
Les Cahiers du GERAD ISSN: 0711–2440

A Tabu Search Algorithm for the
Split Delivery Vehicle Routing Problem

C. Archetti, A. Hertz
M.G. Speranza

G–2003–18

March 2003

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

A Tabu Search Algorithm for the Split Delivery

Vehicle Routing Problem

C. Archetti
Dipartimento di Metodi Quantitativi

Università degli Studi di Brescia, Italia
archetti@eco.unibs.it

A. Hertz
Département de Mathématiques et de Génie Industriel

École Polytechnique, Montréal, Canada
and GERAD

Alain.Hertz@gerad.ca

M.G. Speranza
Dipartimento di Metodi Quantitativi

Università degli Studi di Brescia, Italia
speranza@eco.unibs.it

March, 2003

Les Cahiers du GERAD

G–2003–18

Copyright c© 2003 GERAD

Abstract

We describe a tabu search algorithm for the vehicle routing problem with split
deliveries. At each iteration, a neighbour solution is obtained by removing a customer
from a set of routes where it is currently visited, and by inserting it either into a new
route, or into an existing route which has enough residual capacity. The algorithm
also considers the possibility of inserting a customer into a route without removing
it from another route. The insertion of a customer into a route is done by means
of the cheapest insertion method. Computational experiments are reported for a set
of benchmark problems, and the results are compared with those obtained by the
algorithm proposed by Dror and Trudeau.

Résumé

Nous décrivons un algorithme tabou pour le problème de tournées de véhicules
dans lequel les livraisons auprès de chaque client peuvent être réparties entre plusieurs
véhicules. À chaque itération, une solution voisine est obtenue en supprimant un client
d’un ensemble de routes le desservant, et en l’insérant dans une nouvelle route ou dans
une route existante dont la capacité résiduelle est suffisante. L’algorithme considère
également la possibilité d’insérer un client dans une route sans l’ôter d’une autre route.
L’insertion d’un client dans une route est réalisée à l’aide de la méthode du plus petit
détour. Nous présentons des expériences numériques sur des problèmes tests, et les
résultats sont comparés avec ceux obtenus à l’aide d’un algorithme proposé par Dror
et Trudeau.

Les Cahiers du GERAD G–2003–18 1

1 Introduction

We consider the Split Delivery Vehicle Routing Problem (SDVRP) where a fleet of homo-
geneous vehicles has to serve a set of customers. Each customer can be visited more than
once, contrary to what is usually assumed in the classical Vehicle Routing Problem (VRP)
and the demand of each customer can be greater than the capacity of the vehicles. No
constraint on the number of available vehicles is considered. There is a single depot for the
vehicles and each vehicle has to start and end its tour at the depot. The objective is to
find a set of vehicle routes that serve all the customers such that the sum of the quantities
delivered in each tour does not exceed the capacity of the vehicles and the total distance
travelled is minimized.

The SDVRP is a variant of the Capacitated Vehicle Routing Problem (CVRP) which is
well known in the literature (for a survey of vehicle routing problems, see [14]). In [10] the
authors have described a tabu search algorithm for the capacitated vehicle routing problem
showing that this heuristic works well on this problem.

The SDVRP has been introduced in the literature only a few years ago. In [6] and
[7] Dror and Trudeau have analyzed the savings generated by allowing split deliveries in
a vehicle routing problem and they have presented a heuristic algorithm for the problem.
They have shown that when the distances satisfy the triangle inequality there exists an
optimal solution for the SDVRP where no pair of tours has two or more vertices in common.
Valid inequalities for the SDVRP are described in [5] while real applications of the problem
are studied in [12] and [13]. In [3] a lower bound is proposed for the SDVRP where the
demand of each customer is lower than the capacity of the vehicles and the quantity
delivered by the vehicles when visiting a customer is an integer number. In [8] the authors
present a mathematical formulation and a heuristic algorithm for the SDVRP with grid
network distances and time windows constraints. In [1] and [2] the authors have analyzed
the k-SDVRP where each vehicle has a capacity equal to a given integer k, and where
the demands of the customers as well as the quantity delivered by a vehicle when visiting
a customer are integer numbers. They have proved that the problem is NP-hard when
k ≥ 3 and they have shown that, under specific conditions on the distances, the problem
is reducible in polynomial time to a new problem where each customer has a demand that
is lower than the capacity of the vehicles, with a possible reduction on the number of
customers.

A direct trip in a k-SDVRP is a tour where a vehicle starts from the depot, goes directly
to a customer where it delivers k units, and then turns back directly to the depot. Given an
instance I of the k-SDVRP, one can build a reduced instance, denoted IR, by modifying the
demand di of each customer to di−k

⌊
di
k

⌋
. A solution sR for IR can then be transformed into

a solution s for I by adding
⌊

di
k

⌋
direct trips for each customer i. Now, given an instance

I of the k-SDVRP, consider the algorithm that first determines an optimal solution s∗R for
the reduced instance IR, and then builds the associated solution s∗ for I. It is proved in
[2] that this algorithm gives a worst case error of 3

2 when the distances satisfy the triangle
inequality.

Les Cahiers du GERAD G–2003–18 2

In this paper we consider the k-SDVRP. We describe a tabu search algorithm to solve
this problem that overcomes the typical problem of the tabu search algorithms: the tuning
of the parameters. Actually, our algorithm is very simple and easy to implement, and there
are only two parameters to be set: the length of the tabu list and the maximum number
of iterations the algorithm can run without improvement of the best solution found.

