alain.Hertz@gerad.ca

Abstract

We propose a new exact algorithm for finding the chromatic number of a graph G. The
algorithm attempts to determine the smallest possible induced subgraph G’ of G which has the
same chromatic number as G. Such a subgraph is said critical since all proper induced sub-
graphs of G’ have a chromatic number strictly smaller than G’.
The proposed method is particularly helpful when a k-coloring of a non-critical graph is known,
and it has to be proved that no (k-1)- coloring of G exists. Computational experiments on
random graphs and on DIMACS benchmark problems demonstrate that the new proposed
algorithm can solve larger problems than previous known exact methods.

Key-words
Chromatic number, exact algorithm, critical graphs.

 - 2 -

1. INTRODUCTION

Given a graph G=(V,E) with vertex set V and edge set E, and given an integer k, a k-coloring of
G is a function c: V→{1,...,k} such that c(i)≠c(j) for all edges (i,j) in E. The chromatic number
γ(G) of G is the smallest integer k such that there is a k-coloring of G.

Finding the chromatic number of a graph is an NP-hard problem [Garey 79]. Exact algorithms
have been developed by several researchers [Brown 1972, Brélaz 1979, Peemöller 1983, Kubale
1985, Mehotra 1996], but all these exact methods can only be applied on small instances. This
certainly explains why many heuristics methods have been developed for getting an upper bound
on the chromatic number of a graph. A survey of the most famous heuristic graph coloring
methods can be found in [de Werra 1990]. Nowadays, the most powerful heuristic algorithms
are adaptations of metaheuristics (e.g., tabu search, genetic algorithms) [Fleurent 1996, Galinier
1998].

All known exact methods for finding the chromatic number of a graph G suffer from the same
difficulty : while it is often easy to exhibit a γ(G)-coloring by means of an efficient heuristic
method, it is however difficult to prove that there exists no (γ(G)-1)-coloring of G. Typically, on
random graphs with 85 vertices and edge density 0.5, exact methods only need a few seconds to
determine a γ(G)-coloring, while several minutes or hours are needed to prove that no better
coloring exists.

A graph G is said critical if all its proper induced subgraphs have a chromatic number strictly
smaller than γ(G). All non-critical graphs G contain a proper induced subgraph G’ which is
critical and such that γ(G')=γ(G). In order to compute the chromatic number of a graph G, we
will try to determine the smallest possible critical subgraph G’ of G such that γ(G')=γ(G). While
G and G’ have the same chromatic number, G’ has hopefully less vertices than G. We will
therefore apply any known exact method on G’ instead of G.

The new exact algorithm is described in details in the next section. Various possible strategies
for implementing this algorithm are detailed in Section 3. Computational experiments on
random graphs as well as on DIMACS benchmark problems [Johnson 1996] are reported in
Section 4. We conclude by final remarks and possible extensions.

2. A NEW EXACT ALGORITHM

Let EXACT be any exact algorithm for the computation of the chromatic number of a graph G,
and let HEURISTIC be any heuristic method which produces an upper bound, denoted H(G), on
the chromatic number of G. Our new exact algorithm for the computation of the chromatic
number is based on a combination of EXACT and HEURISTIC, together with the concept of
critical graphs.

 - 3 -

A description of the new exact algorithm is given in Table 1. We have used the following
notations. For a graph G=(V,E) and a vertex x in V, we denote G-x the subgraph of G induced by
V\{x}. Similarly, given any induced subgraph G’=(V’,E’) of G=(V,E), and given any vertex x in
V\V’, we denote G’+x the subgraph of G induced by V’∪{x}.

Initialisation phase
1. Determine an upper bound k=H(G) on γ(G) by means of HEURISTIC;

Descending phase
2. Set G’ = G;
 Scan all vertices x of G in some order, and for each such x do the following:
 (a) Determine an upper bound µ=H(G’-x) on γ(G’-x) by means of HEURISTIC;
 (b) If µ=k then set G’:=G’-x;
3. Determine the chromatic number k’=γ(G’) of G' by means of EXACT;
 If k'=k then STOP : k is the chromatic number of G;

Augmenting phase
4. Set List to the empty set;
 For each vertex x which is in G but not in G' do the following
 (a) Determine an upper bound µ=H(G'+x) on γ(G'+x) by means of HEURISTIC;
 (b) If µ>k' then
 • Determine the chromatic number k"=γ(G'+x) by means of EXACT;
 • If k"=k'+1 then introduce x into List;
5. If List is not empty then choose a vertex x in List, set G'=G'+x and k'=k'+1;
 Otherwise choose a vertex x which is in G but not in G', and set G'=G'+x;
6. If G'=G or k'=k then STOP : k' is the chromatic number of G;
 Otherwise go to Step 4.

