
Solving the Frequency Assignment Problem with

Polarization by Local Search and Tabu

Philippe Galinier †‡, Michel Gendreau †¶,
Patrick Soriano †§ and Serge Bisaillon †

†Centre de recherche sur les transports, Université de Montréal,

C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7

‡Département de génie informatique, École Polytechnique de Montréal,

C.P. 6079, succursale Centre-ville, Montréal, Québec, Canada H3C 3A7

‡Département d’informatique et recherche opérationnelle, Université de Montréal,

C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7

§Service de méthodes quantitatives, École des Hautes Études Commerciales,

3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 2A7

1 Introduction

Wireless communication networks have undergone a dramatic expansion over the past two
decades. Given the continuing fast growth in demand for wireless services, Frequency Assign-
ment Problems (FAP) play a key role in the planning of such networks [12]. Several variants of
FAP have been studied over the past ten years. A common feature of these problems is the pres-
ence of distance or spacing constraints imposed on pairs of frequencies in order to avoid (or at
least reduce) interferences between geographically close communication equipments. Problems
arising in radio-mobile networks (i.e. cellular telephone networks, personal communications
systems) generally comprise only distance constraints while problems arising in radio-link net-
works have other additional constraints. Their formal expression is therefore more complex. In
1993, the CELAR (the French “Centre d’Électronique de l’Armement”) built a series of sim-
plified versions of Radio Link Frequency Assignment Problems (RLFAP) based on data taken
from a real network [3]. The Frequency Assignment Problem with Polarization (FAPP) that
we study here is an extension of this latter problem. It was the topic of the 2001 International
Challenge organized by the French operations research society ROADEF in collaboration with
CELAR (see [4, 9] for more details). Strictly speaking, the FAPP no longer is a frequency as-
signment problem since polarities in addition to frequencies need to be assigned, which makes
the expression of the distance constraints (also referred to as electro-magnetic constraints) more
complex.

1

Over the last few years, various solution techniques for tackling frequency assignment prob-
lems have been proposed in the literature (see [5, 8, 13]). The vast majority of these focus
on the mobile radio setting and the most successful applications for realistic sized settings are
based on the use of meta-heuristics and in particular of tabu search.

In this paper, we consider an approach based on local search and tabu search [1, 7] to
solve the FAPP. Our procedure includes some original features, including a specialized neigh-
borhood, heuristics to determine critical variables and values, a diversification technique, an
auto-adaptive mechanism to set the tabu list and a pre-processing based on consistency tech-
niques inherited from constraint programming.

The remainder of this paper is organized as follows. The general principle of our local search
approach is presented in section 2. Section 3 focuses on solution techniques. Computational
experiments and results are then presented and analyzed in section 4. Finally, some concluding
remarks and further perspectives are proposed in section 5.

2 A local search approach for solving the FAPP

2.1 Problem definition

In the FAPP, each link is associated given polarity and frequency domains. A potential solution
or configuration is any assignment of both a polarity and a frequency to each link. The FAPP is
a constrained optimization problem: the constraints of the problem are the so-called imperative
constraints (IC), while the electro-magnetic constraints (EMC) are used to define the objective.
Each EMC can be satisfied according to 11 degrees ranging from 0 (representing a perfect way
to satisfy the constraint) to 10.

Considering any potential solution S, g(S) will denote the number of imperative constraints
violated in S and fk(S) (0 ≤ k ≤ 10) the number of EMC violated in S with respect to degree
k. To simplify the presentation, we introduce a fictitious additional degree of feasibility noted
k = 11 for which any ECM is always satisfied,i.e. f11(S) = 0, ∀S. We will say that a solution
S is k-feasible if g(S) = 0 and fk(S) = 0. We also define the degree of feasibility R(S) of a
configuration S as the smallest k for which S is k-feasible: if g(S) > 0 then R(S) = ∞, else
R(S) is the smallest integer k, 0 ≤ k ≤ 11 such that fk(S) = 0.

2.2 Search strategy

To solve the FAPP, we perform two successive phases. First, the feasibility phase consists in
finding a solution with a minimum degree of feasibility k. Then, the optimization phase consists
in finding a k-feasible solution that minimizes fk−1 and secondarily

∑
j≤k−2 fj. Let us consider

the three following subproblems:

◦ Rk : to find S such that g(S) = 0 and fk(S) = 0

◦ Ok : to minimize fk−1(S) under constraints g(S) = 0 and fk(S) = 0

◦ O′
k : to minimize (fk−1(S),

∑
j≤k−2 fj(S)) under constraints g(S) = 0 and fk(S) = 0

2

We observe that Rk is a feasibility problem; therefore solving Rk ends with a success or a
failure, depending on wether a solution is found or not. During the feasibility phase, subproblem
Rk will be solved for k = 11 and then, in case of success, for k = 10 and so on for the successive
decreasing values of k. This iterative process stops when the search fails to solve a particular
Rk or if a solution is found for R0. There are now two possibilities at the end of the feasibility
phase. If no solution is found to subproblem R11, it means that no feasible solution is found to
the FAPP and the search stops. In the opposite case, we denote by kmin the smallest value of
k for which a solution has been found and the optimization phase is then performed consisting
in solving Okmin

and then O′
kmin

.
Problem Rk can be modelled as a constraint satisfaction problem (CSP), i.e. a problem

defined by a set of variables, a set of associated domains and a set of constraints [10]. Such
problems are known to be very hard to solve exactly and one generally has to resort to heuristic
approaches, in particular when dealing with large instances as is the case here. Among those
techniques, local search methods such as tabu search have proven to be very effective [6]. They
consist in constructing a configuration (assignment of values to variables) and then modifying it
iteratively in order to reduce a cost function that represents the number of violated constraints.
Ok and O′

k are constraint satisfaction optimization problems (CSOP), that is CSPs to which an
objective function has been added. These can be solved by analogous techniques except that
the cost function has now to take the objective into account.