The paper is organized as follows. In Section 2 we show that there always exists an
optimal solution where the quantity delivered by each vehicle when visiting a customer is
an integer number. In Section 3 we describe the tabu search algorithm for the k-SDVRP.
In Section 4 Dror and Trudeau’s algorithm [7] is described and computational results as
well as comparisons with Dror and Trudeau’s algorithm are reported in Section 5.

2 A mathematical formulation and some properties

The k-SDVRP can be defined over a graph G = (V, E) with vertex set V = {0, 1, . . . , n}
where 0 denotes the depot while the other vertices are the customers, and E is the edge
set. The traversal cost (also called length) cij of an edge (i, j) ∈ E is supposed to be
non-negative. An integer demand di is associated with each customer i ∈ V − {0}. An
unlimited number of vehicles is available, each with a capacity k ∈ Z+. We will however
consider an upper bound m on the number of vehicles needed to serve the customers. For

example, one can use m =
n∑

i=1
di. Each vehicle must start and end its route at the depot.

The demands of the customers must be satisfied, and the quantity delivered in each tour
cannot exceed k. The objective is to minimize the total distance travelled by the vehicles.
We give below a mixed integer programming formulation (P) for the k-SDVRP. We use
the following notations:

xv
ij is a boolean variable which is equal to 1 if vehicle v travels directly from i to j, and

to 0 otherwise,
yiv is the quantity of the demand of i delivered by the v-th vehicle,

M is a real positive number larger than or equal to
n∑

i=1
di.

The k-SDVRP can now be formulated as follows:

Min
n∑

i=0

n∑

j=0

m∑

v=1

cijx
v
ij (1)

subject to:
n∑

i=0

m∑

v=1

xv
ij ≥ 1 j = 0, . . . , n (2)

n∑

i=0

xv
ip −

n∑

j=0

xv
pj = 0 p = 0, . . . , n; v = 1, . . . , m (3)

Les Cahiers du GERAD G–2003–18 3

∑

i∈S

∑

j∈S

xv
ij ≤ |S| − 1 v = 1, . . . , m; S ⊆ V − {0} (4)

yiv ≤ M
n∑

j=0

xv
ij i = 1, . . . , n; v = 1, . . . , m (5)

m∑

v=1

yiv = di i = 1, . . . , n (6)

n∑

i=1

yiv ≤ k v = 1, . . . , m (7)

xv
ij ∈ {0, 1} i = 0, . . . , n; j = 0, . . . , n; v = 1, . . . , m (8)

yiv ≥ 0 i = 1, . . . , n; v = 1, . . . ,m. (9)

Constraints (2)-(4) are the classical routing constraints: constraints (2) impose that
each vertex is visited at least once, (3) are the flow conservation constraints while (4)
are the subtours elimination constraints. Constraints (5)-(7) concern the allocation of the
demands of the customers among the vehicles: constraints (5) impose that customer i can
be served by vehicle v only if v passes through i. Constraints (6) ensure that the entire
demand of each vertex is satisfied while constraints (7) impose that the quantity delivered
by each vehicle does not exceed the capacity.

We now show that there always exists an optimal integer solution to (P).

Theorem 1 If (P) has feasible solutions, then there always exists an optimal solution in
which variables yiv ∈ Z+.

Proof. Let s∗ denote an optimal solution of (P), let z∗ be its value, and let xv∗
ij and y∗iv

be the corresponding optimal values of the variables. If all variables y∗iv have an integer
value, then there is nothing to prove. Otherwise, let A denote the set of pairs (i, v) with

i ∈ V − {0}, v ∈ {1, . . . , m}, and such that
n∑

j=0
xv∗

ij ≥ 1. For each customer i, define

N+(i) = {v|(i, v) ∈ A}. Similarly, define for each vehicle v the set N−(v) = {i|(i, v) ∈ A}.
Now, consider the following set of constraints:

∑

v∈N+(i)

yiv = di i = 1, . . . , n (10)

∑

i∈N−(v)

yiv ≤ k v = 1, . . . , m (11)

yiv ≥ 0 (i, v) ∈ A. (12)

Les Cahiers du GERAD G–2003–18 4

Constraints (10)-(12) are the classical ones of an assignment problem, and the y∗iv values
define a feasible assignment. Since the right-hand side of constraints (10)-(12) is made of
integer numbers, it is well-known that there exists a feasible assignment a where each
variable yiv gets an integer value. By replacing the y∗iv values in s∗ by those in a, one gets
a feasible solution to (P) that also has value z∗ since variables yiv do not appear in the
objective function.

Dror and Trudeau [6] have shown another interesting property on optimal solutions of
the SDVRP. To understand their result we first need to give the following definition.

Definition 1 Consider a set C = {i1, i2, . . . , it} of customers and suppose that there exist
t routes r1, . . . , rt, t ≥ 2, such that rw contains customers iw and iw+1, w = 1, . . . , t − 1,
and rt contains customers i1 and it. Such a configuration is called a t-split cycle.

Dror and Trudeau have shown that, if the distances satisfy the triangle inequality, then
there always exists an optimal solution to the SDVRP which does not contain t-split cycles,
t ≥ 2. In particular, for t = 2, this implies that there exists an optimal solution where
each pair of tours has at most one vertex in common.