Table 1. A new exact algorithm for the computation of the chromatic number of a graph G.

We now give a detailed explanation of this new algorithm as well as a justification of its
correctness. In the initialization phase, we compute an upper bound k on the chromatic number
of G by means of HEURISTIC. We then start a descending phase that aims to determine a
critical induced subgraph G' of G with γ(G')=γ(G). This is done as follows. We first set G' equal
to G. Ideally, we should remove vertices from G', as long as such removals do not change the
chromatic number of G'. However, such a process would require the comparison between γ(G')
and γ(G'-x), for each vertex x in G'. In order to avoid such computations, we use upper bounds
on the values of γ(G') and γ(G'-x). All these bounds are obtained by means of HEURISTIC. In
other words, a vertex x is removed from G' only if H(G') is equal to H(G'-x).

 - 4 -

Property 1
Let k be an upper bound on the chromatic number γ(G) of a graph G, and let G’ be any subgraph
of G. If γ(G’)=k, then γ(G)= γ(G’).

Proof
γ(G)≥γ(G’) since G’ is a subraph of G, and k≥γ(G) since k is an upper bound on γ(G). It follows
that γ(G)=γ(G’) when γ(G’)=k. ♦

Property 2
Let H(G) be the upper bound computed at Step 1 of the above algorithm, and let G’ be the graph
obtained from G at the end of Step 2. If γ(G’)=H(G), then G’ is critical and has the same
chromatic number as G.

Proof
Assume that γ(G’)=H(G). We know from Property 1 that γ(G)=γ(G’). Moreover, G’ is obtained
from G by removing all vertices that do not modify the value of the upper bound. We
therefore have H(G’)=H(G) and H(G’-x)<H(G’) for all vertices x remaining in G’. Hence,
γ(G’-x)≤H(G’-x)<H(G’)=H(G)=γ(G) for all x in G’, which means that G’ is critical. ♦

In Step 3 of the descending phase we compute the chromatic number γ(G’) of G’. It follows from
Property 1 that if γ(G’) is equal to the upper bound H(G) on γ(G), then γ(G)=H(G). The
algorithm can therefore be stopped.

Property 3
If all upper bounds produced by HEURISTIC in Steps 1 and 2 of the above algorithm are equal
to the chromatic number of the graphs given as input, then the algorithm stops at Step 3.

Proof
Assume that the upper bound H(G) computed at Step 1 is equal to γ(G), and that each time a
vertex x is removed from G’ at Step 2 we have γ(G’-x)=H(G’-x). Since a vertex x is removed from
G’ only if H(G’-x)=H(G), we have γ(G’)=H(G)=γ(G) when entering Step 3, which means that the
algorithm stops. ♦

Notice that if the algorithm stops at Step 3, this means that only one call to EXACT is required,
and this call is performed on a graph G’ which has hopefully less vertices than the original graph
G. It may however happen that γ(G’)<H(G). In such a case, we start the augmenting phase in
which vertices are added to G’ until either γ(G’)=H(G) or G’=G. We now give details on this
augmenting phase.

Given a subgraph G’ of G, we consider each vertex x which is in G but not in G’, and we compute
an upper bound H(G’+x) on γ(G’+x). If this upper bound is strictly larger than γ(G’), we have
good reasons to suspect that γ(G’+x)=γ(G’)+1. We therefore apply EXACT on G’+x in order to

 - 5 -

confirm this fact. If γ(G’+x) is effectively equal to γ(G’)+1, we put x into a set called List. At the
end of Step 4, each vertex x in List is such that γ(G’+x)=γ(G’)+1, while each other vertex x
which is in G but not in G’ is such that γ(G’+x)=γ(G’).

At Step 5, we add a vertex x to G’. If List is not empty, then x is chosen in it, and the chromatic
number of G’ is increased by one unit. Otherwise, any vertex in G but not in G’ is added to G’
without increasing the chromatic number of G’.

