
Optimizing the Design of a Wind Farm

Collection Network

Alain Hertz

GERAD and Département de mathématiques et génie industriel

École Polytechnique de Montréal

alain.hertz@gerad.ca

Odile Marcotte

GERAD and Département d’informatique

Université du Québec à Montréal

odile.marcotte@gerad.ca

Asma Mdimagh

GERAD and Département de mathématiques et génie industriel

École Polytechnique de Montréal

asma.mdimagh@gerad.ca

Michel Carreau

Hatch, Montréal, Québec, Canada

mcarreau@hatch.ca

François Welt

Hatch, Niagara Falls, Ontario, Canada

fwelt@hatch.ca

Abstract

In this article we study a network design problem that arises in the
exploitation of wind energy. We formulate this problem as a mixed in-
teger programming problem, relate this formulation to other problems
in combinatorial optimization, strengthen the formulation and propose
cutting planes, and finally present experimental results for real-world
instances of the collection network design problem.

Key Words: Network design, wind farm, mixed integer program-
ming, cutting planes.

Optimizing the Design of a Wind Farm Collection Network 1

1 Introduction

The design of networks plays an important role in the planning of large
systems, especially in the fields of telecommunications, transportation, and
energy. In particular it has become necessary to design networks for collect-
ing the energy produced through eco-friendly means, such as wind turbines
or solar panels. In this article we study a problem proposed by a Canadian
company involved in the design of wind farm collection networks. In Section
2 we give a precise definition of this problem and in Section 3 a formulation
of our problem as a mixed integer program. In Section 4 we survey the
literature on problems that are similar to ours. In Section 5 we discuss ways
of strengthening our model and introduce classes of cutting planes. Finally
we present experimental results in Section 6 and our conclusions in Section
7.

2 The collection network design problem

A wind farm is a group of wind turbines that come into operation at approx-
imately the same time and whose energy must be collected and distributed
through an existing electrical network. In this article we assume that the
locations of the turbines are already known and focus on the problem of
collecting the energy produced by the turbines and sending it to a known
sub-station. The network to be designed consists of:

• underground (UG) cables, each of which links two turbines or a turbine
to the above-ground network,

• above-ground transmission lines that usually follow existing roads and
link two geographical points (i.e., road intersections), and

• disconnects between the endpoints of UG cables and the above-ground
network.

The transmission lines can be built only on roads for which municipal per-
mits (called Right-of-Way) have been obtained. We assume that the road
segments where the lines may be built, and the associated building costs,
are known.

Each type of link (UG cable or transmission line) has a limited capacity.
Also several parallel links may be installed between two endpoints; for in-
stance there may be several cables between two turbines (say, u and v) and
on each cable the energy may flow from u to v or v to u. In this article, for
the sake of simplicity, we assume that there is only one type of UG cable

Optimizing the Design of a Wind Farm Collection Network 2

and one type of transmission line. The capacity of each type of link (cable
or line) is known. The model presented in the next section could be easily
modified if this assumption were relaxed. We also assume that we know the
cost of installing a given link (i.e., a UG cable or transmission line) between
two given endpoints; this cost includes the cost of the disconnect when the
UG cable links a turbine to the above-ground network. In general, if there
are parallel links between two nodes or vertices, the cost of installing the
first one is greater than that of installing the second one, the second is more
costly than the third, and so on. Finally we assume that there is one unit of
energy produced by each turbine; this assumption could be relaxed as well.

Figure 1 displays the graph underlying a wind farm collection design
problem. The turbines are represented as black nodes and the sub-station
as a black square; the other nodes represent the endpoints of transmission
lines. The potential UG cables are precisely those edges that have at least
one turbine (i.e., a black node) as an endpoint. The transmission lines
are those edges that link two white nodes. Therefore in this example, a
node in the underground network is always a turbine; in other examples the
underground network may contain intermediate nodes as well as turbines.

Figure 1: The graph underlying a wind farm collection design problem

We now discuss an important engineering constraint. The energy flowing
through a link (e.g., a cable) is unsplittable, i.e., if a “chunk” Q of energy
flows from point u to point v through a cable or transmission line, then
there must be a point w such that this chunk flows from v to w through
a given cable or transmission line. Of course the flow from v to w may be
greater than Q since v may receive flow from more than one vertex (and

Optimizing the Design of a Wind Farm Collection Network 3

in particular from a vertex u′ different from u). Hence a solution with
no parallel links may look like an anti-rooted tree (with the sub-station
as anti-root). An anti-rooted tree is a directed tree in which every arc is
directed towards a distinguished vertex called the anti-root. On the other
hand there are solutions that do not look like anti-rooted trees, for instance
those containing parallel links or a substructure consisting of arcs (u1, v),
(u2, v), (v,w1), and (v,w2) (in which case the solution includes a cycle going
through v and the sub-station).