3 A tabu search algorithm for the k-SDVRP

In this section we present a tabu search algorithm for the k-SDVRP, called SPLITABU. It
is a very simple algorithm, easy to implement, where there are only two parameters to be
set: the length of the tabu list and the maximum number of iterations the algorithm can
run without improvement of the best solution found. The algorithm is composed of the
three following phases.

• Phase 1: construction of an initial feasible solution.
• Phase 2: tabu search phase.
• Phase 3: final improvement of the solution found by the tabu search phase.

3.1 Phase 1: construction of an initial feasible solution

For constructing an initial feasible solution, we first create a reduced instance by creating
as many direct trips as possible (see Section 1). We then solve a traveling salesman prob-
lem on the reduced instance and we cut this giant tour into pieces so that the capacity
constraints are satisfied. For building a giant TSP tour, we use the GENIUS algorithm
proposed by Gendreau, Hertz and Laporte [9]. GENIUS is composed of two procedures:
the first one, GENI, is a generalized insertion procedure and the second one, US, is a
postoptimization routine. It is shown in [9] that this algorithm is a very efficient solution
method for the traveling salesman problem. A detailed description of Phase 1 is given
below.

Les Cahiers du GERAD G–2003–18 5

Phase 1

1. Create
⌊

di
k

⌋
direct trips for each customer i, and consider the reduced instance IR

where each customer i has a demand equal to di − k
⌊

di
k

⌋
.

Remove all customers having no demand in IR .
2. Construct a TSP tour T for the reduced instance IR by means of the GENIUS

algorithm.
3. Choose an orientation for T and label the customers so that T = (0 = v0, v1, . . . , vb−1,

vb = 0).
4. If the total demand on T is smaller than or equal to k then STOP.

Determine the smallest index i such that the demand on T up to vi is strictly larger
than k.
Build a route (0, v1, . . . , vi−1, 0), set T := (0, vi, . . . , vb−1, 0) and go to 3.

3.2 Phase 2: tabu search phase

The tabu search algorithm uses two procedures called ORDER ROUTES and BEST
NEIGHBOUR. Each procedure has a customer i as input parameter. In what follows
we denote by dir the quantity delivered to i on route r, by ρr the residual capacity on

route r (i.e. ρr = k−
n∑

i=1
dir), and by f(s) the total travelled distance in solution s. Given

a customer i, the first procedure constructs an ordered list Oi of the routes visiting i, the
routes being ordered according to the saving obtained by removing i. This is performed as
follows.

ORDER ROUTES(i)

1. Determine the set Ui of routes that visit customer i.
2. For each route u in Ui compute su = cpi + ciq− cpq where p and q are the predecessor

and the successor of i on u, respectively.
3. Order the routes in Ui by non-increasing value of su and set Oi equal to this ordered

list.

In our tabu search algorithm, a move from a solution s to a neighbour solution s′

is performed by including a customer i into a route r and by removing i from a subset
U ⊆ Oi − {r} of routes visiting i. The subset U is determined on the basis of the ordered
list established by ORDER ROUTES(i). When a customer i is added to a route r, we
consider as tabu for θ iterations the removal of i from r, and we will say that route r
is tabu for i. Also, when a customer i is removed from a route u, then it is tabu for θ
iterations to reinsert i into u, and we will also say that u is tabu for i. We have observed
that values of θ that depend on the number n of customers and on the number g of routes
in the current solution s produce better solutions. According to preliminary experiments,

Les Cahiers du GERAD G–2003–18 6

we have decided to set θ equal a random integer number in the interval [
√

10,
√

10 + p]
where p = n + g if n + g < 100 and p = 3

2(n + g) if n + g ≥ 100.
The tabu restrictions defined above may be too strong and forbid a good neighbour

solution. For this reason, we also consider the possibility of removing a customer i from
routes that are tabu for i and to insert i into a route r which is tabu for i. However, such
a neighbour is only accepted if it leads to a better solution than the best one encountered
so far.

Given a customer i to be inserted in a route r, it may happen that each route u in
Oi − {r} with diu ≤ ρr is tabu for i. In such a case, we consider the first non-tabu route
u for i in Oi − {r}, we decrease by ρr units the quantity delivered to i in u, and we insert
customer i in r, setting dir = dir + ρr. Hence, part of the demand of i is removed from
route u, and customer i is inserted into r. This cannot lead to a solution of better value
than s and this is the reason why we do not allow such a move if u or r is tabu for i.

Given a customer i, procedure BEST NEIGHBOUR(i) described below determines a
candidate neighbour si. In phase 2, this procedure is called for each customer in V − {0}
and a move is performed from the current solution s to the best neighbour among s1, . . . , sn.
In what follows we denote by R the set containing all routes plus a new route (i.e., a route
that does not visit any customer) and UT

i = {u ∈ Oi|u is tabu for i}.
BEST NEIGHBOUR(i)

Input : a solution s and the best solution s∗ encountered so far.
Output : a neighbour solution si, a route r∗ and a subset of routes U∗ ⊆ Oi−{r∗}; solution
si is obtained from s by inserting i into r∗ and by either setting dir∗ := dir∗ + ρr∗ and
diu := diu − ρr∗ if U∗ contains a single route u with diu > ρr∗ , or else by removing i from
all routes in U∗.