To solve the subproblems Rk, Ok and O′
k, we use local search and tabu. Therefore, each

subproblem will now be formulated as an optimization problem (with a set of configurations and
an evaluation function) and a neighborhood function between the configurations. Moreover,
we define some heuristics in order to restrict the neighborhood (candidate list strategy). Note
that these different features are identical for the three problems except for the definition of the
cost function.

2.3 Search space and evaluation function

In the following, a variable Xi will represent the couple (pi, fi) to be assigned to link i, and
Dom(Xi) the set of possible couples – considering the frequency domain and the polarity domain
of link i. A configuration in the search space will be any potential solution or, equivalently, any
possible assignment of the variables. In the following, Scurr will denote the current configuration
in our local search algorithm and Scurr(Xi) the value of variable X in Scurr.

For Rk, the evaluation function to be minimized is simply defined as the number of violated
constraints g + fk. For Ok, the function to be minimized is the weighted sum of two terms
penalizing constraint violations: g + fk, that penalizes IC and CEM violations at level k, and
fk−1, that penalizes lower degree CEM violations. A weight α >> 1 is applied to the first
term in order to encourage the procedure to satisfy first the IC and the current level CEM
constraints. An analogous principle is used to define the cost function in problem O′

k. The
evaluation functions of the subproblems are the following:

• Rk : g + fk

• Ok : α ∗ (g + fk) + fk−1

3

• O′
k : α2 ∗ (g + fk) + α ∗ fk−1 +

∑
j:j≤k fj

2.4 Neighborhood function

To solve the CSP by local search, one generally uses an elementary neighborhood structure
where two configurations are neighbors if they differ by the value of a single variable. Equiv-
alently, one defines a move as changing the value of a single variable [6]. To solve the FAPP,
we define a specialized neighborhood, where a move consists in changing the value of one or
two variables. We also tested the elementary neighborhood but our specialized neighborhood
turned out to be significantly more efficient.

In the following, the couple < X, v > indicates that the value of variable X is replaced in the
current configuration by a new value v ∈ Dom(X)− {Scurr(X)}. Considering the definition of
a variable, note that v represents a couple polarity-frequency and, therefore, the transformation
< X, v > may correspond to changing the frequency of X or its polarity or both of them.

The underlying idea of the specialized neighborhood we propose is linked to a particular
set of imperative constraints, namely the imperative constraints, frequency equality or CI-
FE. Recall that such a constraint imposes a pre-defined distance to be respected between two
frequencies: |fi − fj| = D. Let us suppose now that one of the two variables, say Xi = (pi, fi),
is fixed; therefore fi is fixed and there are at most two possible consistent values for fj: fi −D
and fi +D. Consequently, there are at most 4 consistent values for Xj = (pj, fj). In that sense,
CI-FE constraints are very strong – much stronger than the constraints of any other type in the
FAPP, including EMCs. The second remark is linked to the structure of the (undirected) graph
of CI-FE constraints – where each variable Xi is represented by a node i and a CI-FE constraint
between fi and fj by an edge (i, j). Now, if one analyzes the 40 proposed instances (see [4]),
one can note that, except for a few variables that are either isolated (i.e. no CI-FE applies
to them) or linked to more than one other variable (i.e. several CI-FE apply simultaneously),
all variables are generally linked to exactly one other variable in the graph. By using a greedy
algorithm to build a (sub-optimal) maximal coupling in the graph, we can partition the set
of variables into clusters of two elements (pairs of variables) or single element (singletons). A
move now consists in re-assigning at the same time 1 or 2 variables in a cluster. In addition,
if the cluster is a doubleton, we impose the CI-FE that links the two variables to be satisfied
after the execution of the move:

1. Singleton {X}: a move is any transformation < X, v >

2. Cluster {X, Y }, where the CI-FE constraint between X and Y is denoted by CXY : possible
moves are

• any transformation < X, v > such that (X = v, Y = Scurr(Y)) satisfies CXY

• any transformation < Y, w > such that (X = Scurr(X), Y = w) satisfies CXY

• any pair of transformations < X, v > and < Y, w > such that (X = v, Y = w)
satisfies CXY

Hence the neighborhood of a given configuration comprises all configurations that can be
reached through a move.

4

2.5 Critical variables and values

Given the size of the neighborhoods to be explored, it is clear that considering all possible
moves at each iteration would be very time consuming. In order to make the search process
more efficient, our local search algorithm will only consider subsets of moves that are considered
a priori as being among the more promising (i.e. a candidate list). A move will be considered
promising according to the following definitions of critical variables and critical values. We
define a variable as critical if it is involved in a constraint violated in the current configuration.