The paths along which flows the energy produced by the wind farm con-
stitute a circuit (in the terminology of electrical engineering), hence the use
of the phrase “overhead circuit” to describe the transmission lines that are
part of the network. The engineering practice of designing such circuits
justifies the modelling of our problem as an unsplittable flow problem (see
Section 3). Figure 2 displays a feasible solution of the design problem de-
scribed in Figure 1. The number on any given edge is the number of links
between its two endpoints. We have omitted the label when there is only one
link between the endpoints. The collection network design problem consists
of finding a network of minimum cost through which the energy produced
by the turbines will be sent to the sub-station.

3

2 2

2 2 2 4 4 44

Figure 2: A feasible solution for the problem depicted in Figure 1

In order to model the network design problem, we must describe formally
the graph G = (V,A) underlying the problem. This graph is directed since
the energy may flow in either direction on a given link. The node set V
is the disjoint union of T (the set of turbines), R (the set of endpoints of
transmission lines), and {0, s} (where s denotes the sub-station and 0 a

Optimizing the Design of a Wind Farm Collection Network 4

source node). Similarly the set A is the disjoint union of the following five
categories of arcs:

1. all the arcs of the form (0, u) for u ∈ T ;

2. all the arcs of the form (u, v) and (v, u) for each UG cable with end-
points u and v in T ;

3. all the arcs of the form (u, v), where u belongs to T and v to R;

4. all the arcs of the form (u, v) and (v, u) for each transmission line with
endpoints u and v in R; and

5. all the arcs of the form (v, s), where v belongs to R and there is a
transmission line between v and s.

In the sequel A1 will denote the set of arcs (u, v) such that (v, u) does not
belong to A, and E the set of pairs {u, v} such that (u, v) and (v, u) both
belong to A.

We let m denote the maximal number of parallel links between vertices u
and v. For instance, there may be up tom UG cables between turbines u and
v. Then the links are denoted by (u, v, 1), (v, u, 1), (u, v, 2), (v, u, 2), etc.,
but only one of (u, v, k) and (v, u, k) is selected for any k (this amounts to
choosing the flow direction on the kth link between u and v). The value of m
is 4 in the problem instances supplied by the industrial partner. Because of
our assumptions the capacities of the arcs are easily described. The capacity
of an arc in Category 1 equals 1 since exactly one unit of energy is produced
by each turbine. The capacity of an arc in Category 2 or 3 equals Cug,
where Cug is a constant. The capacity of an arc in Category 4 or 5 equals
Cag, where Cag is another constant. The arc costs cannot be described so
easily, and one must distinguish between links. More precisely, the cost of
each additional link between two vertices u and v is at most the cost of
the previous link between u and v. Thus if ckuv denotes the cost of the link
(u, v, k), the relation c1uv ≥ c2uv ≥ · · · ≥ cmuv holds for every arc (u, v) (note
that ckuv = ckvu holds for any k). The cost ck0u equals 0 for any k and any u
in T since the source node is “fictitious”.

The goal of the model is to minimize the total cost of the cables used
to collect the energy produced by the wind turbines and send it to the
sub-station. The company will derive an obvious economic benefit from
minimizing the total cost of the cables. It is also reasonable to expect that
an optimal solution will provide a simple but robust design for the collection
network.

Optimizing the Design of a Wind Farm Collection Network 5

3 The model

As explained in the previous section, the problem consists of choosing the
cables and lines in order to transport the energy produced from the wind
turbines to the sub-station. Hence the most important decision variables are
the tkuv, defined as follows: tkuv equals 1 if the kth copy of arc (u, v) belongs
to the network and 0 otherwise. We also need variables to represent the
energy flowing through a given arc: xkuv denotes the flow through the kth
copy of arc (u, v). As explained above, the flow is unsplittable, and we must
express this constraint in mathematical terms. We have chosen to introduce
the binary variables ykk

′

uvw, defined as follows: ykk
′

uvw equals 1 if and only if all
the energy flowing through the kth copy of arc (u, v) also flows through the
(k′)th copy of arc (v,w). Finally zkk

′

uvw denotes the amount of energy flowing
through the kth copy of arc (u, v) and then through the (k′)th copy of arc
(v,w); recall that all the energy flowing through the kth copy of arc (u, v)
must be channelled through a single arc originating at v (unless v equals s).

The goal of the model is to minimize the total cost of the cables and
lines, i.e.,

∑

(u,v)∈A

∑m
k=1 c

k
uvt

k
uv, where ckuv denotes the cost of the kth copy

of arc (u, v). The constraints (2) express the fact that flow must be con-
served, except at the source node 0 (from which |T | units leave) and the
sub-station s (which receives |T | units). Note that P (u) (resp. S(u)) is the
set of predecessors (resp. successors) of u, i.e., the set of nodes v such that
(v, u) (resp. (u, v)) is an arc of G. The constraints (3) ensure that one unit
of flow coming from the source 0 enters each of the turbine nodes. The
constraints (4) express the fact that the flow on the kth copy of arc (u, v)
cannot be greater than the capacity of that arc (denoted by Cuv) and there
is a strictly positive flow on the arc only if tkuv equals 1. Observe that K
denotes the set {1, 2, . . . ,m}.