If during the augmenting phase we can exhibit a graph G’ such that γ(G’)=H(G), then it follows
from Property 1 that γ(G)=H(G), and the algorithm can therefore be stopped. Otherwise, vertices
are iteratively added to G’ until G’=G, in which case γ(G) is equal to γ(G’) (which has already
been computed in the previous steps).

Notice that when a vertex x from list is added to G’ in Step 5, it may happen that the
augmented graph contains vertices which can be removed from it without modifying the
chromatic number. A desending phase could therefore also be applied to the augmented graph.
This can easily be done by putting Step 5’ described in Table 2 in place of Step 5 of the original
algorithm

 5’. If List is not empty then

(a) choose a vertex x in List, set G’=G’+x and k’=k’+1;

Descending phase
(b) Scan all vertices x of G’ in some order, and for each such x do the following

 • Determine an upper bound µ=H(G’-x) on γ(G’-x) by means of HEURISTIC;
 • If µ=k’ then
 ° Determine the chromatic number k"=γ(G’-x) of G’-x by means of EXACT;
 ° If k"=k’ then set G’=G’-x;

 Otherwise choose a vertex x which is in G but not in G’, and set G’=G’+x;

Table 2. A possible variation on Step 5.

Notice that the descending phase in the above Step 5’ is slightly different from the descending
phase of Step 2. Indeed, when HEURISTIC indicates that a vertex x can probably be removed
from G’ without modifying its chromatic number, we check this fact in Step 5’ but not in Step 2.
The reason for this difference is that we need to update the chromatic number of G’ each time G’
is modified in the augmenting phase.

In Tables 1 and 2, we have underlined some flexible points of the algorithm where different
strategies can be implemented. We describe in the next section the choices we have made for
these strategies.

 - 6 -

3. IMPLEMENTATION STRATEGIES

The subgraph G’ obtained from G at the end of Step 2 may depend on the ordering with which
the vertices are scanned. We have chosen to order the vertices dynamically by choosing at each
step the vertex in G’ with smallest degree. We have also tested other strategies (e.g., random
ordering, ordering according to non-decreasing degree in G, etc.), but these other orderings
systematically produced worse results when compared to our choice. The chosen strategy is
illustrated for the graph in Figure 1. We will assume in what follows that given any graph G, the
upper bound H(G) delivered by HEURISTIC is equal to the chromatic number γ(G) of G.

Figure 1. A graph which helps to illustrate the strategy chosen for Step 2.

The proposed algorithm first sets H(G) equal to 3 in Step 1. Then, when applying our strategy for
Step 2, we first try to remove vertex a since it has the smallest degree in G=G’. Since such a
removal does not change the chromatic number of G’ , it is performed. Vertex e is now the vertex
with smallest degree in G', and it is also removed from G' since the remaining graph still has
chromatic number 3. At this stage, both vertices d and f have degree 2 in G' and we choose one at
random, say f. The removal of f induces a new graph G' that still has chromatic number 3. In the
next step, either d or h is removed, say d, and finally either g or h is removed, say g. The
resulting graph G' is a triangle made of b, c and h. No additional vertex can be removed from G'
without modifying its chromatic number. We therefore enter Step 3 with this triangle.

For comparison, consider a similar strategy for Step 2, except that we choose a vertex with
largest (instead of smallest) degree in G'. In such a case, there are three candidate vertices to be
removed at the first iteration of Step 2. Indeed, vertices b, c and g all have degree 4, which is the
largest one in G=G’ . Assume that vertex c is chosen. HEURISTIC will find a 2-coloring of G'-c.
Vertex c is therefore not removed from G'. If the next candidate is vertex g, then it is removed

 - 7 -

from G’ since γ(G’ -g)=3. There are then three vertices with largest degree 3, vertices b, c and h.
Vertex c has already been considered in the previous iteration and is therefore not a candidate to
be removed from G'. If vertex h is chosen as next candidate, it is not removed from G' since
γ(G’ -h)=2. Since the removal of vertex b does not modify the chromatic number of G', it is
performed and the resulting graph is a pentagon on vertices c, d, e, f, and h plus an isolated vertex
a. Vertices c and h have already been considered before and are therefore not candidates to be
removed. Vertices d, e and f cannot be removed from G' since they induce a decrease of the
chromatic number. The last vertex which is removed is therefore vertex a, and we enter Step 3
with G' equal to a pentagon.