We also introduce the notion of critical value in order to take into account the specificity of
the problem, in particular the presence of EMCs. Considering a particular variable X, a value
v = (p, f) ∈ Dom(X) − {Scurr(X)} is said critical if one of the two following conditions holds:

1. (p, f) is an extreme value in the domain,

2. there exists a constraint C and a value (p, f ′) ∈ Dom(X) adjacent to (p, f) such that
(p, f) satisfies C and (p, f ′) does not satisfy C.

A value (p, f) ∈ Dom(X) is an extreme value of X if (p, g) /∈ Dom(X), ∀g > f or
(p, g) /∈ Dom(X), ∀g < f . Two values (p, f), (p′, f ′) ∈ Dom(X) are said adjacent if p = p′ and
there does not exist any (p, g) ∈ Dom(X) such that f < g < f ′ or f ′ < g < f . For example, if
Dom(X) = {(−1, 5), (−1, 10), (−1, 15), (−1, 20), (−1, 25), (−1, 30), (−1, 35), (1, 10), (1, 15),
(1, 20)}, then the extreme values of Dom(X) are (−1, 5), (−1, 35), (1, 10) and (1, 20). Given
Scurr, if constraint C forbids values (−1, 15) and (−1, 20) from being assigned to X, then (−1, 5)
and (−1, 20) are also critical values, due to condition 2.

To build the candidate list of moves, we first consider the set of critical variables and select
randomly a maximum fixed number of candidate variables among them. Candidate moves are
now the moves where at least one candidate variable is modified and where the new value of
this variable is a critical value.

3 Solution procedure

In the former section, we proposed a strategy for solving the FAPP based on the definition
of different subproblems (Rk, Ok and O′

k) and a local search approach to tackle each of these
subproblems that included the definition of an evaluation function, a neighborhood and some
heuristics to determine a candidate list of moves. We now present the specific procedure used
to solve these subproblems which is composed of a tabu search (TS) meta-heuristic, some
diversification techniques and a pre-processing that is used to reduce the size of the search
space.

3.1 Tabu mechanism and the aspiration criterion

The tabu mechanism we use records couples < variable, value > (see [6]). As long as a particular
couple < X, v > is tabu, it is forbidden to assign value v to variable X. At each iteration of
the tabu search procedure, a move is performed and one or two variables are modified. Then,
for each variable X modified by the move, couple < X, Scurr(X) > is classified tabu for a fixed

5

number of iterations. At each iteration, the candidate list is built and the best non tabu move
is chosen in the list (breaking ties randomly). However, a tabu move can eventually be chosen
if it leads to a configuration whose cost is strictly inferior to the one of the best solution found
during the search (this way of removing the tabu status of a move considering its exceptional
quality is called the simple aspiration criterion in tabu search jargon).

In order to minimize the risk of cycling and to increase the robustness of the TS proce-
dure, the number of iterations during which a couple remains tabu (or tabu tenure) is varied
dynamically during the search process. The principle is to periodically select a visited configu-
ration and to measure the distance between two selected configurations (the distance between
two configurations is defined as the number of variables which are assigned different values in
these two configurations). Then the tabu tenure is slightly decreased or increased depending on
whether the measured distance is larger or smaller than a given threshold. In our experiments,
the period equals the number of variables and the threshold is a percentage of the number
of variables (according to our experiments, suitable values for this parameter are comprised
between 10% and 25%).

3.2 Diversification techniques

In our preliminary experiments, we observed that on some hard instances the basic tabu pro-
cedure was not robust enough. The general behavior observed in those cases was that the cost
function tended to decrease initially and then to get stuck at a particular level. To overcome
this difficulty, we introduced a general diversification technique that we call Adaptive Jumping
Procedure (AJP).

The principle of AJP is very general; it is based on the use of two ingredients that are
(1) a LS operator and (2) a so-called jumping operator whose role is to jump from an initial
position in the search space to a new one. In AJP, the LS operator can be any kind of LS
technique, for example tabu search but also, possibly, a simple descent. The jumping opera-
tor can be seen as a super-mutation that consists in choosing randomly a fixed proportion of
the variables and changing their values randomly - but other completely different operators
could alternatively be used. An important point is that the amplitude of the diversification
is set by a parameter. The principle of AJP is that the size of the jump will be adjusted au-
tomatically according to the history of the search process. The AJP procedure is defined below:

Procedure AJP(S0,pinit)

1. S? = LocalSearch(S0)

2. p = pinit

3. repeat

(a) S = Jump(S?, p)

(b) S = LocalSearch(S)

(c) if (f(S) == f(S?)), increase p

(d) if (f(S) > f(S?)), decrease p

6

(e) if (f(S) ≤ f(S?)), S? = S

S0 is the initial configuration used for the search and pinit is the initial value of the jump
amplitude parameter p. S? represents the best solution found so far by the overall search and
is referred to as the reference configuration. AJP is an iterative procedure and one iteration
consists in performing a jump from the current configuration and then a LS chain. The quality
or performance of the configuration obtained after a full iteration is then compared to that of the
reference configuration S? and the value of the jump amplitude is adjusted accordingly. There
are three possible cases. If the new configuration has the same performance as S?, then this
may indicate that the search stayed in the same region of the solution space and therefore the
amplitude p of the jump should be increased to encourage a wider search. If the performance is
degraded, then this could mean that the process is jumping too far, i.e. that we are modifying
too much of the reference configuration and therefore destroying its structure. Hence, p should
be decreased. Finally, if the quality of the resulting solution is improved, the value of p is
unchanged. If the performance is not degraded (f(S) ≤ f(S?)), then the new configuration
becomes the new reference configuration. Note that we do not allow any degradation of the
reference solution. The AJP procedure stops if a solution good enough has been obtained
(typically if the optimum is known and reached) or if a limit is reached (time or number of
iterations).