The constraints (5) express the fact that a given link (say, the kth link
between u and v) can be used in one direction only. The constraints (6) and
(7) express the fact that the (k + 1)th link can be used only if the kth link
is. Two groups of constraints are needed: one for asymmetric arcs and one
for symmetric arcs. The constraints (8) and (9) relate the variables zkk

′

uvw,
on one hand, and xkuv, on the other. The constraints (10) express the fact
that the flow on the kth copy of arc (u, v) that is channelled through arc
(v,w) cannot be greater than the capacity of arc uv or arc vw, and there
is a strictly positive flow of that kind only if ykk

′

uvw equals 1. In writing this
constraint we used P2 to denote the set of simple paths of length 2, i.e., the
set of triples (u, v, w) such that (u, v) and (v,w) are arcs of G and u and v

Optimizing the Design of a Wind Farm Collection Network 6

are distinct nodes. Finally, constraints (11) express the fact that if the kth
link between u and v is used in the network and v is not the sub-station,
then the flow on the kth link should be channelled out of v.

min
∑

(u,v)∈A

m
∑

k=1

ckuvt
k
uv s.t. (1)

∑

v∈P (u)

m
∑

k=1

xk
vu −

∑

v∈S(u)

m
∑

k=1

xk
uv =











|T | if u = s

−|T | if u = 0

0 otherwise

(2)

m
∑

k=1

xk
0v = 1 ∀v ∈ T (3)

xk
uv ≤ Cuvt

k
uv ∀(u, v) ∈ A, ∀k ∈ K (4)

tkuv + tkvu ≤ 1 ∀{u, v} ∈ E, ∀k ∈ K (5)

tk+1
uv ≤ tkuv ∀(u, v) ∈ A1, ∀k ∈ K, k < m (6)

tk+1
uv + tk+1

vu ≤ tkuv + tkvu ∀{u, v} ∈ E, ∀k ∈ K, k < m (7)

∑

u∈P (v)

m
∑

k=1

zkk
′

uvw = xk′

vw ∀(v, w) ∈ A, v 6= 0, ∀k′ ∈ K (8)

∑

w∈S(v)

m
∑

k′=1

zkk
′

uvw = xk
uv ∀(u, v) ∈ A, v 6= s, ∀k ∈ K (9)

zkk
′

uvw ≤ min (Cuv, Cvw) y
kk′

uvw ∀(u, v, w) ∈ P2, ∀k, k
′ ∈ K
(10)

∑

w∈S(v)

m
∑

k′=1

ykk
′

uvw = tkuv ∀(u, v) ∈ A, v 6= s, ∀k ∈ K (11)

xk
uv ≥ 0 ∀(u, v) ∈ A, ∀k ∈ K (12)

zkk
′

uvw ≥ 0 ∀(u, v, w) ∈ P2, ∀k, k
′ ∈ K (13)

tkuv ∈ {0, 1} ∀(u, v) ∈ A, ∀k ∈ K (14)

ykk
′

uvw ∈ {0, 1} ∀(u, v, w) ∈ P2, ∀k, k
′ ∈ K (15)

The above model exhibits many symmetries and the gap between the optimal
values of the mathematical program and its linear relaxation can be large. Hence
solving it by using a commercial package such as CPLEX can consume a lot of time.
In Section 5 we describe some inequalities that tighten the linear programming
relaxation of this model. Note that if the model has a feasible solution, it has an
integral optimal solution. This follows easily, because if the tkuv and the ykk

′

uvw have

Optimizing the Design of a Wind Farm Collection Network 7

fixed integer values, we can solve a capacitated network flow problem in order to
obtain integral values for the xk

uv.

4 Related problems and related work

The operations research literature does not contain many references to the problem
we address in the present article. Berzan et al. (2011) consider a problem similar to
ours (but simpler) and decompose it into three layers: the circuit, the substation,
and the full farm. When there is a single cable type, the problems for the first
two layers reduce to graph-theoretic problems (the uncapacited and capacitated
minimum spanning tree problems, respectively). They also formulate the circuit
problem as a mixed integer program and use this formulation to solve instances
with up to 8 turbines. Fagerfjäll (2010) addresses two models: the production
model and the infrastructure model. Only the latter is related to ours, but there
are differences between Fagerfjäll’s model and ours: for instance the locations of
the wind turbines are not completely fixed in Fagerfjäll’s infrastructure model. The
author has tested his models on instances with at most 30 turbines and reports that
CPLEX takes a long time for producing results for the infrastructure model.