During the augmenting phase, there are several possible strategies for adding vertices to G'. If
List is not empty we have decided to add to G' the vertex in List which has the largest
number of neighbors in G'. If List is empty, then we choose the vertex which is in G but not in
G', and which has the largest number of neighbors in G'. Here also, we have tested different
strategies, but the chosen one has systematically produced the best results.

4. COMPUTATIONAL EXPERIMENTS

There are many possible choices for EXACT and HEURISTIC. For EXACT, we have chosen to
implement the branch-and-bound algorithm described in [Peemöller 1983] which is a corrected
version of Brélaz's modification of Brown's algorithm [Brown 1972, Brélaz 1979]. For
HEURISTIC, it is very important to make a good choice. Indeed, if the initial upper bound H(G)
on γ(G) produced by HEURISTIC is strictly larger than γ(G), then the algorithm will stop at Step
6 with G’=G. In such a case, there is no benefit to use the new algorithm instead of EXACT. It is
therefore important to choose an efficient heuristic method for HEURISTIC. We have
implemented the Tabu search method described in [Hertz 1987]. While better heuristic methods
are available [e.g., Fleurent 1996, Galinier 1998], the chosen one always produced upper bounds
equal to the chromatic number of the graphs given as input. It follows from Property 3 that our
algorithm never entered the augmenting phase.

Since HEURISTIC is much faster than EXACT (their CPU-time differ by several orders of
magnitude) the total computational time of the new algorithm is mainly due to Step 3 where the
chromatic number of the critical graph G' is determined. Hence, in order to evaluate the benefit of
using the new proposed algorithm instead of EXACT, we report for each graph instance G=(V,E)
the following information which does not depend on the computer used :

size of the critical subgraph : number of vertices in the critical subgraph G' of G.

backtracks EXACT : number of backtracks required by EXACT when computing the
chromatic number of G

backtracks New : number of backtracks required by the new algorithm when
computing the chromatic number of the critical subgraph G’ of G.

 - 8 -

We have performed tests on random graphs and on DIMACS benchmark problems [Johnson
1996]. Random graphs Gn,p are graphs with n vertices such that there exists an edge with a
probability p (called edge density) between any pair of vertices, independently of the existence or
non-existence of any other edge. This family of graphs has been deeply studied with respect to
coloring, especially for p=0.5. We have tested our new algorithm on random graphs having n=40,
50, 60, 70, 80, 85, 90, 95 and 100 vertices, and edge density 0.5. We have randomly generated
10 graphs Gn,p for each couple (n,p) and give average results in Table 3. All these instances can
be obtained via the Web site http://dmawww.epfl.ch/rose.mosaic/ah/RANDOM_GRAPHS. We
have imposed for each instance a time limit of 24 hours. When an algorithm is not able to solve
all 10 instances of a same size, we only indicate, in parenthesis, the number of instances for
which the chromatic number could be determined.

n γ(Gn,0.5) size of the
critical subgraph

backtracks
New

backtracks
EXACT

40 8.3 22.9 36.3 100 97.1 100
50 9.4 33.8 1.7 103 2.0 103

60 10.6 45.7 42.8 103 24.4 103
70 11.7 58.4 331.2 103 551.1 103
80 12.8 68.9 11.8 106 13.1 106
85 13.0 69.0 10.7 106 26.0 106
90 13.8 79.7 1632.7 106 (8)
95 14.0 78.5 393.4 106 (2)

100 - - (2) (0)

Table 3. Results for random graphs Gn,0.5

This table requires some comments. First of all, it clearly appears that the new algorithm can
solve larger problems than Exact. For example, while our method is able to find the chromatic
number of all instances with 95 vertices, only 2 such graphs could be solved by EXACT within
one day CPU-time.

Surprisingly, EXACT is faster than the new algorithm for random graphs having 60 vertices. We
could expect the opposite since our algorithm has to determine the chromatic number of graphs
having 45.7 vertices in average, and all these graphs are subgraphs of a G60,0.5. The example
depicted in Figure 2 shows that given a graph G and a critical subgraph G’ with γ(G’)=γ(G), it
may happen that γ(G) is easier to compute than γ(G’). In this example, the triangle made of
vertices d, e and h in G is easily detected by Exact and it provides a proof that there is no 2-
coloring of G. Such a proof is not so simple for the critical subgraph G’ of G.