3.3 Filtering pre-processing

Eliminating values from the domains of the variables that we are sure can not appear in a feasible
solution will reduce the size of the search space and, therefore, should make it easier to solve
the problem. To do this we implemented a pre-processing based on a Constraint Programming
technique called arc-consistency (see [2, 11]) which is used in a constrained problem (CSP or
CSOP) in order to eliminate some values from the domains of the variables. A value will be
eliminated if it is proven that it can not belong to any consistent solution (i.e. a solution that
satisfies all constraints). Consider two variables X and X ′ linked by a constraint C; a value
v of X is said inconsistent for C if there exists no v′ in the current domain of X ′ such that v
can be assigned to X and v′ to X ′ while respecting constraint C. Therefore, if v is inconsistent
for C, it is clear that v can not belong to a feasible solution of the problem. The principle
of arc-consistency algorithms is to detect such locally inconsistent values, to eliminate them
from the domain of the variable and to “propagate” this kind of domain reduction to the other
variables as explained hereafter.

The algorithm we use consists in memorizing a set of so-called active constraints. At the
beginning of the filtering algorithm, all constraints are active. The algorithm is iterative and
each iteration consists in choosing an active constraint, in treating it and in removing it from
the set of active constraints. To treat C consists in removing all inconsistent values from the
domain of the two variables. Then, if the domain of one of the two variables has been reduced,
all constraints that deal with this variable become active (except C). The procedure stops when
either the domain of one variable becomes empty, in which case we deduce that the problem is
inconsistent and there does exist any feasible solution, or the set of active constraints is empty,
in which case we cannot reduce the variable domains any further.

7

Note now that Rk, Ok and O′
k all contain the same set of constraints that are the imperative

constraints, but also all EMCs at level k. The filtering algorithm Filtering(k) consists in
applying arc-consistency by considering this last set of constraints. In some cases, the procedure
is able to prove the problem to be inconsistent at level k and, therefore, there is no consistent
solution to problems Rk, Ok and O′

k. Otherwise, before applying the tabu procedure to solve Rk,
Ok and O′

k, we set the domains of the variables according to the values found by Filtering(k).

3.4 Algorithm description

The scheme of our tabu algorithm is presented below:

1. Set k to the feasibility level of the best solution found so far; if k = 0, go to step 4
(Optimization).

2. Apply arc-consistency filtering algorithm to level k − 1, Filtering(k-1); if the problem is
proven unfeasible, go to step 4 (Optimization).

3. Reduce the domains according to k − 1; Apply LS to solve problem Rk−1; if a solution is
found, go to step 1.

4. Reduce the domains according to level k.

5. Apply LS to solve problem Ok; if a (k-1)-feasible solution is found, go to step 1.

6. Apply LS to solve problem O′
k; if a (k-1)-feasible solution is found, go to step 1.

In the following, k constantly represents the feasibility level of the best solution found so
far. According to the principles presented in section 3.2, the algorithm begins with a feasibility
phase. In this phase, a (k-1)-feasible solution is searched for by applying first the arc-consistency
pre-processing (step 2) and then local search (step 3). If successful, then k is updated and steps
1 through 3 are reiterated with the new (and smaller) value of k. If not, the optimization phase
is performed for the current value of k by reducing the domains according to level k (step 4)
and then solving sub-problem Ok and then O′

k. Note that, by solving Ok or O′
k, a (k-1)-feasible

solution can also be found. In such a case, the feasibility phase is reiterated by going back to
step 1.

As required by the ROADEF Challenge, the stopping criterion for the overall procedure
corresponds to an allotted maximum computing time. We use two additional parameters to
limit the percentage of time spent in the local search processes of steps 3 and 5, the remainder
being devoted to step 6.

The arc-consistency procedure (step 2) has been described in section 3.3. The local search
procedure used to solve problem Rk−1 (step 3) uses the strategy of the Adaptive Jumping
Procedure (AJP) presented in section 3.2. The first configuration is built randomly. The
LS operator used by AJP is the tabu algorithm obtained by combining the principles and
procedures described in sections 2.3 to 3.1. The tabu operator stops if a (k-1)-feasible solution
is found or if a predetermined maximum number of iterations without improving the best
solution is reached. The jumping procedure is a random super-mutation; it consists in randomly

8

selecting a fixed percentage p of variables and then assigning a random value from their domain
to each of them - parameter p is the jump amplitude parameter of the AJP. The initial value
of parameter p is 10% of the variables; to increase or decrease p, we add or subtract 10%. The
AJP procedure stops when a maximum time limit is reached (see below).

The local search procedures to solve problems Ok and O′
k (steps 5 and 6 respectively) also

use the AJP strategy. Each procedure is initialized by using the best k-feasible solution found
so far.