As we pointed out in Section 2, many feasible solutions of the collection network
design problem actually are anti-rooted trees. This observation led us to explore
the relationship between the feasible solutions of our problem, on one hand, and
directed Steiner trees, on the other. We will show that there is a bijection between
the feasible solutions of the collection network problem and certain directed Steiner
trees in a related network. This network, denoted by H = (V ′, A′), is almost
identical to the line-graph of the multigraph obtained from G by replacing each
arc (u, v) of G by m parallel arcs between u and v. The vertex set of H (i.e., V ′)
consists of s′ (a new vertex) and all vertices of the form puvk (where uv is an arc
of G and 1 ≤ k ≤ m holds). The arc set of H (i.e., A′), is defined formally as the
union of

• the set of couples of the form (puvk, pvwℓ) such that u and w are distinct
vertices, and

• the set of couples of the form (pusk, s
′).

We assign a cost of ckuv to an arc of the form (puvk, pvwℓ) and a cost of ckus to
an arc of the form (pusk, s

′). Given a feasible solution of the collection network
problem defined on the graph G, it is straightforward to define a corresponding
anti-rooted tree (directed Steiner tree) in the graph H . To do so, observe that the
entire flow on the kth copy of arc (u, v) of G is routed on a single link of tail v.
Thus the kth copy of arc (u, v) has one “successor” only, say, the ℓth copy of arc
(v, w). Thus if a feasible solution of the network collection problem contains the
kth copy of arc (u, v) and the flow on this link is channelled through the ℓth copy

Optimizing the Design of a Wind Farm Collection Network 8

of arc (v, w), we include the arc (puvk, pvwℓ) into the directed Steiner tree (within
H). Similarly, if the feasible solution contains the kth copy of arc (u, s), we include
the arc (pusk, s

′) into the directed Steiner tree.

This construction can be reversed, i.e., a directed Steiner tree in H can be
transformed into a feasible solution of the network collection problem, provided the
following conditions are satisfied:

• if it includes a vertex of the form puvk, then it includes all vertices of the
form puvℓ for ℓ smaller than k; and

• if it includes a vertex of the form puvk, then the anti-rooted subtree of anti-
root puvk contains at most Cuv turbines, where Cuv is the capacity of arc uv
in the network collection problem.

Therefore if one wishes to formulate our problem as a directed Steiner tree problem,
one must take these additional constraints into account. In practice we will not
transform the graph G into the graph H , because the latter is very cumbersome.

Figure 3 displays the directed graph underlying a tiny instance of the collection
network problem, and the graph constructed by the above transformation. In this
example m equals 1. Nodes 1, 2, and 3 represent turbines and node 8 is the sub-
station. In the graph on the right every node except s′ corresponds to an arc of
the tiny graph and is labelled accordingly: for instance node 24 corresponds to
arc (2, 4) and node 75 to arc (7, 5). The black rectangles are the nodes of the
line graph corresponding to the subgraph induced by {1, 2, 3}. Similarly the grey
rectangles correspond to the arcs of the subgraph induced by the nodes of the
above-ground network (except the sub-station 8). White rectangles represent two
groups of arcs: the arcs linking a turbine to a node in the above-ground network,
and the arcs whose head is the sub-station (i.e., node 8). A feasible solution of the
collection network problem is displayed on the left: it consists of the “real” arcs
12, 25, 35, 54, 57, 46, 78, 68 and the “fictitious” arcs 01, 02, 03. This solution is not
a tree. Observe that in order to describe the solution completely, one must specify
that the flow on arc (3, 5) is channelled through arc (5, 7) and the flow on arc
(2, 5) through arc (5, 4). The directed Steiner tree corresponding to this solution is
displayed on the right.

In spite of the differences outlined above, the literature on Steiner trees is rel-
evant for our problem. Karp (1972) proved that the Steiner tree problem is NP-
complete and Goemans and Myung (1993) have given a survey of formulations for
the Steiner tree problem. Exact algorithms for solving this problem have been
proposed by Wong (1984), Beasley (1984), Beasley (1989), Lucena and Beasley
(1998), and Chopra et al. (1992). Since the Steiner tree problem is NP-complete,
many authors have also proposed heuristic algorithms for finding good solutions
(see for instance Khoury and Pardalos (1996), Gendreau, Larochelle and Sansò

Optimizing the Design of a Wind Farm Collection Network 9

0

8

5 4

67

03 01 02

12

23

31

13

32

21

35 25 24 14

45

57

76

64

54

46

67

75

47

74

6878

s’

3 2

1

Figure 3: A solution of the collection design problem and the corresponding
directed Steiner tree

(1999), Esbensen (1995), Voss and Gutenschwager (1998), and Ribeiro and Souza
(2000)).