1. Set BestV alue := ∞ and construct the ordered list Oi by means of ORDER ROUTES(i).
2. For each route r in R do the following

2.1 Removal from non-tabu routes and insertion into a non-tabu route

1. If r is not tabu for i then set ρ := ρr and U := ∅; else go to 2.2.

2. Consider all routes u ∈ Oi − {r} according to the order defined in Oi and do
the following: if u is not tabu for i and diu ≤ ρ then set U := U ∪ {u} and
ρ := ρ− diu.

3. If U = ∅ then set F := ∞; else let s′ be the solution obtained from s by removing
i from all routes in U and by inserting i into r setting dir := dir +

∑
u∈U

diu, and

let F = f(s′).

4. If U = ∅, let u be the first non-tabu route for i in Oi − {r}: set U := {u} and
consider the solution s′ obtained by inserting i into r and by setting diu := diu−ρ
and dir := dir + ρ, and let F := f(s′).

Les Cahiers du GERAD G–2003–18 7

5. If F < BestV alue then set U∗ := U , r∗ := r, BestV alue := F and si := s′.

2.2 Removal from tabu routes or/and insertion into a tabu route

1. If r is tabu for i or UT
i contains a route u with diu ≤ ρr then set ρ := ρr,

otherwise return to 2.1 with the next route r ∈ R. If r is tabu for i then set
U := ∅, else determine the first route u in UT

i (according to the ordering in
O(i)) such that diu ≤ ρr, and set U := {u} and ρ := ρr − diu .

2. Consider all routes u ∈ Oi− (U ∪ {r}) according to the order defined in Oi and
do the following: if diu ≤ ρ then set U := U ∪ {u} and ρ := ρ− diu.

3. If U = ∅ then set F := ∞; else let s′ be the solution obtained from s by removing
i from all routes in U and by inserting i into r setting dir := dir +

∑
u∈U

diu, and

let F = f(s′).
4. If F < BestV alue and F < f(s∗) then set U∗ := U , r∗ := r, BestV alue := F

and si := s′.
5. Return to 2.1 with the next route r ∈ R.

We can now describe the tabu search phase. It is a standard tabu search algorithm that
stops when nmax iterations have been performed without improvement of the best solution
encountered so far. According to preliminary experiments we have fixed nmax equal to 400n.

Phase 2

1. Let s be the solution produced by Phase 1. Set s∗ := s and counter := 0;
2. Set Best := ∞

For i =1 to n do
Call BEST NEIGHBOUR(i)
If f(si) < Best then set BestI := i, BestU := U∗, Bestr := r∗,
BestS := si and BestF := f(si);

3. Set s := BestS;
Consider Bestr as well as all routes in BestU as tabu for BestI during θ iterations.
If BestF < f(s∗) then set s∗ := s and counter := 0; else set counter := counter + 1;
If counter < nmax then go to 2; else STOP.

3.3 Phase 3: final improvement

As mentioned in Section 2, Dror and Trudeau have shown that, if the distances satisfy the
triangle inequality, then there always exists an optimal solution to the SDVRP which does
not contain t-split cycles with t ≥ 2. A t-split cycle can easily be removed from a solution
as follows. Suppose that there exists a t-split cycle with routes r1, . . . , rt and such that rw

contains customers iw and iw+1, w = 1, . . . , t− 1, and rt contains customers i1 and it. Let
w∗ be an index such that diw∗rw∗ ≤ diwrw , w = 1, . . . , t: one can transfer diw∗rw∗ units of

Les Cahiers du GERAD G–2003–18 8

demand of each customer iw, w = 1, . . . , t−1, from rw to rw+1 as well as the same quantity
for customer it from rt to r1. Customer iw∗ will thus be removed from route rw∗ . If the
distances satisfy the triangle inequality, then this new solution is possibly better than the
one with the t-split cycle.

The final improvement phase performs such kind of improvements. It also tries to
reduce the length of each route by applying the GENIUS algorithm.

Phase 3

1. Let s be the solution resulting from Phase 2. If the distances satisfy the triangle
inequality, then delete all t-split cycles from s (if any).

2. Improve each individual route of s by means of the GENIUS algorithm.

4 Dror and Trudeau’s algorithm

We give in this section a short description of the algorithm proposed by Dror and Trudeau
for the SDVRP [6]. They consider the case where the demand of each customer is lower
than the capacity of the vehicles. Their heuristic is a local search algorithm and is composed
of the following two main procedures.

K -SPLIT INTERCHANGE

Consider a vertex i and its total demand di :

1. Remove vertex i from all the routes where it is visited.
2. Consider all subsets R of routes such that the total residual capacity

∑
r∈R

ρr is greater

than or equal to di. For each such subset R compute the total insertion cost of i into
all routes of R. Choose the subset R that leads to the least insertion cost and insert
i into all routes of R.

ROUTE ADDITION

Consider a customer i which appears in at least two routes r1 and r2. Eliminate the split
of i on these two routes and create a new route in the following way:

1. Preserve the four principle route segments on r1 and r2 (from the depot to the vertex
preceding i and from the vertex succeeding i to the depot).

2. Create three routes considering all the possible combinations between the principle
route segments and i (which must not be split) and choose the best one.

There are 9 possible combinations (for details see [6]). The same procedure is considered
when customer i is split among 3 different routes. In this case there are 19 possible
combinations to be considered. If a vertex is visited by more than 3 routes, the algorithm
considers all the possible combinations of 2 and 3 routes.

Moreover, Dror and Trudeau use the following classical improvement procedures which
have been developed for the capacitated VRP.