4 Computational results

The instances used in our experiments are those of the ROADEF Challenge (see [4]). Three
series of instances were proposed during the successive phases of the Challenge, counting 15, 15
and 10 instances respectively, for a total of 40. Their sizes is varied, ranging from around 200
to 3,000 variables, 118 to 15,664 imperative constraints and up to 2,087,947 frequency domain
values. The instances are identified by a label fxx yyyy where xx represents the index of
the instances (01 to 40) and yyyy the number of links – for example, the first instance called
f01 0200 has 200 links.

We present below two series of results obtained on these instances: the first one was obtained
by the algorithm used during the Challenge while the second was obtained by the algorithm
presented above. Both algorithms are identical except that the version of the Challenge did
not include the filtering technique; therefore, the arc-consistency procedure performed at step
2 is omitted, as well as the resulting domain reductions mentioned in steps 3 and 4.

The same parameters were used in all the experiments reported below. The allotted cpu
time is one hour. This total time is split as follows: 70% for the feasibility problems Rk, 20%
for the first optimization subproblems Ok, and the remaining 10 % being spent on solving O′

k.
In the tabu operator, the maximum number of iterations without improving the best solution
is 10,000. The parameter used in the dynamic tabu tenure adjustment mechanism is set to 15%
(see section 3.1). In AJP, the initial value of parameter p is 10%; the value used to increase or
decrease parameter p is also 10%.

All programs were coded using the C++ programming language. All times reported are in
cpu seconds. With respect to time, note that the ROADEF Challenge results were obtained by
the Challenge organizers with a single one hour cpu time run on a personal computer equipped
with a Pentium III 600 MHz processor. The other results reported hereafter were obtained on
SUN workstations with UltraSparcII 400 MHz processors.

4.1 Challenge results and further experiments without filtering

The results presented in this section are those obtained by the algorithm of the Challenge,
that is without the arc-consistency filtering procedure. The first columns of table 1 report
the instance label, the best results found during the Challenge (considering all participants)
and the results of our algorithm during the Challenge. For each instance we report the best
feasibility level k, the number of violated constraints at level k − 1 and the total number of
violated constraints (for levels k−2 and down) under heading Sum. The last portion of the table

9

reports the results of some additional experiments we carried out to evaluate more precisely
the robustness of our approach. We performed 10 independent runs of the algorithm (with
different seeds) and observed the best solution found over these runs as well as the distribution
of the best feasibility level obtained. This distribution is described here by the Best value found
followed between parenthesis by the number of times it was achieved over the 10 runs (Nb) and
the Worst k obtained.

If we look at the results obtained by our algorithm with respect to feasibility, we can observe
the following. Over the 40 instances, the algorithm systematically finds the best known k value
30 times, it finds it at least once out of the 10 runs for 5 instances (f12, f13, f14, f29, and
f35) and never finds the best k in 5 cases (f27, f30, f37, f38, and f40). If we now consider the
column reporting the Worst result found over the 10 runs, we can see that among the 5 instances
for which the best k is sometimes reached, there is one case, f35, where the method is stuck at
k = 11 at least once (i.e. unable to find a solution for k = 10 while one is known to exist). For
those where we never find the best k, there are three cases in which the algorithm is always
stuck (f27, f30, and f40). In the two other instances (f37 and f38), the method is sometimes
stuck. Let us now consider the full objective, that is feasibility level k and optimization of
violated constraints at levels k − 1 and lower, and compare our best results with the best of
the Challenge. The method improves on the best result of the Challenge for 16 instances and
equals it for 15 others.

We now recall the results obtained by the 4 most efficient algorithms participating in the
Challenge (B: our algorithm, C: Caseau, G: Gavranovitch, V: Vasquez). Table 2 summarizes
these results. The 3 groups of columns present for each method the number of instances
for which: (1) it obtained the best solution (feasibility level and optimization of unsatisfied
constraints) among all Challenge participants; (2) it reached the best known value of k; (3)
it was stuck at level k = 11. We observe that our algorithm was able to find the best known
solution for 25 instances out of the 40, versus 1 to 5 for the other leading algorithms. Considering
this criterion, our algorithm obtained by far the best results in the Challenge. Now with respect
to the feasibility level alone, our method did not perform as well, finding the best k value 32
times versus 35 and 37 times for algorithms C and V respectively. In particular, our algorithm
stayed trapped at k = 11 on 5 instances compared to 0 and 1 cases for C and V.

In summary we observe that our algorithm obtained somewhat contrasted results depending
on the instances. On the one hand, it obtained very good results on a large majority of them.
For these instances it proved to be very efficient compared to the other participants as well as
robust in terms of its ability to reach the best known feasibility level. On the other hand, the
procedure did not perform so well and even did quite poorly on a few of them when compared
to algorithms C and V. We introduced the filtering technique after the Challenge in order to
improve our results on this limited number of instances.

4.2 Algorithm with filtering techniques

We now discuss the impact of introducing the filtering technique described in section 3.3. We
are first going to analyze the effect of the filtering procedure Filtering(k) in terms of domain
reduction and its ability to prove infeasibility. Then we will compare the results of the algorithm
with and without filtering.