5 Model strengthening and cutting planes

As we noted at the end of Section 3, the model presented in that section must be
strengthened. First, consider a node v that is neither the source nor the sub-station.
Assume that the capacity of a link between u and v equals the capacity of any link
between v and w, for any w 6= u. Then if the kth link from u to v is used in an
optimal solution, we may conclude that the number of arcs coming out of v in that
solution is at least k. Hence the following relation is satisfied.

ktkuv ≤
∑

w∈S(v),w 6=u

k
∑

i=1

tivw ∀(u, v) ∈ A, ∀k ∈ K (16)

Optimizing the Design of a Wind Farm Collection Network 10

The inclusion of Inequalities (16) into the model will remove some feasible solutions
but no optimal solution. Note that in the special case where v is a turbine node,
we obtain the inequality 1 = t10v ≤

∑

w∈S(v)

t1vw.

Now consider any optimal solution of the above model and assume that the
capacity of a link between u and v equals the capacity of any link between v and
w. If a quantity Q flows through the arc (v, w, k′), this same quantity (or a smaller
one) can flow through one link between u and v. Therefore any optimal solution
should include one such link only and the following constraint is satisfied.

m
∑

k=1

ykk
′

uvw ≤ 1 ∀(u, v, w) ∈ P2, ∀k
′ ∈ K (17)

Consider any arc of the form (u, s), where s denotes the sub-station. In any
optimal solution, the (k+1)st link between u and s will be used only if the sum of
the flows on the kth and (k+ 1)th links from u to s is greater than the capacity of
a link (Cag, in this case). Therefore the following inequality is satisfied by at least
one optimal solution (recall that there is at least one integral optimal solution), but
it is not satisfied by some feasible solutions.

(Cag + 1)tk+1
us ≤ xk

us + xk+1
us ∀(u, s) ∈ A, ∀k < m (18)

We also observe that because of Constraints (11), the inequalities

ykk
′

uvw ≤ tkuv ∀(u, v, w) ∈ P2, ∀k, k
′ ∈ K (19)

are valid. The following constraints are satisfied by all optimal solutions.

ykk
′

uvw ≤ tk
′

vw ∀(u, v, w) ∈ P2, ∀k, k
′ ∈ K (20)

Finally, it is possible to remove some symmetry from the model by making sure
that if there is a positive flow on path (u, v, w) using the kth copy of arc (u, v) and
the k′th copy of arc (v, w), on one hand, and the ℓth copy of arc (u, v) and the ℓ′

copy of arc (v, w), on the other, then k < ℓ implies that k′ ≤ ℓ′. This condition can
be expressed by the following constraints.

ykk
′

uvw + yℓℓ
′

uvw ≤ 1 ∀(u, v, w) ∈ P2, ∀k, k
′, ℓ, ℓ′ such that k < ℓ, k′ > ℓ′ (21)

We now turn to a large family of valid inequalities that play a crucial role in
the tightening of the model. There are too many of them for us to include them
all in the model, but it is possible to find (in a reasonable time) some inequalities
of this type that are violated by the current linear programming relaxation. Such
inequalities are called cutting planes. We first give two instances of inequalities

Optimizing the Design of a Wind Farm Collection Network 11

belonging to this family. Recall that P (s) is the set of predecessors of the sub-
station s and let Ds denote the set of arcs of the form (u, s, k) for u in P (s). For
the flow of all turbines to reach the sub-station, the following inequality must be
satisfied (where Ck

uv denotes the capacity of the link (u, v, k) and |T | the number
of turbines).

∑

(u,v,k)∈Ds

Ck
uvt

k
uv ≥ |T |

Since the tkuv are integers, many valid inequalities can be derived from this one. For
example, if all the Ck

uv appearing in this inequality equal Cag (as in the instances
supplied by the industrial partner), we may conclude that the inequality

∑

(u,v,k)∈Ds

tkuv ≥
⌈

|T |/Cag
⌉

(22)

is satisfied by any feasible solution of the mixed integer program.

In a similar fashion, ifDb (where b stands for “border”) denotes the set of all arcs
going from the underground network to the above-ground network, the inequality

∑

(u,v,k)∈Db

Ck
uvt

k
uv ≥ |T |

holds. If all the arcs in Db have a capacity of Cug (as in our instances), we may
conclude that the inequality

∑

(u,v,k)∈Db

tkuv ≥
⌈

|T |/Cug
⌉

(23)

is satisfied by any feasible solution of the mixed integer program. The two inequal-
ities

∑

(u,v,k)∈Ds

tkuv ≥
⌈

|T |/Cag
⌉

,
∑

(u,v,k)∈Db

tkuv ≥
⌈

|T |/Cug
⌉

are actually special cases of Inequality (25) below, which we now derive.