Les Cahiers du GERAD G–2003–18 9

NODE INTERCHANGES This procedure is based on one-node moves and two-nodes
swaps between routes and is described in detail in [4].

2-OPT This is the classical 2-opt procedure for the TSP [11].

Defining boolean variables split impr and add impr, the main algorithm works as fol-
lows:

Dror and Trudeau’s algorithm

1. Construct a feasible VRP solution.
2. NODE INTERCHANGES: execute all node interchange improvements.
3. 2-OPT: execute all 2-opt route improvements.
4. Set split impr = “false” and add impr = “false”.
5. K -SPLIT INTERCHANGE: execute all k-split interchange improvements. If there

is at least one improvement then set split impr = “true”.
6. ROUTE ADDITION: execute all route addition improvements. If there is at least

one improvement then set add impr = “true”.
7. If add impr = “true” then go to step 5. Otherwise, if split impr = “true” go to step

2 else STOP.

1
2

1

1

1

2

2

2

2
2 2

i

j z

t3

3 3

3

1
2

1

1

1

2

2

2

2
2 2

i

j z

t3

3 3

3

1

i

j z

t3

3 3

3

c) split solution.

1

i

j z

t3

3 3

3

d) optimal solution.

1

i

j z

t3

3 3

3

r1

r2 r3

r4
1

i

j z

t3

3 3

3

r1

r2 r3

r4

r1

r3

r4
r1

r3

r4

a) a problem instance.
b) VRP solution.

Figure 1: An instance of the 4-SDVRP for which Dror and Trudeaus algorithm cannot find
the optimal solution.

Les Cahiers du GERAD G–2003–18 10

We close this section by showing that there exist instances for which the above algorithm
has no chance to find an optimal solution. Consider the instance of Figure 1a which is
a 4-SDVRP with symmetrical distances that satisfy the triangle inequality. Each of the
four customers has a demand equal to three. In Figure 1b we have represented the unique
feasible VRP solution (where no split is allowed) which is therefore the initial solution of
Dror and Trudeau’s algorithm (and also of SPLITABU). This solution has a cost of 16.
Procedures NODE INTERCHANGES and 2-OPT cannot improve this solution. As the
demand of each customer is three while the residual capacity of each route is one, the only
feasible k-split interchange consists in splitting the demand of one customer among the
three other routes as shown in Figure 1c (where the demand of customer j is split into
routes r1, r3 and r4). Such a k-split interchange produces a solution of value 16 (if the
demand of customers j or z is split) or 17 (if the demand of customers i or t is split).
Hence, no improvement can be obtained with procedure K -SPLIT INTERCHANGE and
one therefore enters step 6 with the initial VRP solution. Since there is no split vertex,
the ROUTE ADDITION procedure cannot perform any change on this solution, and Dror
and Trudeau’s algorithm therefore stops at step 7 without finding the optimal solution of
value 15 which is represented in Figure 1d (where r1 delivers three units to i and one unit
to j, route r3 delivers two units to j and to z and route r4 delivers one unit to z and three
units to t).

With the neighbourhood defined in SPLITABU, it is possible to reach the optimal
solution. Indeed, one can first move one unit of demand of customer j from route r2 to
route r1 (Figure 2a). One can then move one unit of demand of customer z from route
r3 to route r4 (Figure 2b). One can finally remove customer j from route r2 and insert it
into r3 with dj3 = 2 (Figure 1d). It is in fact easy to build such instances for any value of
k (not only for k = 4).

1

i

j z

t3

3 3

3

r1

r2

r3

r4

a)

1

i

j z

t3

3 3

3

b)

r1

r3

r4

r2

1

i

j z

t3

3 3

3

b)

r1

r3

r4

r2

Figure 2: Solutions visited by SPLITABU for the same instance as in Figure 1.

Les Cahiers du GERAD G–2003–18 11

5 Computational results

This section contains computational experiments to evaluate the performance of SPLITABU.
The algorithm was implemented in C++ on a PC Pentium 4, 256 MB RAM. We have first
generated problems of small size as follows. We have considered the n first customers of the
benchmark VRP problems described in [10], with n = 6, 7, . . . , 15. All these problems have
a fixed vehicle capacity which was reduced to a smaller value so that at least three vehicles
are needed in a VRP solution. These small problems were solved using CPLEX 6.6. While
problems with up to 10 customers could be solved in a few seconds, larger problems with
n = 11, . . . , 15 required between one hour and four days of computation. For comparison,
SPLITABU has produced the same optimal solutions for all these problems in less than
one second.

Larger problems, with more than 15 customers can hardly be solved to optimality. In
order to evaluate the performance of SPLITABU on such larger instances we compare the
results produced by SPLITABU with those obtained using Dror and Trudeau’s algorithm
(DT for short). Algorithm DT was implemented in C++ on the same PC. We have
considered problems 1-5, 11 and 12 from [10]. These problems have between 50 and 199
customers. As proposed by Dror and Trudeau [6], the demands of the customers have
been modified as follows. Let α and γ be two parameters chosen in the interval [0, 1], with
α ≤ γ. The demand di of customer i is set equal to

di = bαk + δ (γ − α) kc

where δ is a random number in [0, 1]. In words, the demand di of customer i is chosen
randomly in the interval [αk, γk]. As in [6], we have considered the following combinations
(α, γ) of parameters: (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7) and (0.7, 0.9). We
have also considered the case where the original demands are not changed. This gives a
total of 49 instances (since there are seven instances with different demands for each of the
seven VRP problems taken from [10]).