10

Instance ROADEF Challenge Further experiments - 10 runs
Best result Our result Best result k

k k − 1 Sum k k − 1 Sum k k − 1 Sum Best(Nb) Worst

f01 0200 4 4 56 4 4 56 4 4 37 4 (10) 4
f02 0250 2 7 86 2 7 86 2 7 20 2 (10) 2
f03 0300 7 10 165 7 10 341 7 10 231 7 (10) 7
f04 0300 1 31 0 1 31 0 1 16 0 1 (10) 1
f05 0350 11 1 186 11 1 372 11 1 268 11 (10) 11
f06 0500 5 12 246 5 12 246 5 12 250 5 (10) 5
f07 0600 9 22 682 9 22 714 9 22 732 9 (10) 9
f08 0700 5 16 266 5 16 266 5 16 247 5 (10) 5
f09 0800 3 28 195 3 28 195 3 28 210 3 (10) 3
f10 0900 6 18 475 6 18 475 6 18 442 6 (10) 6
f11 1000 8 8 1015 8 8 1015 8 8 784 8 (10) 8
f12 1500 2 62 1310 3 83 1698 2 3 44 2 (4) 5
f13 2000 3 49 2003 3 49 2003 3 48 1377 3 (8) 4
f14 2500 4 35 3485 4 35 3485 4 39 3750 4 (7) 5
f15 3000 5 15 1569 5 15 1569 5 15 1415 5 (10) 5
f16 0260 11 5 56 11 5 56 11 5 56 11 (10) 11
f17 0300 4 4 34 4 4 34 4 4 34 4 (10) 4
f18 0350 8 4 55 8 4 55 8 4 55 8 (10) 8
f19 0350 6 2 51 6 2 51 6 2 51 6 (10) 6
f20 0420 10 5 97 10 5 97 10 5 97 10 (10) 10
f21 0500 4 2 10 4 2 10 4 2 10 4 (10) 4
f22 1750 7 15 187 7 15 187 7 15 187 7 (10) 7
f23 1800 9 16 187 9 16 187 9 16 187 9 (10) 9
f24 2000 7 6 71 7 6 71 7 6 71 7 (10) 7
f25 2230 3 7 32 3 7 32 3 7 32 3 (10) 3
f26 2300 7 9 74 7 9 74 7 9 74 7 (10) 7
f27 2550 5 4 20 11 4 64 11 4 64 11 (10) 11
f28 2800 3 13 32 3 13 32 3 13 32 3 (10) 3
f29 2900 6 25 212 6 25 239 6 25 216 6 (9) 7
f30 3000 7 13 148 11 1166 12029 11 22 15421 11 (10) 11
f31 0400 5 4 1180 5 4 1180 5 4 1143 5 (10) 5
f32 0550 6 5 71 10 52 1739 6 4 39 6 (10) 6
f33 0650 5 7 66 5 7 66 5 7 60 5 (10) 5
f34 0750 4 2 46 4 2 46 4 2 46 4 (10) 4
f35 1500 6 16 431 7 3 1280 6 7 148 6 (6) 11
f36 2000 7 19 1451 7 99 2153 7 8 290 7 (10) 7
f37 2250 5 51 1288 11 3 12229 6 1 228 6 (1) 11
f38 2500 3 14 174 11 79 14058 10 7 8287 10 (1) 11
f39 2750 3 356 2844 3 356 2844 3 344 5360 3 (10) 3
f40 3000 4 64 1252 11 39 16755 11 16 16277 11 (10) 11

Table 1: Results without filtering

11

Best results Best k Stuck (k=11)
B C G V B C G V B C G V

Phase 1 (f01 to 15) 11 . . 1 14 11 6 12 . . 4 .
Phase 2 (f15 to 30) 10 1 2 . 13 15 15 15 2 . . .
Phase 3 (f31 to 40) 4 . 3 2 5 9 7 8 3 . . 1

Total 25 1 5 3 32 35 28 37 5 0 4 1

Table 2: ROADEF Challenge - finalists aggregate results

Instance k Initial Remaining domain for each feasibility level k (%) Time
Min Inf dom size 10 9 8 7 6 5 4 3 2 1 0