Consider a subset of vertices V1 containing the vertex 0 but not s. The set of
arcs (u, v) such that u belongs to V1 and v to the complement of V1 is called a cut.
This cut separates 0 from s. Let D be a cut separating 0 from s and D1 the subset
of arcs in D whose origin is the source (i.e., 0). We also let T ′ denote the set of
turbines u such that (0, u) does not belong to D1. We have

∑

(u,v,k)∈D

Ck
uvt

k
uv ≥ |T |

and thus
∑

(u,v,k)∈D\D1

Ck
uvt

k
uv ≥ |T | −

∑

(u,v,k)∈D1

tkuv.

Optimizing the Design of a Wind Farm Collection Network 12

Since all the arcs (u, v, k) in D1 have the property that tkuv equals 1, we obtain

∑

(u,v,k)∈D\D1

Ck
uvt

k
uv ≥ |T | − |D1| = |T ′|, (24)

and one can derive many valid inequalities from this one. For instance, ifM denotes
the largest value of Ck

uv for (u, v, k) ∈ D\D1, the inequality

∑

(u,v,k)∈D\D1

tkuv ≥ ⌈|T ′|/M⌉ (25)

is satisfied by any feasible solution of the mixed integer program.

It is possible to derive at least another valid inequality from (24). If we assume
that all the capacities are equal to Cag or Cug and let q denote their greatest
common divisor, then the following inequality is valid.

∑

(u,v,k)∈D\D1

(

Ck
uv/q

)

tkuv ≥ ⌈|T ′|/q⌉ (26)

When there are more than two values for the arc capacities, one can derive even
more valid inequalities, for instance all the inequalities valid for a knapsack equa-
tion.

We now assume that we have solved the linear programming relaxation of the
model described in Section 3. Some of the inequalities described at the beginning
of this section may have been included into the model. We are now looking for
instances of Inequality (25) that are violated by the current solution of the relax-
ation. In theory it is difficult to find violated inequalities because we don’t know
T ′. We now outline an algorithm for finding a violated inequality. This algorithm
constructs an auxiliary network having the same underlying graph as the original
network, but different capacities.

• Choose a subset T ′ of turbines and define D1 as the set of arcs (0, u) for u
in T \T ′.

• Define the capacity of arc (0, u) as 1 for every turbine u in T ′ and 0 otherwise.

• Assign the capacity tkuv to any arc (u, v, k) such that u 6= 0 holds. In practice
one can merge all the arcs of the form (u, v, k) for some couple (u, v) with
u 6= 0, i.e., create a single arc from u to v of capacity

∑m

k=1 t
k
ij .

• Solve the maximum flow problem in the auxiliary network, where node 0
is the source and s the sink. Let D′ denote a cut of minimum capacity
separating 0 from s.

• Let D be the arc set obtained from D′ by including into it all the arcs in
D1 and removing from it all the arcs of the form (u, v) for some u in T \T ′.
Return D.

Optimizing the Design of a Wind Farm Collection Network 13

The above algorithm will be referred to as separating T ′ from s. Given the set T ′,
a cut D is called a standard cut for T ′ if it contains D1 (as defined at the beginning
of the algorithm).

Proposition 5.1 The arc set D returned by the above algorithm is a minimum-
capacity cut separating 0 from s. If there exists a cut D that separates 0 from s, is
a standard cut for T ′, and satisfies

∑

(u,v,k)∈D\D1

tkuv < ⌈|T ′|/M⌉ ,

then the above algorithm will return such a cut.

Proof. The maximum flow algorithm produces a partition of the vertex set V
into sets V ′

1 and V ′
2 such that 0 is in V ′

1 , s in V ′
2 , and the capacity of the cut

D′ = {(u, v, k) | u ∈ V ′
1 , v ∈ V ′

2} is minimal. If V ′
2 does not contain T \T ′, we define

V1 as V ′
1\(T \T

′) and V2 as V ′
2 ∪ (T \T ′). The cut defined by V1 and V2 is precisely

the cut D returned by the algorithm, and it is a minimum-capacity cut because
each arc in D1 has a capacity of 0.

The second statement of the proposition follows easily from the first, since we
may always assume that a minimum-capacity cut contains D1 (by the argument in
the preceding paragraph). 2

For obvious reasons, one cannot run the above algorithm for every subset T ′

of turbines. In the next section we will discuss the strategy we employed. We
conclude this section by noting that one can use a similar algorithm for finding
violated inequalities of the form (26).

6 The experiments

We conducted experiments on nine instances provided by the industrial partner.
Table 1 contains the description of these instances. We ran the model given in
Section 3 on the nine instances using CPLEX 12.3; for Instance no. 7 one hour of
computing time was not sufficient to find an (integral) feasible solution. We then
included the Inequalities (16) to (21) into the model and after some experiments,
concluded that only Inequalities (16) and (17) were useful. For Instance no. 3
CPLEX 12.3 could not find an integral solution within one hour of computing
time.