Preliminary experiments with SPLITABU have shown that some solutions can easily
be improved by applying the 2-OPT and the NODE INTERCHANGES procedures each
time the best solution s∗ encountered so far is improved (step 3 of Phase 2). This variant
of SPLITABU is called SPLITABU-DT. We have also implemented another variant of
SPLITABU where the GENIUS algorithm [9] is applied on each route of s∗ each time s∗ is
improved. The results for this last variant are not reported here since SPLITABU-DT has
always produced solutions that are better both in terms of quality and CPU time. Finally,
since algorithm DT is much faster than our tabu search (see Table 1), we have considered
a variant of SPLITABU-DT, called FAST-SPLITABU where Phase 2 is run for at most
one minute.

Computational results are given in Tables 1 and 2. Each variant of SPLITABU was
run 5 times on each instance (two executions on a same instance may differ due to the
randomness of the length of the tabu list). Computing times are reported in Table 1 where

Les Cahiers du GERAD G–2003–18 12

D & T
Problem n αααα γ γ γ γ CPU CPUmin CPUav CPUmax CPUmin CPUav CPUmax

1 50 - - 0 13 17 22 7 13 24
2 75 - - 0 23 64 175 21 36 70
3 100 - - 0 31 60 93 34 58 120
4 150 - - 0 193 440 809 135 389 573
5 199 - - 0 665 1900 4170 281 386 465
6 120 - - 1 39 40 41 38 38 39
7 100 - - 0 65 86 105 41 49 68

1 50 0.01 0.1 0 5 9 14 4 5 7
2 75 0.01 0.1 0 17 42 86 10 13 16
3 100 0.01 0.1 0 27 59 89 23 31 45
4 150 0.01 0.1 0 107 258 810 107 173 233
5 199 0.01 0.1 0 224 754 1513 319 526 858
6 120 0.01 0.1 1 39 61 102 37 42 52
7 100 0.01 0.1 0 23 71 118 23 58 92

1 50 0.1 0.3 0 9 27 44 12 22 33
2 75 0.1 0.3 0 27 78 180 25 45 71
3 100 0.1 0.3 0 60 122 193 66 96 121
4 150 0.1 0.3 0 221 545 900 265 393 596
5 199 0.1 0.3 1 660 1224 2399 630 755 1061
6 120 0.1 0.3 1 214 516 1117 110 143 198
7 100 0.1 0.3 0 67 85 119 67 146 440

1 50 0.1 0.5 0 21 56 141 13 28 62
2 75 0.1 0.5 0 38 71 89 70 123 204
3 100 0.1 0.5 0 92 206 562 97 136 271
4 150 0.1 0.5 0 381 564 730 397 739 1512
5 199 0.1 0.5 1 1023 3811 7994 882 2668 4767
6 120 0.1 0.5 1 206 259 428 177 268 465
7 100 0.1 0.5 0 94 188 478 87 293 924

1 50 0.1 0.9 0 22 34 59 19 61 97
2 75 0.1 0.9 0 99 311 627 134 193 354
3 100 0.1 0.9 0 197 412 980 194 649 963
4 150 0.1 0.9 0 696 1822 2570 725 2278 4760
5 199 0.1 0.9 2 1883 2598 3162 2066 3297 4204
6 120 0.1 0.9 1 389 1037 2514 316 878 2739
7 100 0.1 0.9 0 187 523 1098 174 260 413

1 50 0.3 0.7 0 18 52 97 28 49 99
2 75 0.3 0.7 0 120 184 301 74 129 219
3 100 0.3 0.7 0 182 454 730 174 810 1638
4 150 0.3 0.7 1 800 1512 2535 839 3008 5533
5 199 0.3 0.7 2 1886 2279 3573 2067 3566 6799
6 120 0.3 0.7 1 368 477 830 451 659 1264
7 100 0.3 0.7 0 188 411 748 350 778 1321

1 50 0.7 0.9 0 61 160 267 83 106 144
2 75 0.7 0.9 0 210 437 625 582 869 1530
3 100 0.7 0.9 0 1497 1891 2160 762 1398 2686
4 150 0.7 0.9 2 4329 8783 17565 4837 10223 14005
5 199 0.7 0.9 7 4494 11347 31516 10285 21849 39401
6 120 0.7 0.9 1 1150 2033 2909 1189 1826 2674
7 100 0.7 0.9 0 928 1865 3074 506 1004 1426

SPLITABU SPLITABU-DT

Table 1: Computational times

Les Cahiers du GERAD G–2003–18 13

Problem n αααα γ γ γ γ z min z av z max z min z av z max z min z av z max

1 50 - - 10.06 9.65 9.11 9.55 9.06 7.99 9.55 9.06 7.99
2 75 - - 6.08 4.82 3.95 5.48 5.06 4.53 5.48 5.06 4.53
3 100 - - 7.55 6.21 4.48 7.63 7.38 6.75 7.63 7.37 6.75
4 150 - - 6.52 6.06 5.12 5.87 5.38 4.79 4.91 3.75 2.29
5 199 - - 1.34 0.57 0.16 2.60 2.39 2.04 2.46 2.13 1.58
6 120 - - 0.73 -0.05 -0.64 2.83 2.60 2.37 2.83 2.60 2.37
7 100 - - 13.89 13.57 13.44 13.89 13.28 12.34 13.89 13.28 12.34