f01 0200 4 1 26963 78.7 72.7 67.2 62 60.3 55.3 53.2 49.1 44.5 — — 0
f02 0250 2 1 36618 87.3 74.5 66.5 60 53.3 51.4 48.3 43.6 40.9 — — 1
f03 0300 7 6 53536 76.5 65.5 59 52.9 — — — — — — — 1
f04 0300 1 0 61762 86.3 80.7 77.4 72.8 69.8 66.1 59.6 56.7 48.5 37.1 — 1
f05 0350 11 7 79311 88.7 80.6 68.7 — — — — — — — — 1
f06 0500 5 4 108024 87.4 75.1 69.9 63.2 55.3 49.4 — — — — — 2
f07 0600 9 8 109658 79.8 64.1 — — — — — — — — — 1
f08 0700 5 4 134020 88.8 82.3 76.5 72.3 66.8 62.6 — — — — — 2
f09 0800 3 2 121824 79 70.4 66 62 59.2 56.3 52 43.9 — — — 3
f10 0900 6 5 197665 84 77.5 71.4 67.6 62 — — — — — — 3
f11 1000 8 7 294634 78.2 65.2 53.2 — — — — — — — — 4
f12 1500 2 1 436967 85.4 67.1 58.4 53.8 50.6 47.4 45 42.8 39.1 — — 11
f13 2000 3 2 320494 87.8 80.3 69.9 63.2 59.1 55.9 51.9 46.8 — — — 9
f14 2500 4 3 774322 81.1 68.2 58.9 51.6 47.6 45 41.7 — — — — 18
f15 3000 5 4 515606 93.9 88.2 80.9 74.2 67.6 60.6 — — — — — 11
f16 0260 11 10 47293 — — — — — — — — — — — 0
f17 0300 4 3 64034 1.5 1.4 1.4 1.4 1.4 1.4 1.4 — — — — 0
f18 0350 8 7 73016 3 2.8 2.8 — — — — — — — — 0
f19 0350 6 5 201074 2.5 2.3 2.1 2.1 2 — — — — — — 1
f20 0420 10 9 87077 2.3 — — — — — — — — — — 0
f21 0500 4 3 113594 8.2 7.4 7.2 7.1 7 6.8 6.8 — — — — 1
f22 1750 7 6 813037 1.9 1.7 1.6 1.6 — — — — — — — 7
f23 1800 9 8 455735 0.8 0.8 — — — — — — — — — 5
f24 2000 7 6 567396 1.7 1.5 1.5 1.5 — — — — — — — 5
f25 2230 3 2 610084 5.7 5.4 5.3 5.2 5.1 5.1 5 5 — — — 6
f26 2300 7 6 635123 2.2 2 2 1.9 — — — — — — — 6
f27 2550 5 4 588188 18.2 17.3 16.8 16.4 16.2 16.1 — — — — — 7
f28 2800 3 2 2087947 3.9 3.7 3.6 3.6 3.4 3.4 3.4 3.4 — — — 17
f29 2900 6 5 1477634 1.2 1.1 1.1 1.1 1.1 — — — — — — 13
f30 3000 7 6 1942250 4.8 4.6 4.5 4.4 — — — — — — — 21
f31 0400 5 2 273538 68.7 67.7 66.5 65.6 64.6 63.1 60.6 58.5 — — — 5
f32 0550 6 5 448436 3.5 3 2.8 2.6 1.6 — — — — — — 4
f33 0650 5 4 233788 5.7 5.3 5 4.9 4.7 4.1 — — — — — 2
f34 0750 4 3 329841 7.7 7.1 6.6 6.3 6.1 6 5.8 — — — — 3
f35 1500 6 5 844907 4.4 4 3.8 3.6 3.5 — — — — — — 8
f36 2000 7 6 750979 5.5 5.1 4.8 4.5 — — — — — — — 7
f37 2250 5 4 1531733 3.9 3 2.5 2.2 1.9 1.6 — — — — — 18
f38 2500 3 2 1460508 3.7 3.1 2.7 2.3 1.9 1.6 1.5 1.4 — — — 25
f39 2750 3 1 1343881 76.3 75.3 74.3 73.4 72.3 71.3 70.2 68.9 65.5 — — 36
f40 3000 4 3 1873230 4.7 3.7 3.2 2.8 2.5 2.3 2.1 — — — — 28

Table 3: Results of the filtering procedure

12

Table 3 presents the results obtained by the filtering procedure alone. For each instance we
first indicate under the headings k Min the best feasibility level found during the Challenge (all
participants considered) and under k Inf the largest value of k for which the filtering procedure
was able to prove infeasibility. The rest of the table reports the initial domain size (the sum of
the domain sizes of all variables), the portion of the domain remaining (in percentage points)
after the filtering and resulting domain reduction for each feasibility level k (k = 0, ..., 10), and
finally, the total time required to perform the filtering over all feasibility levels (in cpu seconds).

As was expected, one can observe that the “efficiency” of the filtering increases when the
constraints become stronger which of course translates in smaller and smaller percentage figures
as k decreases. For the smaller values of k, the filtering algorithm is able to prove that the
instance is infeasible which we indicate by character “—” in the table. From the table we can
also see that the percentage of remaining domain values, for the smallest value of k for which
the filtering does not prove infeasibility, varies significantly between the three phases: it ranges
from 37.1% to 88% in Phase 1, from 0.8% to 16.1% in Phase 2 and from 1.4% to 68.9% in
Phase 3. These are quite impressive reductions in domain size and therefore in the size of the
problems to be solved which should a priori facilitate the task of the tabu search procedure.

Finally, when comparing the values of k Min and k Inf , we observe that these values differ
by only one unit for all but 4 instances (f1, f5, f31, and f39). For these 36 instances, this
proves both that the best feasibility levels obtained during the Challenge are indeed optimal
and that the filtering procedure was able to prove infeasibility for each infeasible instance.

Table 4 presents the results obtained by our tabu search algorithm when the filtering proce-
dure is included and used as a pre-processing at each feasibility level. We only consider here the
10 instances for which the original version was not able to systematically reach the best known
feasibility level. Considering the 3 instances of Phase 1, the results have not been improved by
the filtering. In fact, there is a degradation of the results for all 3 instances. With regards to
the 7 instances of Phases 2 and 3, we observe a considerable improvement in the results: for 4
of them, the filtering makes it possible to systematically reach the optimum value of k over the
10 runs, for 2 others we obtain the best k 9 times and for the last one 3 times.

We note that the improvement of the results occurs for instances coming from Phases 2 and
3 in which the domain reduction resulting from the filtering is very important (84 to 99 %).
On the other hand, we do not observe improvements for the Phase 1 instances for which the
domain reductions were much smaller (50 to 60 %). These results seem to indicate that the
filtering should not automatically be used with the proposed tabu search procedure, but should
instead be considered as an additional tool to tackle problematic instances.