We then introduced some cutting planes of the form (25). We proceeded as
follows. We first introduced the constraints (22) and (23) into the model. Then
we introduced three groups of cutting planes. The first group of cutting planes
corresponds to inequalities of the form (25) where T ′ is a singleton (i.e., a set
consisting of one turbine). Algorithm 1 describes the procedure we used to generate

Optimizing the Design of a Wind Farm Collection Network 14

Table 1: Description of the instances
Number of Number of Number of Capacity Capacity
turbines vertices arcs Cug Cag

Instance 1 40 143 384 5 10
Instance 2 88 220 517 10 25
Instance 3 53 306 868 10 15
Instance 4 73 256 679 10 15
Instance 5 33 64 160 11 11
Instance 6 42 91 232 11 11
Instance 7 60 189 478 3 10
Instance 8 112 281 793 5 12
Instance 9 79 231 677 5 12

this first group of cutting planes. Note that we also generated all the sets T ′ of
cardinality 2 and added the corresponding cutting planes. In the final experiments,
however, we only used the sets T ′ of cardinality one, since those of cardinality 2
did not improve by much the optimal value of the linear relaxation.

Algorithm 1 First group of cutting planes

1: for each turbine u do

2: set T ′ equal to {u}
3: repeat

4: separate T ′ from s
5: let D be a minimum-capacity standard cut for T ′

6: if Inequality (25) for D is violated then

7: add Inequality (25) to the model
8: solve the linear relaxation of the model
9: end if

10: until the optimal value of the linear relaxation has not increased
11: end for

For the second group of cutting planes, we set T ′ equal to T , i.e., we tried to
separate the set of all turbines from the sub-station. We added Inequalities (25)
and (26) to the model whenever they were violated. Algorithm 2 describes our
procedure. Finally, we tried to find more cutting planes by considering each vertex
v of the graph in turn. We let M(v) denote the set of vertices u such that there is a
path from u to v consisting of arcs (w,w′, k) with tkww′ > 0. We also let T (v) denote
M(v) ∩ T and D(v) the cut {(w,w′) ∈ A | w ∈ M(v), w′ /∈ M(v)}. If Inequality
(25) (with D replaced by D(v)) was violated, we memorized T (v) and called it Si

(where i is the index of the current cutting plane). Once all the useful subsets of

Optimizing the Design of a Wind Farm Collection Network 15

Algorithm 2 Second group of cutting planes
1: repeat

2: separate T from s
3: let D be a minimum-capacity standard cut for T
4: if Inequality (25) or (26) for D is violated then

5: add the violated inequalities to the model
6: solve the linear relaxation of the model
7: end if

8: until the optimal value of the linear relaxation has not increased

turbines had been computed and memorized, we separated each subset from s and
added a group of new cutting planes to the model. This procedure was repeated
until the optimal value of the linear relaxation could not be improved. The whole
subalgorithm is summarized in Algorithm 3.

The three groups of cutting planes that we have just described are computed
only at the root node of the branch-and-bound tree. The experimental results
are summarized in Table 2. Note that a table entry contains a question mark
whenever CPLEX 12.3 could not find an integral feasible solution within one hour
of computing time. With the formulation of Section 3, we could find optimal
solutions for two instances only. After including constraints (16) and (17) into the
model, four more instances could be solved to optimality, and after including (16),
(17), and the cutting planes into the model, 7 instances out of 9 could be solved to
optimality. In particular, the introduction of cutting planes enabled us to find an
optimal solution of Instance no. 3, which has more vertices and more arcs than any
other instance.

Note that Instances 7 and 8 are more “difficult” than the other ones. This may
be due to the “incompatibility” between the values of Cug and Cag: in each case
those values are relatively prime! We decided to try and solve the model for those
two instances by including only the constraints of the original model, (16), (17),
(22), and (23). After one hour of computing time CPLEX had not found an optimal
solution for either instance, but it could find an optimal solution of Instance no. 7
in a little more than 8 hours. We could not solve Instance no. 8 because of a lack
of memory. These results are summarized in Table 3.

7 Conclusion

In this article we have formulated the design of a wind farm collection system as
a mixed integer programming problem. We have shown that tightening the mixed
integer programming formulation and including some cutting planes at the root
node of the branch-and-bound tree enabled one to solve all the instances provided
by the industrial partner (except one). There is still much work to do, however. For

Optimizing the Design of a Wind Farm Collection Network 16

Algorithm 3 Third group of cutting planes

1: i := 0
2: for each vertex v do

3: compute M(v), T (v), and D(v)
4: if Inequality (25) with D replaced by D(v) is violated then

5: i := i+ 1
6: memorize T (v) and call it Si

7: end if

8: end for

9: repeat

10: for each index i do
11: separate Si from s
12: let Di be a minimum-capacity standard cut for Si