1 50 0.01 0.1 5.75 5.12 4.70 5.75 5.14 4.65 5.75 5.14 4.65
2 75 0.01 0.1 8.31 7.77 7.45 8.68 8.14 7.62 8.68 8.14 7.62
3 100 0.01 0.1 6.20 4.27 1.66 8.65 6.82 5.11 8.65 6.82 5.11
4 150 0.01 0.1 7.34 6.45 5.58 7.81 6.87 6.02 7.47 6.59 6.02
5 199 0.01 0.1 8.80 6.32 3.85 8.57 7.84 7.26 7.55 6.75 5.51
6 120 0.01 0.1 3.59 0.73 -1.52 2.51 1.73 0.98 2.51 1.73 0.98
7 100 0.01 0.1 16.71 13.84 10.05 17.34 15.67 13.44 16.46 15.02 13.44

1 50 0.1 0.3 6.72 5.02 2.62 6.61 5.40 3.76 6.61 5.40 3.76
2 75 0.1 0.3 5.28 3.92 2.68 4.89 4.25 3.46 4.89 4.25 3.46
3 100 0.1 0.3 1.44 0.75 0.10 1.41 1.03 0.66 1.22 0.94 0.66
4 150 0.1 0.3 1.09 0.46 -0.17 2.14 1.61 1.17 1.62 1.28 0.86
5 199 0.1 0.3 1.01 0.68 0.48 2.40 2.15 1.94 1.99 1.76 1.48
6 120 0.1 0.3 3.19 1.53 0.86 1.07 0.92 0.62 0.99 0.84 0.62

7 100 0.1 0.3 9.02 7.91 6.73 9.97 8.47 6.35 9.95 8.14 6.35

1 50 0.1 0.5 5.35 4.05 2.62 5.05 3.96 3.34 5.05 3.96 3.34
2 75 0.1 0.5 3.32 2.69 1.85 3.89 3.13 2.73 3.44 2.72 2.02
3 100 0.1 0.5 1.78 1.31 1.06 1.42 0.95 0.74 1.42 0.82 0.11
4 150 0.1 0.5 2.20 1.56 0.76 2.50 1.61 1.17 1.50 0.94 0.39
5 199 0.1 0.5 1.44 0.78 0.14 2.32 1.20 -0.28 1.51 0.31 -0.28
6 120 0.1 0.5 4.72 3.72 2.56 4.54 2.81 0.17 2.48 1.52 0.17
7 100 0.1 0.5 7.13 5.39 4.89 7.65 5.39 3.18 6.15 4.27 3.10

1 50 0.1 0.9 4.12 3.32 2.20 6.56 4.87 2.83 6.56 4.84 2.83
2 75 0.1 0.9 2.86 2.49 2.03 3.13 2.34 1.78 1.95 1.52 1.04
3 100 0.1 0.9 2.79 2.27 1.97 5.03 3.39 2.14 2.93 1.88 0.01
4 150 0.1 0.9 1.72 1.03 0.22 4.90 3.42 -0.20 3.90 1.49 -0.20
5 199 0.1 0.9 1.90 1.24 0.62 7.16 4.88 3.94 2.23 1.14 -0.49
6 120 0.1 0.9 0.37 -0.44 -1.66 4.16 -0.81 -3.71 -2.27 -3.05 -4.11
7 100 0.1 0.9 3.63 2.43 0.57 6.99 4.18 1.34 6.45 3.94 1.34

1 50 0.3 0.7 3.69 2.72 1.37 4.15 3.52 2.83 4.15 3.51 2.85
2 75 0.3 0.7 1.76 1.34 0.90 2.53 2.04 1.60 2.23 1.87 1.60
3 100 0.3 0.7 3.49 2.85 2.11 7.87 4.33 1.84 3.61 2.61 1.84
4 150 0.3 0.7 2.40 1.83 0.87 6.09 4.37 2.98 3.02 2.02 1.40
5 199 0.3 0.7 -0.39 -1.07 -2.36 5.85 3.94 2.41 1.72 -0.01 -2.77
6 120 0.3 0.7 0.99 -1.16 -4.88 5.23 2.18 -0.68 2.67 -0.61 -2.16
7 100 0.3 0.7 4.11 2.33 1.19 12.63 7.91 4.38 4.85 3.36 1.47

1 50 0.7 0.9 0.76 0.63 0.34 1.90 1.14 0.70 1.90 1.01 0.64
2 75 0.7 0.9 -0.49 -0.83 -1.39 2.02 0.69 -0.41 -0.76 -1.22 -1.72
3 100 0.7 0.9 -0.65 -0.81 -0.95 1.27 0.72 0.29 -1.20 -1.96 -2.88
4 150 0.7 0.9 -0.63 -0.94 -1.68 3.10 1.56 0.88 -2.38 -3.47 -4.19
5 199 0.7 0.9 -1.28 -2.97 -6.24 5.28 1.96 0.47 -4.78 -5.96 -7.70
6 120 0.7 0.9 -1.73 -4.13 -5.85 0.58 -1.70 -3.58 -8.60 -8.64 -10.37
7 100 0.7 0.9 0.95 0.40 0.09 4.16 2.27 1.19 1.38 0.30 -0.77