Notice also that while the computational effort needed by EXACT increases with problem size,
this is not always the case for the new algorithm which is, in average, slightly faster for G85,0.5
than for G80,0.5, and four times faster for G95,0.5 than for G90,0.5. This surprising behavior can be

 - 9 -

explained as follows. Almost all tested random graphs G80,0.5 (8 out of 10) have the same
chromatic number as the tested G85,0.5. The descending phase has therefore more flexibility in
G85,0.5 than in G80,0.5 for choosing which vertices should be removed in order to get a critical
subgraph G’. The same situation occurs with the tested G90,0.5 which almost all have the same
chromatic number as the tested G95,0.5. To illustrate this phenomenon, consider once again the
two graphs in Figure 2. Both have their chromatic number equal to 3. The smaller one G’ is
critical and can therefore not be reduced. There is however some flexibility for the removal of
vertices in the larger graph G. One can for example remove vertex h and get the smaller graph G’.
Another possibility is to remove vertices a, b, c, f and g and get a triangle which is easier to color
than G’. This may explain why the critical subgraphs obtained from a G95,0.5 are in average
smaller than those obtained from a G90,0.5.

The same phenomenon could be observed with random graphs having 100 vertices. Indeed, we
could prove that two of the ten tested G100,0.5 have a chromatic equal to 14 (which is the
chromatic number of all tested G95,0.5) while the chromatic number of the eight other instances
seems to be equal to 15. The two solved instances have first been reduced to subgraphs having
77.5 vertices in average (to be compared with 78.5), and we then needed only 280 106 backtracks
(to be compared with 393 106) to find their chromatic number. For comparison, the eight other 100
vertex instances have been reduced to sugraphs having 90.9 vertices.

Figure 2. A graph and one of its critical subgraphs.

We have also tested our new algorithm on some DIMACS benchmark problems [Johnson
1996]. These problems can be divided into 5 categories (more details can be obtained on the
Web site http://mat.gsia.cmu.edu/COLOR/instances.html).

Book graphs. Given a work of literature, a graph is created where each vertex represents a
character, and two vertices are connected by an edge if the corresponding characters
encounter each other in the book. We have considered the graphs anna (from Tolstoy’s
Anna Karenina), david (from Dicken’s David Copperfield), huck (from Twain’s
Huckleberry Finn) and jean (from Hugo's Les Misérables).

Game graphs. These graphs represent the games played in a college football season. The
vertices represent each college team, and two teams are connected by an edge if they
played each other during the season. We have considered the graph games120 which

 - 10 -

has been obtained from the 1990 college football season.
Miles graphs. The vertices represent a set of United States cities. Two cities are linked by

an edge if they are close enough. We have considered the graphs miles250 and miles
500 which differ on the threshold value used to create edges.

Myc graphs. These graphs are based on Mycielski’s transformation. They are difficult to
solve because they are triangle free but the chromatic number increases in problem
size. We have tested the graphs myciel3, myciel4, myciel5 and myciel6.

Queen graphs. Given an n by m chessboard, a queen graph queen.n_m is a graph with
mn ⋅ vertices, each corresponding to a square of the board. Two vertices are

connected by an edge when the corresponding squares are in the same row, column or
diagonal. We have considered the graphs queen.5_5, queen.6_6, queen.7_7,
queen.8_8, queen.9_9 and queen.8_12.

DSJC graphs. These are benchmark random graphs used in [Johnson 1991]. We have
considered DSJC125.1 which has 125 vertices and an edge density 0.1.

The results are reported in Table 4. It can be observed that Myc graphs are critical and there is
therefore no advantage of using our algorithm instead of Exact for this category of graphs.
Some other graphs are however much easier to color using our new method. The best examples
are provided by games120 and queen.8_12 for which Exact has not been able to determine
the chromatic number in less than 24 hours while our new algorithm has reduced these graphs
to a clique and has then needed only one backtrack to determine their chromatic number.