5 Conclusion

In this paper, we have proposed an efficient tabu search algorithm to solve the FAPP. This algo-
rithm incorporates some original features: the decomposition of the problem (search strategy),
the neighborhood function, the candidate list, and the technique to adjust the tabu tenure. We
also implemented a pre-processing procedure based on arc-consistency.

Some of these techniques are problem-specific as the neighborhood function and the defini-
tion of critical values used in the candidate list, although the latter could also be used for other

13

Instance Challenge Rem Without filtering With filtering
Best result dom k Best result k Best result

k k − 1 Sum (%) Best(Nb) Worst k k − 1 Sum Best(Nb) Worst k k − 1 Sum

f12 1500 2 62 1310 39.1 2 (4) 5 2 3 44 4 (2) 6 4 8 1385
f13 2000 3 49 2003 46.8 3 (8) 4 3 48 1377 3 (6) 4 3 54 1391
f14 2500 4 35 3485 41.7 4 (7) 5 4 39 3750 4 (3) 6 4 31 2232
f27 2550 5 4 20 16.1 11 (10) 11 11 4 64 5 (10) 5 5 4 21
f29 2900 6 25 212 1.1 6 (9) 7 6 25 216 6 (10) 6 6 25 216
f30 3000 7 13 148 4.4 11 (10) 11 11 22 15421 7 (9) 8 7 13 747
f35 1500 6 16 431 3.5 6 (6) 11 6 7 148 6 (10) 6 6 7 132
f37 2250 5 51 1288 1.6 6 (1) 11 6 1 228 5 (9) 11 5 6 107
f38 2500 3 14 174 1.4 10 (1) 11 10 7 8287 3 (3) 10 3 42 548
f40 3000 4 64 1252 2.1 11 (10) 11 11 16 16277 4 (10) 4 4 8 102

Table 4: Comparative performance: with vs without filtering

frequency assignment problems. Some other techniques are general an potentially applicable
to a large number of new problems. This is the case for the mechanism proposed to update the
tabu tenure and the diversification strategy called Adaptive Jumping Procedure (AJP).

We tested our tabu algorithm on the 40 instances of the ROADEF Challenge 2001 and
obtained very good results. The algorithm was able to reach the best known feasibility level
for all instances and also to find or improve on the best known solutions of the Challenge for a
majority of the instances (28 out of the 40).

The key features of the algorithm seem to be the neighborhood, the candidate list strategy
and the filtering pre-processing. We report some test results that show the efficiency of the
filtering to solve some instances. It would now be interesting to analyze the impact of other key
features of the algorithm like the neighborhood (that should be compared to the elementary
one) and the candidate list strategy. Another research avenue is to test the AJP for new
problems.

References

[1] Aarts, E.H.L., Lenstra, J.K. (Eds.), Local Search in Combinatorial Optimization, John
Wiley & Sons, 1997.

[2] Bessiere, C., Regin, J.C., “Refining the Basic Consistency Propagation Algorithm”, 17th
International Joint Conference on Artificial Intelligence (IJCAI´01), p. 309-315, Seatle
Washington, USA, 2001.

[3] Cabon, B., Givry, S. D., Lobjois, L., Schiex, T., and Warners, J. P. , “Benchmarks Prob-
lems: Radio Link Frequency Assignment”, Constraints, 4:79-89, 1999.

[4] Cung, V.D., Defaix, T., “Quelques problèmes d´allocation de fréquences et le challenge
ROADEFF’2001”, JNPC´2001, p. 9-19, 2001.

[5] FAP Bibliography site, http://fap.zib.de/biblio/content.html.

14

[6] Galinier, P., Hao, J.K., “Tabu Search for Maximal Constraint Satisfaction Problems”,
Proc. of 3rd Intl. Conf. on Principles and Practice of Constraint Programming (CP’97).
Lecture Notes in Computer Science 1330 : 196-208, Springer-Verlag, 1997.

[7] Glover, F. and Laguna, M., Tabu Search, Kluwer Academic Publishers, 1997.

[8] Hao, J.K., Dorne, R., Galinier, P., “Tabu Search for Frequency Assignment in Mobile
Radio Networks”, Journal of Heuristics 4:47-62, 1998.

[9] Hertz, A., Schindl, D.,Zufferey, N., “Lower Bounding and Tabu Search Procedures for the
Frequency Assignment Problem with Polarization Constraints”, submitted, 2003.

[10] Mackworth, A.K., “Constraint Satisfaction”, in S.C. Shapiro (Ed.) Encyclopedia on Arti-
ficial Intelligence, John Wiley & Sons, NY, 1987.

[11] Mohr, R., Henderson, T.C., “Arc and Path Consistency Revisited”, Artificial Intelligence,
28:225-233, 1986

[12] Murphey, R.A., Pardalos, P.M., Resende, M.G.C., “Frequency Assignment Problems”, in
D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization Supplement
Volume A, Kluwer Academic Publishers, 1999.

[13] Tiourine, S.R., Hurkens, C.A.J., and Lenstra, J.K., “Local Search Algorithms for the Radio
Link Frequency Assignment Problem”, Telecommunication systems, 13:293-314, 2000.

[14] Tsang, E., Foundations of Constraint Satisfaction, Academic Press, 1993.

15