3.81 2.81 1.72 5.38 4.03 2.81 3.72 2.76 1.73AVERAGE

FAST-SPLITSPLITABU SPLITABU-DT

Table 2: Percentage improvement over Dror and Trudeaus algorithm

Les Cahiers du GERAD G–2003–18 14

CPUav, CPUmin and CPUmax represent the average, the minimum and the maximum CPU
times in seconds calculated over the five tests made for each of the 49 instances. When no
value is given for parameters α and γ, this means that we used the original demands taken
from [10]. We observe that algorithm DT is very fast since it requires less than one second
for 35 of the 49 instances. In average, SPLITABU and SPLITABU-DT require less than
10 minutes for 35 and 31 instances, respectively. They both require more than one hour in
only two cases. We can observe in Table 1 that CPU times increase not only with the num-
ber of customers but also with their demands. Indeed, an instance with (α, γ)=(0.01, 0.1)
is typically solved much faster than the same instance with (α, γ)=(0.7, 0.9). The reason
is that more vehicles are needed when the demands are becoming larger, and this induces
an increase in the number of neighbour solutions to be considered at each step of the tabu
search.

Table 2 indicates the improvement in quality obtained by using the variants of
SPLITABU instead of algorithm DT. For each algorithm, we give the average zav, the
smallest zmin and the largest zmax improvements (in %) over DT. The best results are in-
dicated with bold numbers. It can be observed that SPLITABU-DT finds better solutions
than DT on all 49 instances. The improvement even reaches 17.34% on instance 7 with
(α, γ)=(0.01, 0.1). Algorithms SPLITABU and FAST-SPLITABU both outperform DT on
43 instances. The advantage of the three variants of SPLITABU over algorithm DT is
particularly visible on instances with small demands. We have observed in Table 1 that
high demands induce large neighbourhoods for tabu search since more vehicles are needed.
Hence, the optimization process in SPLITABU is more time consuming for such kind of
instances, and this explains why FAST-SPLITABU (that stops after one minute) produces
results of relatively bad quality on most instances with (α, γ)=(0.7, 0.9). Notice however
that SPLITABU-DT is able to gain up to 5 percents on these instances. The last line of
Table 2 contains the average results over the 49 instances. It can clearly be observed that
all tabu search algorithms improve on algorithm DT, even in the worst case (column zmax).

Conclusions

We have described in this paper several variants of a tabu search algorithm, called
SPLITABU, for the k-SDVRP. SPLITABU is a very simple algorithm, easy to implement,
with only two parameters to be set. Computational experiments confirm that optimal
solutions can be obtained in a practically null time for small instances having up to 15
customers. Comparison with Dror and Trudeau’s algorithm (the only existing heuristic
algorithm for the k-SDVRP) shows that the variants of SPLITABU provide almost always
better solutions even when computational times are limited to one minute. Finally, we
have shown that one can build instances for which Dror and Trudeau’s algorithm cannot
find the optimal solution, while the neighbourhood defined in SPLITABU overcomes this
difficulty.

Les Cahiers du GERAD G–2003–18 15

Acknowledgments

We wish to thank Jean-François Cordeau and Oli Madsen for providing the code for
GENIUS and Moshe Dror for useful information on the code of his algorithm for the
SDVRP.

References

[1] C. Archetti, R. Mansini, M.G. Speranza, “Complexity and reducibility of the
skip delivery problem”, Transportation Science (to appear).

[2] C. Archetti, M.G. Speranza, “A direct trip algorithm for the k-split delivery ve-
hicle routing problem”, Technical report n. 205, Department of Quantitative Methods,
University of Brescia (2002) (submitted).

[3] J.M. Belenguer, M.C. Martinez, E. Mota, “A lower bound for the split delivery
vehicle routing problem”, Operations Research 48, 801–810 (2000).

[4] M. Dror, L. Levy, “A vehicle routing improvement algorithm comparison of a
“greedy” and a matching implementation for inventory routing”, Computers and Op-
erations Research 13, 33–45 (1986).

[5] M. Dror, G. Laporte, P. Trudeau, “Vehicle routing with split deliveries”, Dis-
crete Applied Mathematics 50, 239–254 (1994).

[6] M. Dror, P. Trudeau, “Savings by split delivery routing”, Transportation Science
23, 141–145 (1989).

[7] M. Dror, P. Trudeau, “Split delivery routing”, Naval Research Logistics 37, 383–
402 (1990).

[8] P.W. Frizzell, J.W. Giffin, “The split delivery vehicle scheduling problem with
time windows and grid network distances”, Computers and Operations Research 22,
655–667, 1995.

[9] M. Gendreau, A. Hertz, G. Laporte, “New insertion and postoptimization proce-
dures for the traveling salesman problem”, Operations Research 40, 1086–1094 (1992).

[10] M. Gendreau, A. Hertz, G. Laporte, “A tabu search heuristic for the vehicle
routing problem”, Management Science 40, 1276–1290 (1994).

[11] S. Lin, “Computer solutions of the traveling salesman problem”, Bell System Tech-
nical Journal 44, 2245–2269 (1965).

[12] P.A. Mullaseril, M. Dror, J. Leung, “Split-delivery routing in livestock feed
distribution”, Journal of the Operational Research Society 48, 107–116 (1997).

[13] G. Sierksma, G.A. Tijssen, “Routing helicopters for crew exchanges on off-shore
locations”, Annals of Operations Research 76, 261–286 (1998).

[14] P. Toth, D. Vigo (eds.), “The Vehicle Routing Problem”, SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia (2002).