13: if Inequality (25) for Di is violated then

14: add Inequality (25) to the pool of new cutting planes
15: end if

16: end for

17: add all the cutting planes found to the model
18: solve the linear relaxation of the model
19: until the optimal value of the linear relaxation has not increased

Table 2: Summary of results
Original Model Model, (16), and (17) Model, (16), (17),

and cutting planes
Solution Gap (%) CPU (s) Solution Gap (%) CPU (s) Solution Gap (%) CPU (s)

Ins. 1 88424.8 3.72 3600 87592.4 0.0 206 87592.4 0.0 429
Ins. 2 126321.0 1.12 3600 126321.0 0.0 20 126321.0 0.0 48
Ins. 3 123941.0 16.28 3600 ? ? 3600 121779.0 0.0 2588
Ins. 4 119887.0 3.31 3600 119887.0 0.0 975 119887.0 0.0 598
Ins. 5 45668.8 0.0 6 45668.8 0.0 1 45668.8 0.0 4
Ins. 6 63585.6 0.0 205 63585.6 0.0 45 63585.6 0.0 49
Ins. 7 ? ? 3600 114185.0 2.86 3600 115241.0 5.29 3600
Ins. 8 190160.0 9.97 3600 185867.0 5.7 3600 188151.0 6.95 3600
Ins. 9 122189.0 3.07 3600 121909.0 0.0 1903 121909.0 0.0 1892

Table 3: Results with the original constraints plus (16), (17), (22), and (23)
With a time limit Without a time limit

Solution Gap (%) CPU (s) Solution Gap (%) CPU (s)

Ins. 7 114323.6 2.94 3600 114185.0 0.0 30085
Ins. 8 187773.3 6.68 3600 185037.0 2.07 164015

Optimizing the Design of a Wind Farm Collection Network 17

instance, we have seen that it is in general difficult to recognize violated inequalities
of the form (25) because there is a huge number of choices for the set T ′. Hence
one should try to develop heuristics for finding more violated inequalities of the
form (25). Then one could try to find such inequalities at the internal nodes of the
branch-and-bound tree, in the hope of decreasing the running time of the algorithm.
Finally, given the close relationship between the problem described in this article
and the Steiner tree problem, one should investigate ways in which to adapt to our
problem the exact and heuristic algorithms developed for the Steiner tree problem.

Acknowledgments

The authors are very grateful to NSERC for its support through the discovery
grants of Alain Hertz and Odile Marcotte, and to Hatch for providing the data sets
on which our algorithms were tested.

References

Beasley, J. E. (1984). An Algorithm for the Steiner Problem in Graphs. Networks
14:147–159.

Beasley, J. E. (1989). An SST-based Algorithm for the Steiner Problem in Graphs.
Networks 19:1–16.

Berzan, C., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M. (2011). Algo-
rithms for Cable Network Design on Large-scale Wind Farms. Technical Report,
Massachusetts Institute of Technology.

Chopra, S., Gorres, E. R., Rao, M. R. (1992). Solving the Steiner Tree Problem on
a Graph Using Branch-and-Cut. ORSA Journal on Computing 4:320–335.

Esbensen, H. (1995). Computing Near-optimal Solutions to the Steiner Problem in
a Graph Using a Genetic Algorithm. Networks 26:173–185.

Fagerfjäll, P. (2010). Optimizing Wind Farm Layout - More Bang for the Buck
Using Mixed Integer Linear Programming. Master’s Thesis, Department of Math-
ematical Sciences, Chalmers University of Technology and Gothenburg University,
Göteborg, Sweden.

Gendreau, M., Larochelle, J.-F., Sansò, B. (1999). A Tabu Search Heuristic for the
Steiner Tree Problem. Networks 34:162–172.

Goemans, M. X., Myung, Y.-S. (1993). A Catalog of Steiner Tree Formulations.
Networks 23:19–28.

Karp, R. M. (1972). Reducibility Among Combinatorial Problems. Complexity of
Computer Computations (R. E. Miller and J. W. Thatcher, eds.), 85–103.

Khoury, B. N., Pardalos, P. M. (1996). A Heuristic for the Steiner Problem in
Graphs. Computational Optimization and Applications 6:5–14.

Optimizing the Design of a Wind Farm Collection Network 18

Lucena, A., Beasley, J. E. (1998). A Branch-and-Cut Algorithm for the Steiner
Problem in Graphs. Networks 31:39–59.

Ribeiro, C. C., Souza, M. C. D. (2000). Tabu Search for the Steiner Problem in
Graphs. Networks 36:138–146.

Voss, S., Gutenschwager, K. (1998). A Chunking Based Genetic Algorithm for the
Steiner Tree Problem in Graphs. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 40:335–355.

Wong, R. T. (1984). A Dual Ascent Approach for Steiner Tree Problems on a
Directed Graph. Mathematical Programming 28:271-287.