name of the

graph
number

of vertices
number
of edges

chromatic
number

size of the
critical subgraph

backtracks
New

backtracks
EXACT

anna 138 493 11 11 1 8
david 87 406 11 11 1 1
huck 74 301 11 11 1 211 103
jean 80 254 10 10 1 8 103
games120 120 638 9 9 1 -
miles250 128 387 8 8 1 1
miles500 128 1170 20 20 1 8
myciel3 11 20 4 11 4 4
myciel4 23 71 5 23 106 106
myciel5 47 236 6 47 28 103 28 103
myciel6 95 755 7 95 416 106 416 106
queen.5_5 25 160 5 5 1 1
queen.6_6 36 290 7 26 43 410
queen.7_7 49 476 7 7 1 2 103
queen.8_8 64 728 9 54 246 103 597 103
queen.9_9 81 2112 10 72 170 106 81 106
queen.8_12 96 1368 12 12 1 -
DSJC125.1 125 1472 5 11 3 227

 - 11 -

Table 4. Results for some DIMACS benchmark problems
5. FINAL REMARKS AND CONCLUSION

We have developed a new exact algorithm for finding the chromatic number of a graph G. The
proposed algorithm first determines an upper bound k on γ(G) by means of a heuristic method,
and then tries to find a critical subgraph G’ such that γ(G’)=k. We have seen that if the initial
upper bound k is strictly larger than γ(G), then there is no benefit to use the new proposed
algorithm. It is therefore important to choose an efficient heuristic method for the computation
of the initial upper bound k. Also, when the given graph G is critical, the descending phase is
not able to remove any vertex from G, and the proposed algorithm therefore enters Step 3 with
the original graph. In all other cases, the critical subgraph G’ determined by our method is
smaller than the original graph G, and hopefully easier to color.

We have performed computational experiments on random graphs and on DIMACS benchmark
problems. These experiments clearly demonstrate that our method can solve larger problems
than previous known exact methods.

It is to be mentioned that the new algorithm can be implemented in various ways. First of all,
any known exact coloring algorithm can be used for EXACT, and any known heuristic coloring
method can be used for HEURISTIC. Moreover, the order in which the vertices are removed
from G during the descending phase may influence the size of the resulting critical subgraph G’
of G. We have decided to order the vertices dynamically by choosing at each step the vertex
with smallest degree in the current subgraph G’. Other strategies may be preferred and can
possibly generate smaller critical subgraphs.

 - 12 -

References

[Brélaz 1979] Brélaz D., "New Methods to Color the Vertices of a Graph", Communications of

the ACM 22/4, 1979, 251-256.

[Brown 1972] Brown J.R., "Chromatic Scheduling and the Chromatic Number Problem",
Management Science 19/4, 1972, 456-463.

[Fleurent 1996] Fleurent C. and Ferland J.A., " Genetic and Hybrid Algorithms for Graph
Coloring", Annals of Operations Research 63, 1996, 437-461.

[Galinier, 1998] Galinier P. and Hao J.K., "Hybrid evolutionary algorithms for graph coloring".
A paraître dans Journal of Combinatorial Optimization.

[Garey 1979] Garey M.R. and Johnson D.S., Computers and Intractabilitiy : A Guide to the
Theory of NP-Completeness, W.H. Freman and Company, New York, 1979

[Hertz 1987] Hertz A. and de Werra D., "Using Tabu Search for Graph Coloring", Computing
39, 1987, 345-351.

[Johnson 1991] Johnson D.S., Aragon C.R., McGeoch L.A. and Schevon C., "Optimization by
Simulated Annealing: an Experimental Evaluation. Part II, Graph Coloring and Number
Partitioning", Operations Research 39, 1991, 378-406.

[Johnson 1996] Johnson D.S. and Trick M.A., "Proceedings of the 2nd DIMACS
Implementation Challenge", DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 26, American Mathematical Society, 1996.

[Peemöller 1983] Peemöller J., "A Correction to Brélaz's Modification of Brown's Coloring
Algorithm", Communications of the ACM 26/8, 1983, 593-597.

[Kubale 1985] Kubale M. and Jackowski B., "A Generalized Implicit Enumeration Algorithm
for Graph Coloring", Communications of the ACM 28/4, 1985, 412-418.

[Mehotra 1996] Mehrotra A. and Trick M.A., "A Column Generation Approach for Exact Graph
Coloring", INFORMS Journal on Computing 8, 1996, 344-354.

[de Werra 1990] de Werra D., "Heuristics for Graph Coloring", Computing 7, 1990, 191-208.

